A DISCRETE STOCHASTIC KOROVKIN THEOREM

GEORGE A. ANASTASSIOU

Department of Mathematical Sciences Memphis State University Memphis, Tennessee 38152 U.S.A.

(Received June 2, 1989 and in revised form October 16, 1989)

ABSTRACT. In this article we give a sufficient condition for the pointwise -- in the first mean Korovkin property on $B_0(P)$, the space of stochastic processes with real state space and countable index set P and bounded first moments.

KEY WORDS AND PHRASES. Positive linear operator, stochastic processes, pointwise - in the first mean convergence.

1980 AMS SUBJECT CLASSIFICATION CODE. (1985 Revision): Primary 41A36, 60F25; Secondary 60C99.

1. INTRODUCTION.

Let $(\underline{0}, \Lambda, \tau)$ be a probability space and let P denote a fixed countable set. Consider stochastic processes X with real state space and the expectation operator $E(X)(t) = \int_{\underline{0}} X(t,\omega)\tau(d\omega)$, $t \in P$. Define $B_{\underline{0}}(P) = \{X: \sup_{t \in P} E | X | (t) < \infty\}$. Let $T_n: \underset{t \in P}{} B_{\underline{0}}(P) \rightarrow B_{\underline{0}}(P)$ be any sequence of positive linear operators such that $ET_n = T_n E$, all $n = 1, 2, \ldots$. In Theorem 1, under Korovkin type assumptions, we give a sufficient condition such that for each X $\in B_0(P)$,

 $\lim_{n\to\infty} E[(T_nX)(t,\omega) - X(t,\omega)] = 0, \text{ for each } t \in P.$

In [3], see Theorem 3.2, was treated the continuous case, that is, when P is an uncountable compact space. There the sufficient condition is similar to ours, however, it is produced under the additional assumption that T_n is a stochastically simple operator.

Our result has as follows:

THEOREM 1. Let $(\underline{0}, A, \tau)$ be a probability space and $P = \{t_1, \ldots, t_j, \ldots\}$ be a countable set of cardinality ≥ 2 . Consider the space of stochastic processes with real state space

$$B_{\underline{0}}(P) = \{X: \sup_{t \in P} \int_{\underline{0}} |X(t, \omega)| \tau(d\omega) < \infty\}$$

and the space

$$B(P) = \{f: P \rightarrow \mathbb{R} \mid ||f||_{\infty} < \infty\},\$$

where

$$||\mathbf{f}||_{\infty} = \sup_{\mathbf{t}\in\mathbf{P}} |\mathbf{f}(\mathbf{t})|; \ \mathbf{B}(\mathbf{P}) \subset \mathbf{B}_{\underline{0}}(\mathbf{P})$$

Let $T_n: B_0(P) \rightarrow B_0(P)$ be a sequence of positive linear operators that are E-commutative, i.e.

 $(E(T_nX))(t,\omega) = (T_n(EX))(t,\omega), \text{ for all } (t,\omega) \in P \times \underline{0}$

where

$$(EX)(t) := E(X(t,\omega)) := \int_{\underline{0}} X(t,\omega) \tau(d\omega)$$

is the expectation.

Also assume that $(T_n 1)(t, \omega) = 1$, for all $(t, \omega) \in P \times 0$. For

$$\{X_1(t,\omega),\ldots,X_k(t,\omega)\} \in B_{0}(P)$$

assume that

$$\lim_{n \to \infty} E[(T_n X_i)(t_j, \omega) - X_i(t_j, \omega)] = 0$$

for all $t_i \in P$ and all i = 1, ..., k. (I.e.

$$\lim_{n \to \infty} [(T_n(EX_i))(t_j) - (EX_i)(t_j)] = 0,$$

for all $t_j \in P$ and i = 1, ..., k.) In order that

$$\lim_{n\to\infty} E[(T_nX)(t_j,\omega) - X(t_j,\omega)] = 0,$$

for all $t_j \in P$ and all $X \in B_0(P)$, it is enough to assume that each $t_j \in P$ there are real constants β_1, \ldots, β_k such that

$$\sum_{i=1}^{k} \beta_{i} \mathbb{E}[X_{i}(t,\omega) - X_{i}(t_{j},\omega)] \geq 1, \text{ for all } t \in \mathbb{P} - \{t_{j}\}.$$

PROOF. If there exists X $\in B_0(P)$ and $t_{j_0} \in P$ such that

$$E[(T_nX)(t_{j_0},\omega) - X(t_{j_0},\omega)] \neq 0,$$

then there exist a subsequence $T_{\lambda_{-}}$ and an ϵ > 0 such that

$$|(E(T_{\lambda_n}X))(t_{j_0}) - (EX)(t_{j_0})| > \varepsilon$$
, for all $n \ge 1$.

