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ABSTRACT. Let E C C be closed, w be a suitable weight function on E, a be a positive

Borel measure on E. We discuss the conditions on w and a which ensure the existence of

a fixed compact subset K of E with the following property. For any p, 0 < p _< oo, there

exist positive constants cl, c2 depending only on E, w, a and p such that for every integer

n > 1 and every polynomial P of degree at most n,

f [w"P[’da < cl exp(-c2n) /K [w"P[’da"

In particular, we shall show that the support of a certain extremal measure is, in some

sense, the smallest set K which works. The conditions on a are formulated in terms of

certain localized Christoffel functions related to a.
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weighted polynomials, Nikolskii inequalities.
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1. INTRODUCTION.

Let a > 1 and wo,(x) := exp(-[x[), x E R. A special case of an inequality proved by

G. Freud [1] is the following. There exist positive constants cl, c, ca tepending only on a

such that for every integer n > 1 and polynomial P of degree at most n,

l=l>c, [w:(x)P(x)12dx < c2 exp(-c3n) l=l<c, [w:(x)P(x)ldx" (1.1)

An inequality of the form (1.1), known as a finite-infinite range inequality, is of critical

importance in the study of weighted polynomial approximation on It. In the past few

years, many mathematicians have investigated inequalities of this form in great detail (el.

[3] for example). In particular, Mhaskar and Saff [4] have obtained a highly generalized

and precise form of (1.1), using potential theoretic ideas. These ideas, in turn, have been

extended to the case when the underlying sets are subsets of the complex plane 12 rather

than the real line. In studying the finite-infinite range inequalities on subsets of 12, an

immediate problem which must be solved is to decide upon a natural choice of a measure

to replace the one-dimensional Lebesgue measure which is so natural for subsets of the
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real line. In particular, one has to include the arc-length measure on sufficiently smooth

curves as well as the area measure on domains and their combinations.

In this paper, we define one such class of ’natural’ measures and then extend the

results of [4] to the complex domain. Our results will demonstrate the importance of

Christoffel functions in this theory. In turn, we estimate these Christoffel functions when

the measure under consideration satisfies certain density conditions. We also describe

certain applications to the theory of extremal polynomials in the complex plane.

In Section 2, we develop the necessary technical background including some of the

definitions. The main results and applications will be described in Section 3. The proofs

of the new results will be given in Section 4.

2. PREPARATORY INFORMATION.

We say that a function w" C --, [0, c) is admiaible (or an admissible weight function) if

each of the following conditions (Wl), (W2), (W3) holds.

(W1) w is upper semi-continuous.

{W2) The set E0(w)"= {z "w(z) > 0} has nonzero capacity.

(W3) If E0(w) is unbounded, then Izw(z)l --, 0 as Izl oo, z E Eo(w).
Here and throughout this paper, the term ’capacity’ means the inner logarithmic

capacity (cf. [13], p.55). For any set A C_ C, its capacity will be denoted by cap(A). A

property is said to hold quasi-everywhere (q.e.) on a set A if the subset of A where it

does not hold is of capacity zero. Let E be a closed subset of C. A function w is called

admiaible on E if the function wE that coincides with w on E and is zero on C\E is

admissible. Typical examples of admissible weight functions are (i)exp(-Izl"), a > 0,

which are admissible on every closed subset of C having positive capacity and (ii) any

positive continuous function on any compact subset of C which has positive capacity. Let

2(E) denote the class of all unit positive Borel measures supported on E. If a E .4(E),
then its potential is defined by

U(a,z) :=/E lg(1/Iz

The (w-modified) energy of a is defined by

We define

X(w, ) := fr u(, z)do(z).

V(w,E) := inf{I(w,a)" a e .A4(E)},

zeC. (2.1)

(2.2)

Q(z) := log(liT(z)), z c. (2.4)

For integer n >_ 0, IIn will denote the class of all algebraic polynomials of degree at most
n. Finally, for any set A C C and a complex valued function g on A, we write

(2.3)
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Our starting point is the following theorem proved in [5] in the case when E C_ R.

