REMARKS ON QUASILINEAR EVOLUTIONS EQUATIONS

JAMES E. MUNOZ RIVERA

NATIONAL LABORATORY OF SCIENTIFIC COMPUTATION RUA LAURO MULLER 455 (LNCC-CNPQ) BOTAFOGO. CEP. 22290. RIO DE JANEIRO. R.J. BRASIL. AND IMUFRJ. P. O. BOX 68530. RIO DE JANEIRO. R.J. BRASIL (Received June 6, 1990 and in revised form July 21, 1990)

ABSTRACT. In this paper we study the existence result of classical solutions for the quasilinear equation $u_{tt} - \Delta u - M(f_{\Omega} |\nabla u|^2 dx) \Delta u_{tt} = f$, with initial data $u(O) = u_0$, $u_t(O) = u_1$ and homogeneous boundary conditions.

KEY WORDS.- Partial diferential equation, quasilinear evolution equation, boundary problem. AMS(MOS): Subject classification, 35865, 35405.

1. INTRODUCTION: Let Ω be an open and bounded set of \mathbb{R}^n , with smooth boundary Γ . Let's denote by Q the cylinder $Q = \Omega x 10.Tl$ and by Σ its lateral boundary. Our notations and function spaces are standart and follows the same pattern as Lions's book [2].

Ebihara et al [1] was proved that there exist only one classical solution for a semilinear model, given by following initial-boundary value problem

$$u_{tt} - \Delta u - H(\int_{\Omega} |\nabla u|^2 dx) \Delta u_{tt} = f \quad in \ Q \qquad (1.1)$$

 $u(0) = u_0, u_1(0) = u_1 \text{ in } \Omega \tag{1.2}$

$$u(x,t) = 0 \quad in \Sigma \tag{1.3}$$

when the following hypotheses hold:

(i) $M(\Lambda) \in C^{1}(0, +\infty)$, and there exist positive constants a, ρ such that the following inequality is valid:

$$M(\lambda) \geq \alpha \sqrt{\lambda} + \rho, \forall \lambda \in [0, +\infty[$$

(ii) There exists a non negative function $\beta(\lambda)$ satisfying:

$$|\frac{\alpha}{\alpha\lambda}$$
 M(λ) | $\sqrt{\lambda} \leq \beta(\lambda)$ M(λ) $\forall \lambda \geq 0$

(iii) The initial datas are such that:

$$u_0, u_1 \in D(A^{(l+1)/2}), l \ge 1$$

$$f, \frac{d}{dt} f \in C(0, T; D(A^{l/2})), l \ge 1$$

Where $A = -\Delta$ and for $D(A^5)$ we are denoting the domain of the operator A^5 . The main result of this paper is to prove the existence result of classical solutions for system (1.1)-(1.3) when

H1. *H* is a continuos function such that:
$$M(\lambda) \ge m_0 > 0$$

H2. $f \in C(0,T; D(A^{1/2}))$, $1 \ge 2$ and u_0 , $u_1 \in D(A^{(1+1)/2})$, $1 \ge 2$

2. THE MAIN RESULT: Let's denote by w_1, \ldots, w_m and by $\lambda_1, \ldots, \lambda_m$ the m firts orthonormal eigen functions and eigen values of the Laplacian respectively. Let's denote by V_m the finite dimensional vector space generated by the firts m eigen functions and by P_m the projector operator on V_m , that is:

$$P_{m} \upsilon = \sum_{i=1}^{m} \int_{\Omega} \upsilon(x) \upsilon_{i}(x) dx \vartheta_{i}$$

It is easy to see that $A^{S}P_{m} = P_{m}A^{S}$ in $D(A^{S})$. Moreover, we have that

$$\int_{\Omega} |P_{m}w|^{2} dx \leq \int_{\Omega} |w|^{2} dx \qquad (2.1)$$

Then the aproximated problem is defined as follows.

$$u_{tt}^{(m)} - \Delta u^{(m)} - \mathcal{M}(\int_{\Omega} |\nabla u^{(m)}|^2 dx) \Delta u_{tt}^{(m)} = f_m \qquad (2.2)$$
$$u^{(m)}(O) = u_0^m, \ u_t^{(m)}(O) = u_1^m \quad in \ \Omega$$

where

$$u^{(m)}(t) = \sum_{l=1}^{m} g^{l,m}(t) u_{l}, \quad u_{0}^{m} = P_{m} u_{0}, \quad u_{1}^{m} = P_{m} u_{1}$$

Before to prove the main result of this paper we will show the following Lemmas:

