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ABSTRACT. Let L denote the n
th

Lucas number, where n is a natural number.
n 2

Using elementary techniques, we find all solutions of the equation: L
n

px

where p is prime and p (i000.

KEY Wi’RDS AND PHRASES. Lucas number

1985 AMS SUBJECT CLASSIFICATION CODE. IIB39

1. NTRODUCTION

Let. n denote a natural number. Let L denote the n
th

Lucas number, that is,
n

L1=1, L2=3, Ln Ln_l+Ln_2 for n_ 3. In [1], J.H.E. Cohn found all Lucas nmers
which are square or t.wlce a square. As a result of a late paper of Cohn [2], it

is known that for each integer c

_
3, there is at. most one Lucas number of the

form cx2. Uslnq [3], Definition 2, and (9) below, we see that there are 111

primes, p, such that (i) 2 < p. 1000, and (ii) there exists n such that p[Ln
In this paper, we find all solutions of the equation:

L px2 (*)
n

where the prime p satisfies conditions (i) and (ii) above. We find that only 8

such values of p yield solutions of (*). The results aze summarized in Table 3

on the last page. The larger problem of finding all solutions to |*) appears

more difficult; its solution would yield all Lucas numbers which ace prime.

2. PRELIMINARIES

Let n denote a natural number. Let p denote a p[ime, not necessarily

satisfying conditions (i) and (ii) above.

Definition i -Let Fn denote the n
th

Fibonacci number, that is, F F
2

I,

F + for n_ 3
n Fn-I Fn-2
Definition 2 Let z(n) Mink: k_l and nlFk}
Definition 3 Let y(n) 1/2z(n) if 21z(n).
For each integer c _3, the equation L cx2 has at most one solution.

n
If Ln=q is prin,e, then y(q) =n and y(q2) =qn.

(i)

(2)
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if n-=2 (rood 4)
(Ln’L3n/Ln) otherwise

L x2 ff n:] o 3
n

L3n Ln(L2n-3(-1)n)
If m is odd and m_3, lhen rolLn iff is an odd in[ege

(L
n L5n/Ln) =1

I[ k is odd, then (Ln,lkn/Ln) Ik.
2n

If p is an odd pzlme, then plLn iff -6) is an odd integez.

L2n L2n-2(-1)n

(3)

(5)

(6)

(7)

(8)

(9)

(10)

LnlLkn iff k is odd or n=l. (11)

1/2(m-l) (j-l) (n+l) if m is odd. (12)Lmn/Ln (-1)
1/2 (m-l) (n+l)

+ ..- (-1) L(m+1_23)n
3 1

If p is odd and pln then 2 .y(p)_ 1/2(p+l). (13)

If p and m ate odd, pm, and ph ILn then ph+k IL k
for all k_0. (14)

mnp
L -:3 (rood 4) for all nl. (15)
2
n

Lsn 2 (rood 3) for all n_ 1.

If p is a prime such that y(p) exists, then (p,y(p)) I.

(16)

(17)

If m/(m,n) and n/(m,n) are both odd, then (Lm,Ln) L(m,n (18)

(p2 pk k-IIf y py(p), then y( p y(p) for all k_-1. (19)

Remarks: (I) follows fzom Theorem 11 in [2] with a=]; (4) is Theorem in [i];

(8) follows from Theorem 4 in [5]; (12) follows from (44) in [4]; (14) follows

from Theo[em XI in [6]; (19) follows from (14). The other identities ale

elementazy.

3. THE MAIN RESULTS
2

TOREM 1 If p is a prime such that y(p) exists and L pu then
2 2 Y(P)

(*) has the unique solution: n y(p), x u

PROOF: This follows from hypothesis and (i).

THEOREM 2 If pe|3,7,11,19,29,47,199,521,2207,9349}, then (*) has a
2

solution with n 2,4,5,9,7,8,11,13,16,19 respectively; if p=19, then x =4;

in each othe case, x2=l.
PROOF: This follows from (2) and Theorem i, since L2=3, L4=7, L5=]],

L9=19"4, L7;29, L8-47, Ll1=199, L13=521, L16;2207, L19=9349, and y(19)-9

2
iff either (i) k=p=2, x2=9, or (ii) k=3, p=19, x2=4.THEOREM 3 L3k px

Sufficiency is readily shown, since L6=18=2(3)
2 and L9=76=19(2) 2.PROOF:

2Now suppose L3k px Let d (Lk,L3k/Lk). If k 2 (rood 4), then (3) implies

d=l, so (i) it,plies Lk=U2, L3k/Lk pv2 for some u,v. Now (4) implies k=l or 3.