The version stated below can be proved in exactly the same way as in [5] with obvious and

minor modifications.

THEOREM 2.1. Let E C C be closed, w be an admissible function on E.

(a) The quantity V(w, E) defined in (.3) is finite.

(b) There exists a unique element := p(w,E) E .M(E) such that I(w,l) Y(w,E).
This measure has finite logarithmic energy.

(c) The set S := S(w, E) := supp(l) is a compact subset of E0(w) q E, and cap(S) > 0.

Moreover, Q is bounded from above on S.

F := F(w,E):= V(w,E)- /Qdt,

u(,, z) + Q(z) > F, q.. o, E.

(2.6)

(2.7)

(e) We have

U(t,,z) + Q(z) < F, for every z C S. (2.8)

In particular, the equation

U(I, z) + Q(z) F (2.9)

holds q. e. on S.

(f) For any positive integer n and P II, if

Iw"(z)P(z)l <_ M q.c. on S, (2.10)

then

IP(z)l <_ M exp(-nU(#, z) + nF),

In particular, (ILI O) implies that

zCC. (2.11)

Iw"(z)P(z)l < M q.e. on E. (2.12)

()
S" := S’(w,E) := {z C E" U(I,Z) + Q(z) < F}, (2.13)

then ,.9* D_ S is a compact set, Q is bounded on S* and for any integer n > 0 and P II,,

IIw"PIl IIw"PIIs.. (2.14)

In fact, for any compact subset K C_ E\S*, there are positive constants cl,c2 depending

only on w, E, K such that for any integer n > 1 and P II,,,

IIw"PIIK < c, exp(-cn)llw"Pllso. (2.15)
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The classical notions of capacity, transfinite diameter, Fekete and Chebyshev polyno-

mials, Fekete points and Chebyshev constant can also be generalized. ([10]). For example,

the w-modified capacity of a closed set E is defined by

cap(w, E) exp(-V(w, E)). (2.16)

The Fekete points are the points {z,,, k 1,2,..-,n, n 2,3,...} for which

}2/,,(,,-)r,(w, E):= max H ]zi zt’lw(zj)w(z’)
zt ,...,zn_E

l<_j<k<_n

II )"
_<<:_<n

(2.17)

The w-modified transfinite diameter of the set E is defined by

r(w, E) inf r,,(w E). (2.18)
n>2

An argument similar to that in ([2l, P. 161) can be used (cf. [10]) to show not only that

cap(w, E) r(w,E), (2.19)

but that for any set of Fekete points {z, k 1,2,.-.,n,

continuous, compactly supported function g" E - C,

n 2,3,...} and any

lim -1 g(,zk.)=/gag, (2.20)
k=l

where p is the equilibrium measure defined in Theorem 2.1.

The notion of the Chebyshev constant can also be explored in this generality. We

shall elaborate on this in the context of the LP extremal polynomials. However, we note

here the following simple consequence of (2.15) and (2.20).

PROPOSITION 2.2. ([I0])
integer n and polynomial P E II,,

If K C_ E is compact, and for every sufficiently large

IIw"ell IIw"PIIK, (2.21)

then the support set S defined in Theorem .1 is a subset of K.
If A C_ C is a Borel set, a is a positive Borel measure on A, g A C is Borel

measurable, then we define

if 0 < p < oo, (2.22)
if p= oo.

The spaces LP(a, A) are then defined as usual. We observe that our definition of Ilgll,,A
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is not the usual one, but in the present context, the distinction would be inconsequential.

Also, the fact that (2.22) does not define a norm if 0 < p < 1 will be irrelevant for our

purposes. Thus, we will continue to call the expressions defined in (2.22) ’norms’ even in

this case.

3. MAIN RESULTS.

Let E C_ (3 be closed, w be an admissible weight function on E, and a be a fixed positive

Borel measure defined on E. We shall assume that w is continuous on E and [zw(z)]" E

L"(a, E) for every r, 0 < r < oz. We also continue the notation described in Section 2.

