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ABSTRACT. The aim of this paper is to define and study super-continuous mappings and some

other forms of continuity such as strong continuity, perfect continuity and complete continuity in
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1. INTRODUCTION.
The study of bitopological spaces was first initiated by J.C. Kelly [1] and thereafter a large number

of papers have been done to generalize the topological concepts to bitopological setting. Munshi

and Bassan [2] introduced a strong form of continuity, called super-continuous mappings and studied

some of their properties in topological spaces. Noiri [3] obtained further.properties of super-continuous
mappings and investigated the relation between super-continuity and several strong forms of continuity

such as 6-continuity and strongly 0-continuity which was introduced by Noiri [4], and completely
continuity which was given by Arya and Gupta [5]. Bose and Sinha [6] defined almost continuity

in bitopological spaces. Banerjee [7] defined &continuous and strong 0-continuous mapping in these

spaces. They study these mappings and some of their results on different kinds of spaces such as

nearly compact, regular, almost regular and semi-regular spaces. The purpose of this paper is to

define super-continuous mappings in bitopological spaces and investigate some of their properties and

relations with other forms of continuity and its effects on some kinds of spaces.

Throughout this paper, by a space X we mean a bitopological space (X, r, r2). By i- int A and

cl A we shall mean the interior and the closure of a subset A of X with respect to r,, respectively,
where i,j or 2 and y j.

A subset ,5’ of X is said to be/j-regular open (resp. /j-regular closed) if int(j cl S) S (resp.
i- cl(j int S) S). S is said to be pariwise regular open (resp. pairwise regular closed) if it is

both/j-regular open and ji-regular open (resp. /j-regular closed and ji-regular closed), denoted by

p- r.o (resp. p- r.c) [8]. A point z of X is said to be ij 6-cluster point of S if S fq U y for every
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ij r.o set U.containing z. The set of all i3-6 cluster points of S is called tj di-closure of S and is

denoted by ij -cla(S). A subset 5’ of X is said to be j -6-closed if i2 -6-cluster points of S C S.
The complement of ij 6-closed set is ij 6-open. So a set is ij 6-open if it is expressible as a

union of ij r.o sets. 5" is said to be pairwise-6-closed (resp. pairwise-6-open) if it is both i3 6-closed
and ji- 6-closed (resp. ij- 6-open, and ji- 6-open) and will be denoted by p- 6-closed (resp.
p 6-open).

A bitopological space X is said to be ij-serrfi resular [8] (resp. /j-regular [1], ij- almost regular
[9]) iff for each x (5 X and for each/-open set V of X, there is an/-open set U containing x such that

x E U C int(j cl U) C V (resp. x E U C j cl U C V, x U C j cl U C int(j cl V)). X
is pairwise-serni regular (resp. pairwise-regular, pariwise almost regular) if it is both /3-senti regular
and ji-serrfi regular) (resp. /j-regular and ji- regular,/j-almost regular and ji-Mmost regular).

A subset S of a bitopological space (X, rl, r2) is said to be/j-nearly com.pact relative to X [7] iff

each/-open cover /2 of S has a finite subcollection/20 such that S C Uvuoi int(j clU).
2. SUPER-CONTINUOUS MAPPINGS

DEFINITION 2.1. A mapping f (X,r,r2) (Y,a,cr) is said to be /j-super continuous

at a point z fi X if every/-neighborhood V of f(z) there exists an/-neighborhood U of X such that

f(i- int(j el U)) C V. A mapping f is said to be ij-super continuous [denoted by ij SC] if it

is/j-super continuous at each point of X and it is said to be pMrwise S.C if it is both ij SC and
j- sc.

REMARK 2.1. It is clear that if f is/j-super continuous at x 6 X then it is/-continuous at x.

But the converse is not true as seen from the following example.
EXAMPLE 2.1.Let X= Y= {a,b,c} and r,= {,X, {a}, {b,c}, {a,b}, {b}} r,= {,X, {b}, {b,c} },

a, {,Y,{a},{b,c}},a {,Y,{b},{b,c}}, and let f (X, rt,v) (Y, at, a2} be given by
f(z) z for each x E X, then f is 1-continuous and 2-continuous but it is not 12-super continuous

at x c since if x c then f(x) c, let V {b,c}, then there exists no 1-neighborhood U of c such
that f(1 int(2- cl U)) C V.
THEOREM 2.1. For a mapping f (X, rx,r2) --- (Y,a,a) the following are equivalent:

(a) f is ij- SC.