By E-commutativity of $\boldsymbol{T}_{\boldsymbol{\lambda}_{-}}$ we get

$$|(T_{\lambda_n}(EX))(t_{j_0}) - (EX)(t_{j_0})| > \varepsilon$$
, for all $n \ge 1$.

Let μ be a positive finite measure on P with $\mu(\{t\}) > 0$, for all t ε P. Here $B(P) \subset L_p(P,\mu)$, $1 \le p < \infty$.

Let $f \in B(P)$, then E(f) = f. Hence $T_n(f) = T_n(Ef) = ET_n(f)$ and $T_n(f) \in B(P)$, i.e. T_n maps B(P) into itself. Because each positive linear functional $T_n(\cdot, t_j)$ on B(P) is bounded, by Riesz representation theorem, for the specific $j = j_0$, there exists $g_{t_j,n} \in L_q(P,\mu)$ where $\frac{1}{p} + \frac{1}{q} = 1$ such that

$$(T_n(f))(t_{j_0}) = \int_P f(t)g_{t_{j_0}}(t)\mu(dt), \text{ for all } f \in B(P).$$

By $T_n(1) = 1$ and the positivity of $T_n(\cdot, t_{i_0})$ one obtains

$$\int_{P} g_{t_{j_0}} \mathbf{N}^{(t)\mu(dt)} = 1 \text{ and } g_{t_{j_0}} \mathbf{N}^{(t)} \geq 0, \text{ for all } t \in P.$$

Since EX ε B(P), we have

$$(T_{\lambda_n}(EX))(t_{j_0}) = \int_P (EX)(t) \cdot g_{t_{j_0},\lambda_n}(t) \cdot \mu(dt).$$

680

Thus

$$\varepsilon < |(T_{\lambda_{n}}(EX))(t_{j_{0}}) - (EX)(t_{j_{0}})| = \left| \int_{P} (EX)(t) \cdot g_{t_{j_{0}},\lambda_{n}}(t) \cdot \mu(dt) \right| - \int_{P} (EX)(t_{j_{0}}) \cdot g_{t_{j_{0}},\lambda_{n}}(t) \cdot \mu(dt) | = \left| \int_{P-\{t_{j_{0}}\}} [(EX)(t) - (EX)(t_{j_{0}})] \cdot g_{t_{j_{0}},\lambda_{n}}(t) \cdot \mu(dt) \right| \leq ||EX - (EX)(t_{j_{0}})||_{\infty} \cdot (\int_{P-\{t_{j_{0}}\}} g_{t_{j_{0}},\lambda_{n}}(t) \mu(dt)),$$

so that

$$\int_{P-\{t_{j_0}\}} g_{t_{j_0},\lambda_n}(t) \mu(dt) > \frac{\varepsilon}{||EX - (EX)(t_{j_0})||_{\infty}} =: \delta > 0, \text{ for all } n \ge 1.$$

There cannot be real constants β_1,\ldots,β_k with

$$\sum_{i=1}^{k} \beta_{i} \mathbb{E} [X_{i}(t,\omega) - X_{i}(t_{j_{0}},\omega)] \geq 1, \text{ for all } t \in \mathbb{P} - \{t_{j_{0}}\}$$

Since, otherwise, we would have

$$\sum_{i=1}^{k} \beta_{i} \mathbb{E}[X_{i}(t,\omega) - X_{i}(t_{j_{0}},\omega)] \cdot g_{t_{j_{0}},\lambda_{n}}(t) \geq g_{t_{j_{0}},\lambda_{n}}(t), \text{ for all } t \in \mathbb{P} - \{t_{j_{0}}\}$$

and therefore

$$\sum_{i=1}^{k} \beta_{i} \cdot \int_{P-\{t_{j_{0}}\}} [(EX_{i})(t) - (EX_{i})(t_{j_{0}})] \cdot g_{t_{j_{0}},\lambda_{n}}(t) \cdot \mu(dt)$$

$$\geq \int_{P-\{t_{j_{0}}\}} g_{t_{j_{0}},\lambda_{n}}(t) \cdot \mu(dt) > \delta.$$

(Note that

$$(\mathsf{T}_{\lambda_{n}}(\mathsf{EX}_{i}))(\mathsf{t}_{j_{0}}) = \int_{P} (\mathsf{EX}_{i})(\mathsf{t}) \cdot \mathsf{g}_{\mathsf{t}_{j_{0}},\lambda_{n}}(\mathsf{t}) \cdot \mu(\mathsf{dt}), \ \mathsf{i} = 1, \dots, \mathsf{k}.)$$