LEMMA 2.1- Let's suppose that $v, v_1, v_2 \in C(0,T;L^2(\Omega))$ and

$$\int_{\Omega} |v_{tt}(x,t)|^2 dx \le \alpha + b \int_{\Omega} |v(x,t)|^2 dx$$

Then we have:

$$\int_{\Omega} |v(x,t)|^2 dx \le (a+2b) \int_{\Omega} |v(x,0)|^2 dx + 4bt^2 \int_{\Omega} |v_t(x,0)|^2 dx e^{4bt^4}$$
PROOF.- Since
$$v(x,t) = \int_{0}^{t} v_t(x,\xi) d\xi + v(x,0) \quad a. \ e. \ in \ x$$

we have:

$$|\upsilon(\mathbf{x},t)| \leq \sqrt{t} \left(\int_0^t |\upsilon_t(\mathbf{x},\xi)|^2 d\xi \right)^{1/2} + |\upsilon(\mathbf{x},0)|$$

From where it follows

$$\int_{\Omega} |v(x,t)|^2 dx \leq 2t \int_{0}^{t} \int_{\Omega} |v_t(x,\xi)|^2 dx d\xi + 2 \int_{\Omega} |v(x,0)|^2 dx$$

Applying the relation above to v_t we have:

$$\int_{\Omega} |v_t(x,t)|^2 dx \leq 2t \int_0^t \int_{\Omega} |v_{tt}(x,\xi)|^2 dx d\xi + 2 \int_{\Omega} |v_t(x,0)|^2 dx$$

From the two last inequalities we conclude:

$$\int_{\Omega} |v(x,t)|^2 dx \leq 2\int_{\Omega} |v(x,0)|^2 dx + 4t^2 \int_{\Omega} |v(x,0)|^2 dx + 4t^3 \int_{\Omega}^{t} \int_{\Omega} |v_{tt}(x,\xi)|^2 dx d\xi$$

Finally, from the hypotheses, the last inequality and Gronwall's inequality the result of Lemma 2.1 follows o

LEMMA 2.2 - Let suppose that $w \in C(10,T1;L^2(\Omega))$, then we have that

 $P_{m} \psi \rightarrow \psi$ strong in $C(10,T); L^{2}(\Omega)$

PROOF. By the pointwise convergence of $P_m w$ in t, it's sufficient to show that $P_m w$ is a Cauchy sequence in $C(I0,T);L^2(\Omega)$. Let's take $\varepsilon > 0$, by the continuity of w we have that there exist $\delta > 0$ such that

$$|t - s| < \delta \Rightarrow \int_{\Omega} |w(x, t) - w(x, s)|^2 dx < \frac{\varepsilon}{3}$$
 (2.3)

By the compacity of l0, Tl, there exist s_1, s_2, \ldots, s_N , satisfying

$$[0,T] \subset \bigcup_{1} [s, -\delta, s, +\delta]$$

and from the pointwise convergence of P_{m} we conclude that there exists a positive number N such that

$$\int_{\Omega} |P_{\mu}\omega(.,s_{i}) - P_{\mu}\omega(.,s_{i})|^{2} dx < \frac{\varepsilon}{3}, \quad \forall m, \mu \ge N, i = 1,..., N \quad (2.4)$$

Finally by (2.1), (2.3), (2.4) and the following inequality

$$\begin{split} & \left[\int_{\Omega}\left|P_{m}\omega(x,t)-P_{\mu}\omega(x,t)\right|^{2}dx\right]^{1/2} \leq \\ & \left[\int_{\Omega}\left|P_{m}(\omega(x,t)-\omega(x,s_{1}))\right|^{2}dx\right]^{1/2} + \left[\int_{\Omega}\left|P_{m}\omega(x,s_{1})-P_{\mu}\omega(x,s_{1})\right|^{2}dx\right]^{1/2} + \\ & + \left[\int_{\Omega}\left|P_{\mu}(\omega(x,s_{1})-\omega(x,t))\right|^{2}dx\right]^{1/2} \end{split}$$

the result of Lemma 2.2 follows o

THEOREM 2.3 - Let's suppose that H1 and H2 are valid. Then there exists

(1.1), (1.2) and (1.3). Remains to show that u is a classical solution. Let's note that $u^{(m)}$ belongs to $C^2(0,T;D(A^{(l+1)/2}))$ for all $m \in \mathbb{N}$, then in order to prove that $u \in C^2(0,T;C^k(\Omega))$, we will show that $(u_{tt}^{(m)})_{tt} \in \mathbb{N}$ is a Cauchy's sequence in $L^{\infty}(0,T;D(A^{(l+1)/2}))$, for all $l \ge 2$. In fact let $\mu \in \mathbb{N}$, then

$$u_{tt}^{(\mu)} - \Delta u^{(\mu)} - \mathcal{H} \int_{\Omega} |\nabla u^{(\mu)}|^2 dx \Delta u_{tt}^{(\mu)} = P_{\mu} f$$