In the sequel, we assume the notation and conditions of Theorem 2.1. The set E and

the weight function w being fixed quantities, they will not be mentioned in the notations.

We also adopt the following convention concerning constants. The symbols c, 0,c2,."

will denote positive constants depending only on w,E and other explicitly prescribed

parameters. Their value may not be the same in different occurrences of the stone symbol,

even within the same formula. Constants denoted by capital letters will retain their values

after they are introduced.

DEFINITION 3.1. Let K C_ E be compact, 0 < p < oo. We say that the Lt’(a,E)
norm of (w-) weighted polynomials liven on K if the following property holds. For every

e > 0, there exists a bounded Borel set A C E with a(A) < e and positive constants c, c2

(depending only on w, E,p, e) such that for every integer n > 1 and polynomial P E 1-In,

.Iw"P]I,.,.E <_ (1 + c, exp(-cn))llw"PIl,,.,-va (3.1)

Theorem 2.1 shows that the sup norm of weighted polynomials lives on 8". We shall

show that for suitable measures a, the L’(a,E) norm also lives on $*. As mentioned in

the introduction, a major issue here is the dcfinition of a ’natural’ measure in this case.

We shall show that the following definition will work.

DEFINITION 3.2. The measure a will be called natural if it satisfies each of the

following conditions.

(M1) a is a regular measure in the sense that for any Borel set A C_ E,

a(A)=inf{a(O)’AC_O, Oopen
(3.2)

sup{a(Ix’)" g C_ A, K compact

(M2) For any compact subset K of E, a(K) < oz and the restriction of a to K has finite

logarithmic energy.

(M3) There exists an integer N > 0 such that

Izl-Nda(z) < oz. (3.3)

(M4) For > 0 and z (3, let
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where

f
A,,(a,8, z) := min Ip(z)l -z /

Pq.IIn dEs(z)
IP(t)lda(t), (3.4)

Es(z) {t 6 E" lt- zl _< t}. (3.5)

Then, for every di > 0 and every compact set K C_ E,

/" < 1. (3.6)lim sup IIAX (o, , z)llK

We observe that none of the conditions in the above definition depends upon the weight

function w. While the conditions (M1), (M2), (M3) above are fairly ’natural’, perhaps the

condition (M4) is not. The formula (3.4) defines a localized Christoffel function for a.

A good deal of research in the theory of orthogonal polynomials is devoted to obtaining

the properties of a from its Christoffel function ([7], [8]). In light of this research, the

condition (M4) may be thought of as a density condition for a on E. While it may not be

very ’natural’, it is satisfied in the important cases when E is a domain in C and a is the

two dimensional Lebesgue measure on E and when E is a sufficiently smooth cur,e and a is

its arc-length measure. In Theorem 3.5, we shall give some very general conditions, which

are sometimes easier to verify, under which (M4) holds. Moreover, it will be apparent later

(cf. Theorem 3.6) that (M4) is exactly the kind of condition which enables the L(a, E)

norms to live on a fixed compact set.

We are finally in a position to formulate our main finite-infinite-range inequality.

THEOREM 3.3. Let E C C be closed, w be an admissible weight function on E

and a be a natural measure on E in the sense of Definition 3.. Further suppose that w

is continuous as a function on E and wx is also admissible on E for each A (0,1]. Let

0 < p, r < oo, and S* be as defined in (.13). Then, for any e > O, there exists a bounded

Borel set A := A(p, r, e, w, E, a) C_ E with a(A < e and positive constants c c2 depending

only upon p, r, e, w, E, a, such that for any integer n > 1 and anl polynomial P tin,

Ilw"ell,,E\(S.,) <_ exp(-c2n)llw"Pll,.,,,s.,a. (3.7)

In particular, each of he L(a, E) norms of the w-weighted polynomials lives on S*. More-

over, if K is any compact set, 0 < q < oo is a fixed number and the Lq(a, E) norm of the

w-weighted polynomials lives on K, then a(S\K)= O.