(b) Inverse image of every/-open subset of Y is an ij 6-open subset of X.

(c) Inverse image of every/-closed subset of Y is an ij 6-closed subset, of X.

(d) For each point x of X and each/-neighborhood V of f(z) there exists an ij-6-open neighborhood
U of z such that f(U) C V.

PROOF. (a) ---, (b). Let A be any /-open subset of Y and x f-(A). Then f(x) A and

so there exists an /-neighborhood U of :: such that x U and f(i int(j cl U)) C A. So,
i- int(j cl V) V C f-(A). But V is ij r.o, so f-’(A) is expressible as an arbitrary union

of/j-regular open sets, hence f-(A) is ij- 5-open.
(b) (c).Obvious.
(c) (d). Let V be an /-neighborhood of f(z) so Y V is /-closed by (c), f-a(Y V)is

ij- 6-closed, hence f-(V) is ij- 6-open; so we have z f-x(V) U and f(U) C V, where U is

ij S-open.
(d) (a). For each z X and each/-open neighborhood V of f(z) there exists an ij 6-open

neighborhood U of x such that f(U) C V. But U is ij S-open, so there exists an ij r.o set 0 such
that z /0 C U, hence f(x) C f(O) f(i int(j cl 0)) C f(U) C V. So f is ij SC.
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THEOREM 2.2. Let f :(X, r, r) (Y, a, cry) be an/-continuous mapping of an/j-semi regular
space X into Y, then f is ij-

PROOF. Let G be an /-neighborhood of f(z), so f-(G) is an /-neighborhood of z. Since X is

ij-semi regular, there exists an /-open set V such that z E V C i- int(j- cl V) C f-(G). So
f(i- int(j -cl V)) C G and hence f is ij SC.
THEOREM 2.3. Let X and Y be bitopological spaces, then a mapping f (X, r, r)

is ij- SC iff the inverse image under f of every member of/-base for Y is ij -6-open.
PROOF. From Theorem 2.1 parts (a) and (b).
THEOREM 2.4. A mapping f: (X,r,r) (Y, cr,a)is ij-SC iff f(ij-cln(A)) C z-cl(f(A)),

for each subset A of X.
PROOF. Let f be ij SC, since cl f(A) is an/-closed subset of Y, then f-(i cl f(A))

ij- 6-closed in X. But since f(A) C i-cl f(A), then A C f-l(i- cl .f(A)) and so ij- clA C
ij cls(f-l(i cl f(A))) f-(i cl f(A)). Hence f(ij titS) C i- cl f(A).

Conversely, let f(ij -clA) C i-cl y(A) for each A C X and let F be any/-closed subset of Y,
so i-cl F F. Since f-(F) C X, so f(ij- cl6f-t(F)) C i-cl f /-(F) C i-cl F F and
ij- cl6f-l(F) C f-(F). Then f-(F) is ij- 6-closed and by Theorem 2.1 f is ij- SC.
THEOREM 2.5. A mapping f (X, ra,r) (Y,o,cr)is ij-SC iff O-clsf-(B) C f-(-cl B)

for each B C Y.
PROOF: Let f be ij SC. Since cl B is/-closed subset of Y, then f-(i cl B) is ij

closed in X and since B C i-cl B; then ij- clsf-(B) C (i -clsf-(i- cl B) f-(i- cl B) and
so ij -clsf-(B) c y-(i- cl B).

Conversely, let ij- clsf-(B) C f-(i- cl B) for each B C Y and lt F be an t-closed subset
of Y. Then ij clsf-(F) c f-a(i cl F) f-(F), but since f-(F) C ij cl,f-(F), so

f-(F) ij clf-(F) and hence f-(F) is ij 6-closed. Therefore f is ij SC.
DEFINITION 2.2. A mapping f (X, rl,r) (Y, cq,a) is said to be i-almost open if the

image of every/j-regular open subset of X is/-open in Y. f is said to be/j-almost closed if the image
of every/j-regular closed subset of X is/-closed in Y.

DEFINITION 2.3. [6] A mapping f: (X, r, r) (Y, a,o) is said to be/j-almost continuous
at a point z E X if every/-neighborhood V of f(z) there exists an/-neighborhood U of z such that

f(U) C int(j cl V).
THEOREM 2.6. If f (X,r,r) (Y,o,a) is /j-almost open and ij- SC mapping of X

onto Y and if g (Y, ot,o) (Z,7,7) is a mapping of Y into Z, then g o f is ij SC iff is
/-continuous.