If k=l, then L3/L1 4 pv2 an impossibility. If k=3 then L9/L3 19 pv2
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so p=19 and x
2

L9/19 4. If k-=2 (rood 4), then 13) implies d=3, so

either (i) L
k

3u2, L3k/Lk 3pv
2 or (it) L

k
3pu2 L3k/Lk 3v

2
for some

2
u,v. If (i) holds, then Theorem 2 implies k=2, so L3k L

6
18 px wlich

2
3v

2 Since 31Lkimplies p=2 and x2=9. If (it) holds, then (5) implies L3k-3
v2we get 3v2-3 (rood 9), so -1 (rood 3), an impossibility.

TIOREM 4 If p>19 and 31y(p), then L px2 is impossible.
2

n
PROOF: If L px then PlLn so (6) implies ylp)In. Now hypothesis

n
implies 3In, so n=3k for some k. The conclusion now follows from hypothesis

and Theorem 3.

{23,TI|EOREM 5 (*) has no solution if p/ 31 79 83 107 167 181 211 227 229

241’271’349’379’383’409’431’439’443’467’499’503’541’571’587’601’631’647’683’691’
739,751,769,811,827,859,863,887,919,947,983,991.

PR(’f)F: "7"his follows from hypothesis and Theorem 4, since in each case,

p>19 and according to [31, 31y(p).
2

TI1F/3RFM 6 Lsk px2 ff k x and p=ll.

PROOF: Sufficiency is readily shown, since L
5

11 11"12. Now suppose
2

Lsk px Theorem 2 of [11 implies p is odd. Now (7), (1) and hypothesis

imply L
k

u2 L5k/Lk pv2 for some u v Now (4) implies k;1 ot 3 If k=l

then pv2 Ls/L ii, so p=ll and x2 L5/11 I. I k=3, then pv2 L15/L3
1364/4 341 11"31, an impossibility.

TIIEOREM 7 If L px2 and 51ylp), then n=5 p=ll x2=l.
PX)F: llypohess and (6) imply ylp)In. Therefore hypothesis implies

51n, that is, n=5k for some k, so t-he conclusion follows ftom Theorem 6.

THEORFM 8 (*) has no solution if pet41,71,101,131,151,191,251,311,331,
401,491,641,911,941,971

PROOF: This follows from Theorem 7, since in each case, p)11, and

according to [31,

THEORt 9 Let p be an odd prime such that y(p) exists and is odd, and

such that- for every prime divisor, q, of y(p), z(q) " 2 (rood ’4). If L px2,
n

then n y(p).
2PROOF: If L px t-hen (6) implies n my(p) for odd m. Now (8)nnimplies dl that is, dly(p). If d.l, then there exists an odd prime, q,

2msuch that qld. Therefore qlLm so (9) implies -) is an odd integer; since

m is odd, this implies z(q)---2 (rood 4), contrary to hypothesis. Therefore d=l.
2Now !13) implies y(p) 1 so m<n. Therefore hypothesis and (1) imply L u

Ln/Lm pv2 for some u,v. Now (4 implies m=l or 3. If m=3, then

nL
n

p(2v)2, so Theorem 3 implies n=9, p=19. But. then)-) # 3. There-

fore m=l so n y(p).

TItEOREM 10 (’1 has no solution if p {139,179,239,461,509,599,619,659}.
PROOF: This follows from hypothesis and Theorem 9, since in each case,

according to [3] and 7], p fulfills the hypothesis of Theorem 9, yet Ly(p)
px2.
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In the ,Drk which follows, we will need the following lemmas:

2) if j=l
t/l

2(-1) (mod L

L2 2
2 (rood Lt.) if j.2

PROOF: (Induction on j) (I0) implies iemma holds for j=l. If j_ 2,

2
j-I

5
2 L

2
L
2

-2 l-l)
j-I

-2. Bu!then (10) ]nplies L231 2J_1 t 2 2J-It
by induct ion hypothesis. Therefore g --_ 4-2 --- 2 (mod L).