tLEMARK. In fact, it would be clear from our proof that the hypothesis in the last

statement of Theorem 3.3 can be substituted by a slightly weaker hypothesis: For every

e > 0, there exists a bounded Borel set A with a(A) < e and

limsup sup [[’wnp[[q’a’E\(KUA) 1In

Perl. [Iw"Pllq,,Koa
0. (3.8)

A major step in the proof of Theorem 3.3 is to prove the following Nikolskii-type

inequalities which are interesting in their own right.
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THEOREM 3.4.

positive numbers N, such that

lim N/" 1

and for 0 < p,r < c, any integer n > 0 and P

Under the hypothesis of Theorem 3.3, there exists a sequence of

(3.9)

(3.10)

Next, we discuss the condition (M4) in the Definition 3.2.

THEOREM 3.5. Suppose that E C_ C be a closed regular set, i.e..for every R > 0,

every point on the boundary of En{z.lzl <_ R} i. a regular point for the Dirichlet problem

for each of the components of the complement of this set in the extended complex plane

to which this point belongs. Let a be a positive Borel measure on E which satisfies the

conditions (M1), (Me), (MS) in Definition S.C. Suppose that for every compact subset

K C_ E, there exist positive constants L,c depending only on E, K and a such that for
every 6 > O,

a(a,K, 8) inf a({t E" lt- zl < }) > c8L. (3.11)
fi.K

Then a satisfies also the condition (M) in Definition S.l and hence is a natural measure.

We observe that the general Theorem 3.3 does not require any regularity conditions on

E. The following theorem shows that the condition (M4) is actually necessary to achieve

an inequality of the form (3.10).

THEOREM 3.6. Suppose that E C_ C is a Borel set, a is a positive Borel measure

supported on E which satisfies conditions (M1), (M), (MS) of Definition 3.e. If, for any

compact set K C._ E, the inequality (S.lO) holds with w 1 on K, then a also satisfies the

condition (M4) and hence, is a natural measure.

Next, we give some applications of Theorem 3.3 to the theory of weighted extremal

polynomials. Let 0 < p < cxs, E and w be fixed as before, and a .be a positive Borel

measure on E. We define the extremal errors e,(w, E,p, a) and the extremal polynomials

T,(w, E,p, a; z) z" +... H,, by the formula

en(w,E,p,a) := min IIw"PII.,p,E =: IIw"T.(w,E,p,)II,,E (3.12)
PIIn

When p o, then the extremal polynomials are the modified Chebyshev polynomials.

For convenience, we omit the mention of p and a from the notation for the extremal errors

and polynomials in this case. Thus, for example, we write en(w, E) := n(w, E, o, a). The

ideas in [5] and [11] can then be used to show that

,,lirnoo e,,-/" (w, E) =: cheb(w, E) exp(-F), (3.13)

where the constant F := F(w,E) is definined in (2.6). When p 2, then the extremal

polynomial of degree n is precisely the orthogonal polynomial of degree n with respect to

the weight function w2n on E, normalized with leading coefficient 1. As a consequence of
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Theorem 3.3 and the results in [6], we get the following

THEOREM 3.7. Let E, w and a be as in Theorem ;.;, 0 < p < oo. Then

lim e,/"(w,E,p,a) cheb(w,E), (3.14)

Tn(w, E,p, a) and g is any compactly supported continous function on E, harmonic in the

two dimensional interior of E, then

More general theorems similar to those in [6] with the sup norm replaced by the Lr norxns

can also be proved, but we omit these details in the interest of brevity. It is very ey to

s that even in the simple ce when E {z .Izl 1}, w x on and a is the area

meure, the hypothesis that 9 be harmonic in the interior of E cannot be dropped. The

equation (3.13) is in fact, an equation for the balayages of the limiting meures for the

zeros and the equilibrium meure . We do not wish to elaborate on this further here.

The interested reader may refer to [6].

4. PROOFS.

The prf of Theorem 3.3 will be given in several stages. The first stage is to estimate

the Christoffel functions associated with the weights w2"da (cf. (4.1) for a definition.)