From (2.2) and the above equation we have:

$$(u_{tt}^{(m)} - u_{tt}^{(\mu)}) - \Delta(u^{(m)} - u^{(\mu)}) - \mathcal{H}(\int_{\Omega} |\nabla u^{(m)}|^2 dx) \Delta(u_{tt}^{(m)} - u_{tt}^{(\mu)}) = G_{m\mu}$$

where

$$G_{m\mu} = (\mathcal{M} \int_{\Omega} |\nabla u^{(m)}|^2 dx) - \mathcal{M} \int_{\Omega} |\nabla u^{(\mu)}|^2 dx) \Delta u_{tt}^{(\mu)} + P_m f - P_{\mu} f$$

Multiplying the system above by $A^{l}(u_{tl}^{(m)}-u_{tl}^{(\mu)})$ and integrating in Ω we have

$$m \int_{\Omega} |A^{\frac{1+1}{2}} (u_{tt}^{(m)} - u_{tt}^{(\mu)})|^2 dx \leq$$

$$\int_{\Omega} |A(u^{(m)} - u^{(\mu)})A^{l}(u_{tt}^{(m)} - u_{tt}^{(\mu)})| dx + \int_{\Omega} |G_{m\mu}A^{l}(u_{tt}^{(m)} - u_{tt}^{(\mu)})| dx$$
which it follows that:

From which it follows that:

$$\frac{1}{2}m_{0}^{2}\int_{\Omega}|A^{\frac{l+1}{2}}(u_{tt}^{(m)}-u_{tt}^{(\mu)})|^{2}dx \leq \int_{\Omega}|A^{\frac{l+1}{2}}(u^{(m)}-u^{(\mu)})|^{2}dx + \int_{\Omega}|A^{\frac{l}{2}}G_{m\mu}|^{2}dx$$

From Lemma (3.1) and the last inequality we have

$$\frac{i}{2}m_{0}^{2}\int_{\Omega}|A^{\frac{l+1}{2}}(u_{tt}^{(m)}-u_{tt}^{(\mu)})|^{2}dx \leq$$

$$(\int_{\Omega} |A^2 G_{\mu\mu}|^2 dx + 2\int_{\Omega} |A^2 (u_0^m - u_0^\mu)|^2 dx + 4t^2 \int_{\Omega} |A^2 (u_1^m - u_1^\mu)|^2 dx) Exp(\frac{\vartheta}{m_0} t^4)$$

Finally from Lemma 2.2 and since u_0 , $u_1 \in D(A^{(l+1)/2})$ we have that

 $A^{L/2}G_{mu} + 0 \text{ as } m, \mu + +\infty \text{ strongly in } C(10,T1;L^2(\Omega))$

Then we have that $(u_{tt}^{(m)})$ a Cauchy sequence in $L^{\infty}(0,T;D(A^{(l+1)/2}))$ and the proof is now complete \Box

REMARK 2.4.- UNIQUENESS: If *H* is locally Lipschitz, then we have uniqueness. In fact, let *u* and *v* be two solutions, putting w = u-v we have

$$w_{tt} - \Delta w - \mathcal{H} \int_{\Omega} |\nabla u|^2 dx \Delta w_{tt} = (\mathcal{H} \int_{\Omega} |\nabla u|^2 dx) - \mathcal{H} \int_{\Omega} |\nabla v|^2 dx \Delta v_{tt}$$

Multiplying by Δw_{tt} applying H1 and the Lipschitz condition on H we have that there exists a positive constant c_t such that:

$$m_{O} \int_{\Omega} |\Delta w_{tt}|^2 dx \leq \int_{\Omega} |\Delta w \Delta w_{tt}| dx + c_{1} \int_{\Omega} |\Delta w|^2 dx \int_{\Omega}^{1/2} (\int_{\Omega} |\Delta w_{tt}|^2 dx)^{1/2}$$

only one classic solution of system (1.1), (1.2) and (1.3)

PROOF. Since $D(A^{(l+1)/2}) \subset H^{l+1}(\Omega) \subset C^k(\tilde{\Omega})$ if $l+1 > \frac{n}{2} + k$, it's sufficient to show that there exists a solution of system (1.1), (1.2) and (1.3) satisfying $u \in C^2(l0,T); D(A^{(l+1)/2})$. In order to prove it let's multiply (2.2) by $A^l u_{ll}^{(m)}$ and integrating in Ω we have:

$$\int_{\Omega} |A^{\frac{1}{2}} u_{tt}^{(m)}|^{2} dx + \mathcal{H} \int_{\Omega} |\nabla u^{(m)}|^{2} dx \int_{\Omega} |A^{\frac{1}{2}} u_{tt}^{(m)}|^{2} dx = -\int_{\Omega} A u^{(m)} A^{l} u_{tt}^{(m)} dx + \int_{\Omega} f_{m} A^{l} u_{tt}^{(m)} dx$$