2 If k: and 2In, then L2kn 21 11
k

lined L21n
I -2 If k is odd, hen IlllPROOF: ttypothesis and I101 iply 1.2kn n

implies L21In so --2 21-1)
k

(rood 1.2nl. If k=2Jt with j .1 and oddL2kn
L
2

2 (mod Lt2n). Now 111) implies Ij.l.then I_emma implies L2kn J+ir n n

L2kn_-" 2_2(-I) k
(rood L2)’n

LEMMA 3 If m-i_: n _-" 0 (mod 2), then Lmn/Ln:_ m(-l)
1/2(m-l)

(rood L2n

(-1)

PROOF: Hypothesis and (12) imply Lmn/Ln
1/2(m-l)1/2(m-l)+ (_I)J-IL Hypothesis and Lemma 2 imply
9 (m+l-2j) n

1/2 (m/ l-2j 9
2 (-I) (mod L) Ther efo, e L /LL

(I,/|-29) n- mn n

:(m-i) 1/2(m-1) 1/2(m-i)_ -(-i) / 2 (-I) r. (I + 2 (,nl) (-I) 1/2 (m-1)
m(-I

9=1

2
E 4 (rood I_,t)

1/2 (m-I) (rood L
2 ).
n

so

4 If p is an odd prime, plLn and 2In, hen

Lpn/pLn _= (-I) 1/2 p-I
(rood p).

PROOF: Hylx3thesis and Lemma 3 imply Lpn/Ln p(-l)
1/2(p-l)

(rood L2n). Now

hypothesis implies Lpn/Un
_

p(-l)
1/2(p-I)

(mod p2), from which lhe conclusion

immediately fol lows.

5 If 21n, plLn p is prime, and p---3 (rood 4), then Lpn/PLn # s2.
PROOF: Hypothesis and Lemma 4 imply Lpn/PLn-=-] (rood p). Also, hypo-

2 2thesis implies s -I (rood p), so Lpn/PLn # s

.nLEMMA 6 Let Ln px2 where p and y(p) ate odd. Let mly(p
Let d (Lm, Ln/Lm). Then d=l iff m=l.

PROOF: If m=l, then diL1 that is dll, so d=l. Convezsely, if d=],

then since hypothesis and (13) imply m (n, hypothesis and (I) imply Lm
u2,

Ln/Lm pv2 for some u,v. Now (4) implies m=l or 3. If m=3, then hypothesis

and Theorem 3 imply p=19, n=9=y(19), so mll, an impossibility. Therefore m=l.
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IF_MMA 7 If Ln px2, p and y(p) are odd, ml and ml-),n then

(Lm,Ln/Lm) , l.

PROOF: This follows from hypothesis and Le,ma 6.

]/3VgA 8 Let p, q be odd primes such that pq[Ln fox some n. Then 2hi
iff 2hlly(q), where h_0.

PROOF: Hypothesis and (6) imply n jy(p) ky(q) with j, k odd. he
conclusion now follows.

THEOREM II Let L px2 where p is an odd prime 2hlIy(P) for some hl
n 2 2hqand L q is prime. Then either (i) n=2h, p=q, x =I, or (ii) n=

2
h

2 2 2
p L2hq/Iqtl x IqtI for some t_l.

PROOF: Hypothesis and (15) imply q---3 (mod 4), so q is odd. Hypothesis

.implies y(p)/2h is odd, so (Ii) imilies L2hlLy(p that is, qlLy(p). Hypo-

thesis and (6) imply n/y(p) is an odd integer, so (II) implies Ly(p)ILn, hence

qlLn. If p=q, then hypothesis and (1) imply n=2h, x2=l. If pq, then hypo-
2 2 2 2

Now (6) implies n my’(q2) for odd m.thesis implies

[.lypothesis and (2) imply y(q2) qy(q), so n mqy(q). We have

dlq {6) implies qlLmy(q). Let qJllLmy(q) Then (14) implies qj+l llLmqy(q)
so qIl(Lmav(q)/Lmv(q)).= Therefore qld, so d:q. Let-ring x/q, we oblain

2
(Lmv(q)/q) (Lmav(q)/qLmv(q))= pt where the factors on he lef side of the

2
equaIion are relatively prime. Therefore either (a) Lmy(q)/q pu

or tb} L_. /q L. u,v.

Now hypothesis and (2) imply y(q) 2
h so Lemma 5 implies (a) is mpossible.

2
Therefore (b) must hold. Now (i), (2) and hypothesis imply m u l,

__Lv(q p(qv)2 p(qt)2 n qy(q) 2hq x=qt.

THEOREM 12 If p is an odd prime and 2hl IY(P) where 1- h (-4, hen the

only solutions of (*) are given by Table i below.

Table

n
2
4
8

16
28

2

7
47 1

2207 1
14503 49

PROOF: This follows from hypothesis and Theorem Ii, since L2=3 L4=7. 2 2
L8=47 L16=2207 (all primes); also L28 14503 7 Note that L6/3 2 (prime

but not odd.) According to [7], L7&/472 pt2. According to the referee,

1553729 IIL35312 and L35312/1553729072 t2.
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TIIEOREM 13 {*) has no solution if p{43,67,103,163,223,263,281,283,307,
347,367,449,463,487,523,547,563,569,607,643,727,743,787,823,881,883,907,929,967

PROOF: This follows f[om hypothesis and Theozem 12, since in each case,

acco[ding to [3], p satisfies the hypothesis of Theo[em ]2 but does not appea[

in Table above.