Next, we shall use these estimates to prove a Nikolskii-type inequality to compare different

norms of a polynomial. This inequality will be used to prove that the norxns actually live

on a fixed compact set. This set will then be pruned to the desired set. We begin this

progr by recalling certain facts about the Christoffel functions.

If A C is a Borel se, v is a positive Borel meure on A having infinitely my

points in its support and such that for each integer m O, f Izldv < , then the

Christoffel function is defined follows. For any z C and integer n 1,

inf IP(z)l- [ [P[dv. (4.1)A,(v,A,z)
JA

The following lemma summarizes some of the important properties of the Christoffel func-

tion whi we shMl need in the sequel. Let A and v be above, d {p,(v,A,z) H,}
be the sequence of orthonoized polynomials,

p,(,a,)p,(,A,:)a() =,m, ,,m O, 1,.... (4.2)

(.)

LEMMA 4.1. [121

(b) I B C_ A then

With the notation as in the previous paragraph,

A(v,A,z) Ip(v,A, z)l >_ . (4.3)
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A.(v,B,z)<_A.(v,A,z), z_C, n=l,2,.... (4.4)

We now resume the notations and conventions adopted in Sections 2 and 3.

LEMMA 4.2. Let a be a natural measure on a closed set E, K C. E be compact.

Then there ezists a sequence of positive numbers {tin} such that tin J, 0 as n oo and

1/,imooll’(,,$,,z)ll 1. (4.5)

PROOF. In view of (4.3), it is enough to show that

Illslimsupll,l(a,6.,z)l1 < 1 (4.6)

for a properly chosen sequence {ti.}. Using the condition (M4), for any integer k > 1, we

may choose the smallest integer nk such that

IlA=’(,l/k,z)ll< <_ (1 + l/k)n, n>_nk. (4.7)

With the sequence {ti,} defined by

ti,,:=l/k, n,<n<nk+, k=l,2,-..,

and ti, := 1 for 1 _< n _< nk, it is readily seen from (4.7) that (4.6) is satisfied.

LEMMA 4.3.

such that

There ezists a sequence {M, M,,(w,E,a)} of positive numbers

IIw"(z)A(w"d,r,E,z)ll <_ M, (4.8)

and

lim M/" 1. (4.9)

We note that in (4.8), the integer n appears several times. This notation will be

consistently used. Thus, for instance, if k > 1 is another integer, then

IIw"(z)h:(w"da, E,z)ll < M,.

PROOF OF LEMMA 4.3. Without loss of generality, we may assume that E C

supp(w). Also, it is obvious that we need to define M, only for large value of n. For ti > 0,

set

w(ti) sup{IQ(z)- Q(t)l z e E,t e S’,I 1 <- }. (4.10)

Since w is continuous on E and bounded from below by a positive constant on the compact

set S*, it is easy to see that w(6) 0 as ti -- 0+. Let din be the sequence defined by Lemma

4.2 for the compact set S* and n be large enough so that w(tirt) < oo. Let z E ,9* and

P EII,. Then
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> wZn(z)[P(z)l exp(-2n(n))An(a,n,z)
(4.11)

where A,(a, 6,,z)is defined in (3.4). Let

M, (n 4- 1)exp(2nw(6,))llA(a, 6,,z)lls (4.12)

Then (4.11) and (4.3) yield that for z

Iw"(z)p(w"da, E,z)l <_ M.l(n + 1), k 0,...,n. (4.13)

in view of Theorem 2.1(g), the inequality (4.13) persists for z E E. Using (4.3) again, we

get (4.8). The estimates (4.8) and (4.3) imply that

lim inf M/n > 1.

Since w(6n) 0 as n oo, (4.5) and (4.12)imply (4.9). I

Lemma 4.3 completes the first step in our proof of Theorem 3.3. The following lemma

gives the Nikolskii-type inequalities ’in one direction’. This will be enough for our purposes.