However from the assumptions of the theorem, we have

$$\lim_{n \to \infty} (T_{\lambda_i}(EX_i))(t_j) = (EX_i)(t_j), \text{ all } i = 1, \dots, k.$$

Hence

$$0 = \lim_{n \to \infty} \left(\sum_{i=1}^{k} \beta_{i} \left[\left(T_{\lambda_{n}}(EX_{i}) \right) \left(t_{j_{0}} \right) - \left(EX_{i} \right) \left(t_{j_{0}} \right) \right] \right) > \delta$$

Thus $\delta < 0$, contradicting $\delta > 0$. \Box

To show that the assumptions of Theorem 1 are not empty and they are powerful, we present

EXAMPLE 2. (i) Consider the probability space ([-a,a], B, $\frac{\lambda}{2a}$), where a > 0, B the Borel σ -algebra on [-a,a], λ the Lebesgue measure on [-a,a]. Since $\frac{\lambda}{2a}$ ([-a,a]) = 1, $\frac{\lambda}{2a}$ is a probability measure on [-a,a]. Let also P = {±1, ±2, ...,±T} be a finite set of integers. That is here $\omega \in \underline{0}$ = [-a,a] and t \in P. Consider the sequence of operators

$$T_n: \underline{B_0}(P) \rightarrow \underline{B_0}(P)$$

such that

$$(T_n X)(t,\omega) = X(t,\omega)(1 - e^{-n|t|}) + X(-t,\omega)e^{-n|t|}, \text{ for all } n \ge 1.$$

If $X \ge 0$ then $T_n X \ge 0$, that is T_n is a positive operator, furthermore $T_n(1) = 1$, for all $n \ge 1$. It is obvious that T_n is linear.

Observe that

$$(E(T_{n}X))(t,\omega) = (EX)(t) \cdot (1 - e^{-n|t|}) + (EX)(-t) \cdot e^{-n|t|} = (T_{n}(EX))(t,\omega),$$

i.e., $ET_n = T_nE$, that is T_n is E-commutative for all $n \ge 1$. Therefore T_n fulfills the assumptions of Theorem 1.

From

$$(E(T_nX))(t) = (EX)(t) \cdot (1 - e^{-n|t|}) + (EX)(-t) \cdot e^{-n|t|},$$

it is clear that

$$\lim_{n\to\infty} E[(T_n X)(t,\omega) - X(t,\omega)] = 0,$$

for all t ε P and all X ε B₀(P). Thus T_n fulfills the conclusion of Theorem 1.

(ii) Continuing in the setting of part (i): Let $X_1(t,\omega) = 1$, $X_2(t,\omega) = 2t|\omega|/a$ and $X_3(t,\omega) = 3t^2\omega^2/a^2$. Then $(EX_1)(t) = 1$, $(EX_2)(t) = t$ and $(EX_3)(t) = t^2$. It is obvious that $X_1, X_2, X_3 \in B_0(P)$. We would like to find $\beta_1, \beta_2, \beta_3$ such that

$$\sum_{i=1}^{5} \beta_{i}[(EX_{i})(t) - (EX_{i})(t_{j})] \ge 1, \text{ for all } t \in P - \{t_{j}\}.$$

For that we can pick β_1 an arbitrary real number, $\beta_2 = -2t_1$ and $\beta_3 = 1$. We have

$$\beta_1(1 - 1) + (-2t_j)(t - t_j) + (t^2 - t_j^2) = (t - t_j)^2 \ge 1$$

for all t ϵ P - {t_j}. Hence X_i, i = 1,2,3 fulfill the sufficient condition of Theorem 1.

Trivially
$$T_n X_i = X_i$$
, giving us $ET_n X_i = EX_i$, for $i = .1, 3$. And
 $(T_n X_2)(t, \omega) = X_2(t, \omega)(1 - e^{-n|t|}) + X_2(-t, \omega) \cdot e^{-n|t|}$,

implying

$$(E(T_nX_2))(t) = t(1 - 2e^{-n|t|}).$$

Clearly

$$\lim_{n \to \infty} (E(T_n X_2))(t) = (EX_2)(t).$$

We have seen how X_i , i = 1,2,3 fulfill the assumptions of Theorem 1.

REFERENCES

- DUDLEY, R.M. <u>Real Analysis and Probability</u>, Wadsworth & Brooks/Cole, Pacific Grove, California, 1989.
- 2. HEWITT, E and STROMBERG, K. <u>Real and Abstract Analysis</u>, Springer-Verlag, New York/Berlin, 1965.
- WEBA, M. Korovkin Systems of Stochastic Processes, <u>Mathematische Zeitschrift</u>, <u>192</u> (1986), 73-80.

682