By H1 and H2 the last equality becomes:

$$m_{O} \int_{\Omega} |A^{\frac{l+1}{2}} u_{tt}^{(m)}|^{2} dx \leq \int_{\Omega} |A^{\frac{l+1}{2}} u^{(m)} A^{\frac{l+1}{2}} u_{tt}^{(m)}| dx + \int_{\Omega} |lA^{\frac{l}{2}} f_{m}^{-1} A^{\frac{l}{2}} u_{tt}^{(m)}| dx$$

from where it follows that:

$$\frac{1}{2}m_{0}^{2}\int_{\Omega}|A^{\frac{l+1}{2}}u_{tt}^{(m)}|^{2}dx \leq \frac{1}{\lambda}\int_{1}^{2}\int_{\Omega}|(A^{\frac{l}{2}}f_{m})|^{2}dx + \int_{\Omega}|A^{\frac{l+1}{2}}u^{(m)}|^{2}dx$$

By Lemma 2.1 and the above inequality we obtain:

$$\frac{1}{2}m_{0}^{2}\int_{\Omega}|A^{\frac{1+1}{2}}u_{tt}^{(m)}(x,t)|^{2}dx \leq (2.5)$$

$$(\int_{\Omega}|A^{\frac{1}{2}}f_{m}^{-1}|^{2}dx + 2\int_{\Omega}|A^{\frac{1+1}{2}}u_{0}^{m}|^{2}dx + 4t^{2}\int_{\Omega}|A^{\frac{1+1}{2}}u_{1}^{m}|^{2}dx\rangle Exp(\frac{\theta}{m_{0}^{2}}t^{4})$$

From (2.5) and since:

$$\int_{\Omega} |A^{\frac{l+1}{2}} u_{t}^{(m)}(x, t)|^{2} dx \leq 2t \int_{\Omega} |A^{\frac{l+1}{2}} u_{tt}^{(m)}(x, t)|^{2} dx + 2 \int_{\Omega} |A^{\frac{l+1}{2}} u_{t}^{m}|^{2} dx$$
$$\int_{\Omega} |A^{\frac{l+1}{2}} u_{t}^{(m)}(x, t)|^{2} dx \leq 2t \int_{\Omega} |A^{\frac{l+1}{2}} u_{t}^{(m)}(x, t)|^{2} dx + 2 \int_{\Omega} |A^{\frac{l+1}{2}} u_{0}^{m}|^{2} dx$$

we conclude that there exists a subsequence of $(u^{(m)})_{m\in\mathbb{N}}$, which we still denoting of the same way and a function $u \in L^{\infty}(0,T;D(A^{(l+1)/2}))$, satisfying

$$u^{(m)} \rightarrow u \quad \text{weak star in } L^{\infty}(0,T;D(A^{(l+1)/2})) \quad \text{as } m \rightarrow \infty$$

$$u_t^{(m)} \rightarrow u_t \quad \text{weak star in } L^{\infty}(0,T;D(A^{(l+1)/2})) \quad \text{as } m \rightarrow \infty$$

$$u_{t_1}^{(m)} \rightarrow u_t \quad \text{weak star in } L^{\infty}(0,T;D(A^{(l+1)/2})) \quad \text{as } m \rightarrow \infty$$

From the last convergences and the Lions-Aubin's theorem (see Lions's [2], theorem 5.1, chap 1) we conclude in particular that:

$$u^{(m)} \rightarrow u$$
 strongly in C(10,T]; $H_0^4(\Omega)$) as $m \rightarrow \infty$

By standard methods we can prove that u is a strong solution of system

from where it follows that there exists c_z such that:

 $\int_{\Omega} |\Delta w_{tt}|^2 dx \le c_2 \int_{\Omega} |\Delta w|^2 dx$ By Lemma 2.1, since $w(x,0) = w_t(x,0) = 0$, we obtain that $\Delta w = 0$, and from this it follows that w = 0, that is $u = v_0$

REFERENCES

- Y. Ebihara & D.C. Pereira. On Global Classical solution of a quasilinear hyperbolic equation. <u>Internat. J. Math & Math. Sci.</u> Vol. 12 No. 1 (1989) 29-38.
- 2. J. L. Lions. <u>Quelques Méthodes de resolution de problèmes aux</u> <u>limites non lineares</u>. Dunod Gauthier Villars, Paris 1969