LEMMA 4.4. Let n > 1 be an integer, P IIn, 0 < p < r < ex. Let k be the least

positive integer with 2k >_ p, and {llln} be the sequence defined in Lemma 4.3. Then,

(4.14)

PROOF. we may write (cf. [12])

Pk(z) f Pk(t)K"(z’t)wi"(t)da(t)

where, in this proof only,

(4.15)

Kn,(Z, t) pt(w2"’da, E, z)p,(w2"’da, E, t). (4.16)

Using Cauchy-Schwartz inequality in (4.15), and taking into account (4.3), (4.8) we get

(4.17)

Using a convexity argument repeatedly, we get first

(4.18)

and then (4.14). I

The next step in the proof of Theorem 3.3 is to show that the LP-norm lives on some

compact set.
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LEMMA 4.5. Let 0 < p < c. Then there exists R > 0 such that, with K z

E lzl <_ n}, we have, for ewy integer n > 1 and P

(4.19)

where cl, c2 are positive constants depending only on p, a, w and E.

PROOF. Let k be the least positive integer for which 2k >_ p and n > N + 1, where

N is defined in condition (M3) in Definition 3.2. Since w"/("+I+t"/pJ} is admissible, there

exists a positive number A such that, for z E,

(4.20)

(Here, we used Lemma 4.4 in the last inequality.) Hence, if B > A,

IP(z)lPw"P(z)da(z) <- A:’BNA"Ik"B-n Iz IzI-Nda(z). (4.21)
[>_B,z.E I>_B ,z_E

In view of (4.9), it is now easy to deduce (4.19).

PROOF OF THEOREM 3.3. Let e > 0 and K be the compact set introduced in

Lemma 4.5. Without loss of generality, we may assume that S* C_ K. Since a is regular,

there exists a bounded open set V such that ,5"* C_ U and a(cl(V)\S*) < e, where cl(U)
denotes the closure of U. In view of Theorem 2.1(g), there exists a positive constant c,

independent of n and P, such that

Iw(z)P(z)l < exp(--cn)llwellE,

Using Lemma 4.4 and (4.9), this leads to

z I(\U. (4.22)

(4.23)

where c is another positive constant. It follows from (4.19) and (4.23) that

(4.24)

for some positive constants c,c2. Since a(cl(U)\S*) < e, we have proved that the L(a,E)

norm of the weighted polynomials lives on

It is now simple to see that the estimate (4.14) can be extendend to

0 < p,r <_ oo, (4.25)

where N,, is a sequence of positive numbers with lim,,_oo N/" 1. If we now use (4.24)
with r in place of p, and take (4.25) into account, then it is easy to prove (3.7). To prove

the second part of Theorem 3.3, let e > 0 be arbitrary. We find a bounded Borel set A
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with a(A) < e such that (3.8) holds. In view of (4.25), applied once to E\(K U A) and

once to E, we see that for sufficiently large integer n and P (5 l’In,

IJw’pJJE _-JJw’PJJK,.

Proposition 2.2 then yields that ,9 C_ K U A. Since a(A) < e and t was arbitrary, this

proves that a(S\K) O. I

We observe that the proof of Theorem 3.3 includes a proof of Theorem 3.4. The proofs

of Theorems 3.5 and 3.6 use the following lemma.

LEMMA 4.6. Let E C_ C be a Borel set, t be a measure supported on E, for
every compact set K C_ E and 1 > O, there exist a seqence of positive numbers Ln :=

L,(,, K, E, r) with

limsupL/n _< 1, (4.26)

and the Christoffel functions defined in (4.1) satisfy

Affl(,,If,z) _< L,, z (5 K, (4.27)

where

{z lz- tl <_ , for some K}. (4.28)

Then , satisfies the condition (M4) in Definition

REMARK. In [9], a measure a with compact support A is said to be completely regular

if
1/nlim IIP(a,A z)l,a 1.

When a is not compactly supported, but the restriction of a to every compact set is

completely regular in this sense, then the Lemma shows that a satisfies condition (M4) of

Definition 3.2.

