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ABSTRACT. In this article we give a sufficient condition for the pointwise in
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1. INTRODUCTION.

Let (O,A,Y) be a probability space and let P denote a fixed countable set.

Consider stochastic processes X with real state space and the expectation operator

E(X)(t) foX(t,)(d), t e P. Define DO(P) {x" sup n[x[(t) < =}. Let T
toP

n

B0(P B0(P be any sequence of positive linear operators such that ETa= TnE, all

n--= 1,2,.?.. In Theorem i, under Korovkin type assumptions, we give a sufficient

condition such that for each X e Do(P),
lim E[(TnX)(t,) X(t,)] =0, for each t e P.
n-oo

In [3], see Theorem 3.2, was treated the continuous case, that is, when P is an un-

countable compact space. There the sufficient condition is similar to ours, however,

it is produced under the additional assumption that T is a stochastically simple
n

operator.

Our result has as follows"

THEOREM I. Let (0__,A,Y) be a probability space and P {t tj be a

countable set of cardinality > 2. Consider the space of stochastic processes with

real state space

and the space

where

B0(P) {X: sup [X(t,0) l(d) <
teP 0

B(P) {f" P +IR fl I= < =},

[Ill Ioo supl f(t) l; B(P) c Bo(P
teP

Let Tn" B0(P) BO(P) be a sequence of positive liDear operators that are E-commu-

tative, i?e.

(E (TnX) (t ,m) (Tn(EX))(t,), for all (t,aO P x 0_.
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where

(EX)(t) E(X(t,)) X(t

is the expectation.

Also assume that (Tnl)(t,) I, for all (t,) E P x _0_. For

{X1(t,k0 Xk(t,)} c Bo(P
assume that

lira E[(TnXi)(tj,w) Xi(tj,m)] O,

for all t. P and all i k. (I.e.

n-lim [(Tn(EXi))(tj) (EXi)(tj) O,

for all t. P and i k.)

In order that

lira E[(TnX)(tj,w) X(tj,)l O,

for all tj. P and all X Bo(P), it is enough to assume that each t.3 p there

are real constants $1 Sk such that

k

iE[Xi(t, Xi(tj,) > 1, for all t P {tj}.
i=l

PROOF. If there exists X B0(P) and t. g P such that
J0

E[(TnX)(tj ,m) X(tj ,w)] O,
0 0

then there exist a subsequence TX and an > 0 such that
n

)[ > , for all n >_ I.[(E(Tx X))(tj (EX)(tjon

By E-commutativity of TXn we get

[(TXn(EX))(tj0 (EX)(tj0)[ > , for all n >_ 1.

Let be a positive finite measure on P with ({t}) > 0, for all t P. Here

B(P) c Lp(P,), < p < .
Let f B(P), then E(f) f. Hence Tn(f) Tn(Ef) ETn(f) and Tn(f) B(P),

i.e. Tn maps B(P) into itself. Because each positive linear functional Tn (’’tj)
on B(P) is bounded, by Riesz representation theorem, for the specific J0’

+ such thatthere exists gt , Lq(P,) where
P qJo

?

J f{t)gtj (t)(dt), for all f B(P).(Tn(f)) (tjo p

By Tn(1) 1 and the positivity of Tn (’’tjO) one obtains

gtj (t)(dt) and gtj(t) >_ O, for all t P.

Since EX B(P), we have

(EX)) (tj) f (EX) (t). (t) v(dt).(T),
n 0 P gtjo,n
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Thus

so that

< I(T (EX))(t)- (EX)(tj)[ II (EX)(t)’gt.
n J0 0 P jO,Xn

I (t) "l(dt)(El() (tjo) gtj ’;&nP
0

(t) -l(dt)If )]’gtj[(F.X) (t) (EX) (tjoP-{t. O’nJO
< [[EX (gx)(tj)[[ (f

0 jp_{tj
0

gtj
0 n

(t)v(dt)),

(t) .(et)

(t)(dt) >

P-{tj }gtj0 X I[EX (EX)(tj)[I
6 > O, for all n > 1.

0 n 0

There cannot be real constants 1 flk with

k

iE[Xi(t,c0) Xi(tjo,m) > for all t P- {t }.
i=l J0

Since, otherwise, we would have

k

’w)]’gt (t) > gt (t), for all t P {t.
i=l
[ 8iE[Xi(t’m) Xi(tjo jO,Xn" Jo’Xn Jo

and therefore

i--i P-{t.
]0

(Note that

[(EXi)(t) (EXi)(tjO ]’gtjO,An(t)’(dt)
> j gt (t) .(dt) >

j0 xP-{tjo ’n

(Tx (EXi))(tj) (EXi)(t)’gt
n 0 P

0

(t)’(dt), i k.)

However from the assumptions of the theorem, we have

lira (Tx (EXi))(t (EXi)(t.), all i k.
n n 0 .10

ttence
k

0 lira i [(TX (EXi))(tj (EXi)(tj)]) > 6.
n i= 1 n 0 0

Thus 6 <0, contradicting d > 0.

To show that the assumptions of Theorem are not empty and they are power-

ful, we present

EXMPLE 2. (i) Consider the probability space ([-a,a], 8, ), where a > 0,

8 the Bore1 o-algebra on [-a,a], the Lebesgue measure on [-a,a]. Since

([-a,a]) i, is a probability measure on [-a,a]. Let also P {_+1, _+2,

_+T} be a finite set of integers. That is here m 0_ [-a,a] and t P.
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Consider the sequence of operators

Tn" B0(P) B0(p)
such that

(TnX)(t,) X(t,)(1 e-nIt]) + X(-t,)e-nIt[ for all n >

If X > 0 then T X > 0 that is T is a positive operator furthermore T (1)n n n
for all n > I. It is obvious that T is linear.

n
Observe that

(ECTnX))(t,w) (EX)(t).(1- e-nIt[) + (EX)(-t).e-n[t[ (Tn(EX))(t,m),
i.e., ET T E, that is T is E-commutative for all n > I. Therefore T fulfillsn n n n
the assumptionof Theorem i.

From

(E(TnX))(t) (EX)(t)-(l- e-n’t’) / (EX)(-t)’e

it is clear that

lim E[(TnX)(t,)-- X(t,)] 0,
n-+oo

for all t e P and all X e B0[P)._ Thus T fulfills the conclusion of Theoremn
(ii) Continuing in the stting of part (i)" Let Xl(t, 1, X2(t,) 2t[[/a

and X3(t, 3t22/a2. Then (EXl)(t) 1, (EX2)(t) t and (EX3)(t) t2. It is

obvious that XI,X2,X3 B0(P We would like to find 81,82,83 such that

3
Y. 8i[(Exi)(t) (EXi)(tj)] _>_ 1, for all t P {tj}.i--1

For that we can pick 81 an arbitrary real number, 2 -2tj and 83 1. We have

81(1- I) + (-2tj)(t- tj) + (t2- t) (t- tj)2> I,

for all t e P {tj}. Hence Xi, i 1,2,3 fulfill the sufficient condition of

Theorem I.

Trivially TnXi X. giving us ET X EX for i ,I,3 Andx’ n i i’

(TnX2) (t,) X2(t,m? (1 e-nltl) / X2(-t,m e

implying

(E(TnX2))(t) t(1 2e-n[t[).
Clearly

lira (E(TnX2))(t) (EX2)(t).
n-o

We have seen how Xi, i 1,2,3 fulfill the assumptions of Theorem I.
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