TIHEOREM 14 LIIk px2 iff k x2 I and p=199.

199 199"12. NowPROOF: Sufficiency is [eadily shcwn, since L]I
suppose Lllk px2. Let d (Lk,Lllk/Lk). (8) implies dlll. If d=ll, then

since y(ll)=5, (6) implies 51k, so 5111k. But then hypothesis and Theozem 6

imply llk=5, an impossibility. If d=l, then (I0) implies Lk=U2, L]lk/Lk pv2

fol some u,v. Now (4) implies k=l o[ 3. Theo[em 3 implies k3, so k=l, hence

p=199, x2=1.
T!{EOREM 15 If Ln PX

2 and llly(p), then n=ll, p=199, x2=l.
PROOF: Hypothesis and (6) imply llln, so the conclusion follows fom

Theozem 14.

THEORIM 16 L 419x2 is impossible.n
P: According to [31, y1419) 209- 11"19. The conciusion now

follows fzom Theo[em 15.

THEO 17 L 127x2 is impossible.
n

PROOF: Suppose L 127x2 Since y(127)=64 (6) implies 641nn
thesis and (16) now imply x2_ 2 (mod 3), an impossibility.

}lypo-

q2Ly 2LqmOREM 18 If p and y (p) =q aze pz imes, q ) 3,
(q)

p

Lq # ps2 and eithe (I) 21y(q) oz (II) 2y(q) and the equation Lm
qs2

(considezed as an equation in m) either (A) has no solution oz (B) has the

solution m=y(q) but theze exists a pzime, t, such that tllL /P) and y(q),
2 q

then L px is impossible.n
2

PROOF: Suppose L px Hypothesis and (6) imply n=mq, m odd, m > 1.
n

Let d (Lm,Ln/Lm). (8) implies dlq. Lamina 7 implies d)I, so d=q. Theze-

foIe qlLn. If (I) holds, then we get a contradiction via Lamina 8, since pqlLn-
If (If) holds, then either (i) Lm qu2 Ln/Lm pqv2 oI (i) Lm

pqu2

2L /L qv foz some u,v. If (i) holds, then (I) and hypothesis imply m=y(q).
n m
Now (B) implies thee exists a pzime, t, such that ill (Lq/p) and ty(q). If

t=p, hen pll(L/p), so p21L, contrazy to hypothesis. If t#p, %hen t ILo
so (14) impliestllLav(q),

,that is, tllpx2 so tllx2 an impossibility

If (ii) holds instead, then (6) implies y(p) Im and y(q) Im, so

LCM(y(p) ,y(q) Ira, that is, LCM(q,y(q) Im. But (17) implies I_CM(q,y(q) )=qy(q),

so qy(q)Is. Since q2Lv(q)__ by hypothesis, we have ql ILy(q), so (14) implies

y (q2) =qy (q), hence y(q2)im" Thezefoze hypothesis and (6) mply q21L
m

so

that qlu2, which implies q21u2, hence q31L Now (19) and (6) imply q2y(q)
m

so m=qk, qy(q)Ik. Let d
I (Lk,Lm/Lk). Now (8) implies d lq- Thezefoe

Lk
ca2, wheze c I, p, q, or pq. Since km <n, (I) implies c#p, c#pq.

If c=l, then (4) implies k=l oz 3, violating qy(q) Ik. If c=q, hen hypothesis

and (I) imply k=y(q), again violating qy(q)
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THEOREM 19 {*) has no solution if p(,59,359,479,709,719,809,839j.
PROOF: In each case, according to [3] and |7], p satisfies the hypo-

thesis of Theorem 18, from which the conclusion follws. Table 2 below

gives the det-ails.

P q (q)
59 29 7

359 179 89
479 239 119
709 59 29
719 359 179
809 i01 50
839 419 209

Table 2

relevant section of Theoem 18
liB, t=19489
IIA (see Theorem I0 above)
IIA (see theorem i0 above)
IIA (see first entry in Table 2)
IIA (see second entry in Table 2)
I
I IA (see Theorem 16 above)

We summarize our results in Table 3 below, which contains all solutions

of (*) with 2<p(1000.

Table 3
2

p n x
3 2
7 4 1

ii 5 1
19 9 4
29 7 1
47 8

199 11
521 13 1

Remark: The elated results of M. Goldman [8] follow i,mediately from (I).
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