PROOF. Let > 0, and K C_ E be a fixed compact set. With the notation as in (3.5),

we find points zl,.-, z, in K such that K C_ U Et/,l(z,). The hypotheses of Lemma 4.6
k=l

applied to each E/4(zt,) shows that for any e > 0, there exists an integer N such that

Al(v,E/2(zt,),z) < (1 + e)n, z (5 Et/,(z,), k 1,...,m, n >_ N. (4.29)

We observe that N depends only on K, ti and v. Now, if z (5 K is arbitrary, then Et(z)

E/2(zt,) for some k, 1 < k < m. Lemma 4.1(b) then implies that

A(v,,E(z),z) < (1 + e)’, zeK, n>N. (4.30)

This gives (3.6) with u in place of a as required. I

It is convenient to prove Theorem 3.6 first.

PROOF OF THEOREM 3.6. The hypothesis of Theorem 3.6 imply, with r cx and

p 2 in (3.10), that
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(4.30)

In view of Lemma 4.1 (b), this implies (4.27) with a in place of v. Lemma 4.6 then COlnpletes

the proof. 1

In the proof of Theorem 3.5, we need another lemma to estimate the derivative of a

polynomial in terms of its maximum modulus on If. Lemma 4.7 is most probably not new,

but we include a proof because it is very sinple.

LEMMA 4.7. Let K be a regular (in the sense described in the statement of Theorem

8.5), compact set, and let u be its classical equilibrium measure (4 [18], P. 55). We set

u(z) ,,(If, z):= f ,og(a/iz tl)du(t), z e c. (4.31)

Then u is continuous on C. Let V be the convex hull oI the set {z Iz 1 for some

e K}, and

(6) := max{]u(z)- u(t)] z,t fi V, ]z t] 6}. (4.32)

If n is any positive integer, P E H,, and 0 < 6 < 1 is arbitrary, then

IP’(z)l < 6-’ exp (n((6)- u(z)- logcap(K)))llPIl,,. (4.33)

PROOF. The fact that u is continuous is vell known. (cf. [13]) The Bernstein-Walsh

inequality ([14], P.77) yields

IP()I < exp(-nu()- log cap(K))IIPIIK, e C.

If z e c and F := {’l zl 6}, then

1 J(r P((:)
d. (4.35)P’(z) ((,_ z)

The estimate (4.33) follows easily from (4.35), (4.34) and (4.32). I

We are now in a position to prove Theorem 3.5.

PROOF OF THEOREM 3.5. Since E is regular, every compact sabset of E is con-

rained in a regular compact subset of E. In view of Lemma 4.1 (b), it is therefore enough

to verify (3.6) only in the case when K is regular. Let K be a fixed, regular compact

subset of E, and we adopt the notation in Lemma 4.7. Let n >_ 1 be any integer, P E II,

and IIPIIK 1. Let z0 6 g be found so that

(4.34)

IP(zo)l- IIPII 1. (4.36)

Let

e, (2n)-’ exp(-2ni2(1/n)).

Then, for z 6 V, Iz z01 _< e, (_< l/n), Lemma 4.7 yields with 1In in place of 6,

(4.37)

IP(z)-P(zo)l _< e, max{IP’()l" I-zol _< ,} _< 1/2exp(-nu(zo)-log cap(K)). (4.37)

Since z0 is a regular point of K, this and (4.36) imply that



638 H.N. MHASKAR

IP(z)l _> 1/2, z E V, Iz zol G e,. (4.38)

Since % --, 0 as n oo, we may choose n so large that % < r/. We integrate both sides of

(4.38) with respect to a and use (3.11) to get

:lP(z)ld(z)
>_ (o, K, .)IIPIIK > cLIIpII,W. (4.39)

Since L/, -4 as n -4 oo, we have shown that a satisfies the hypotheses of Lemma 4.6.

In view of that Lemma, the proof is now colnplete.

Theorem 3.7 follows from Theorem 3.4 and the known results about the asymptotically

extremal polynomials in the sup norm sense. (cf. (a.a) and [11]).
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