PROOF. Let be an /j-almost open ij SC mapping, md let g be/-continuous. Let U be an
/-closed subset of Z, consider f-(g-(U)), since U is/-closed in Z and is/-continuous, so p-(U)
is/-closed in Y. Also, since f is ij- SC, so f-(g-(U)) is ij -6-closed subset of X, hence f o is

j-
Conversely, let o f be/3" SC, then for each/-open subset (7 of Z ( o f)-(G) is ij 6-open

subset of X. Since f is/j-almost open and onto, then f[f-a(z-’(6’)]
/-open subset of Y, hence # is/-continuous.

THEOREM 2.7. Let X,P’, and Z be bitopological spaces and let f:(X,r,r) (Y,a,cr) be
/j-almost continuous and # (Y,a,a) (Z, 7,7) be i-SC, then tof (X,r,r) (Z, 7,’7)
is/-continuous.

PROOF: Let z X, so f(z) Y, consider (ff o f)(z). Let U be an/-neighborhood of (a o f)(z),
since # is ij SC so #-(U) is/j 6-open subset of Y, so there exists an ij r.o subset V of Y such
that f(z) V C t/-(U), but since f is/j-almost continuous, then there exists an /-neighborhood
N of z such that f(N) C V C #-(U). Then f-’(f(N)) c f-’(#-(U)) and V c f-’(z-(u)); o
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(g o f)-*(U) is an/-open subset f X, hence g o f is/-continuous.

REMARK 2.2. If f (X, r, r) (Y,a,a) is ij-almost continuous and g o f (X, rl,r)
(Z,’rI,7) is/-continuous, then 9 (Y,a,a) (Z,’n,’r;) need not be ij SCas seen from the

following exmaple.
EXAMPLE 2.2. Let X R with r {,R, complement of countable subsets of R}. r {,R},

nd Y {a,b} with a {Y,,{a}},a {Y,#}, and (,2} with - {Z,,{2}}, 72
Z, $, }, let f: (X, r, r2) (Y, a, a2) defined by

f(z) a if z is irrational

b ifx is rational

and 9: (Y, aa,as) (Z, 7,Ts) defined by 9(a) 2, 9(b) 1, then f is 12-almost continuous and

9 o f is -continuous but 9 is not 12 SC, since if x a, then 9(a) 2, let V {2} then there is no

1-neighborhood U of {a} such that 9(1 int(2 -cl U)) C V.
DEFINITION 2.4. [7] A mapping f: (X,r,rs) (Y, at,a.)is said to be i./- 6-continuous if

for each =: in X and each/-neighborhood V of f(x) there exists an /-neighborhood U of z such that

f(i int(j cl U)) C int(j cl V).
REMARK 2.3. For a mapping f (X, r, rs) (Y, at,as), we have the following implications:

i-continuous

ij SC /j-almost continuous

ij 6-continuous’’’’’The converse may not be true s seen from Example 2.1 in [6] and Example 2.1.

THEOREM 9..8. Let X and Y be ij-serrfi regular spaces, then for a mapping f (X, r, rs)
(Y, a, as) the following properties are equivalent:

(a) ij SC

(b) /-continuous

(c) ij -continuous

(d) /j-almost continuous

PROOF. We shall only prove that (d) (a). Let f be ij-Mmost continuous and let z X
and y f(z), since Y ij-serni regular, for every/-open neighborhood V of y there exists ma/-open
neighborhood V’ of such that f(z) . V’ C (i int(j cl V’)) C V. Since f is/j-almost
continuous, there exists an/-open neighborhood U of z such that f(U) C i-int(j-cl V’) C V. By j-
semi regularity of X there exists ma/-open neighborhood U’ of z such that z . U’ C i- int(j- cl U’) C
U. Hence we have f(i int(j cl U’)) c V and so f is ij
THEOREM 2.. Let / (A,P,P) --- (X Y,@,@) be given by the equation f(a)

(f(a), fs(a)) for every a in A, then f is ij-SC iff f: (A, P, Ps) (X, r, rs) and fs: (A, P,
(Y, aa, a) are ij SC.

PROOF. Let f,fs be ij SC, let a A and Q U Us be an/-open subset of X x Y such that

f(a) (f(a),f(a)) U x U, so (a) U,fs(a) e U, where U is an/-open subset of X and Us is

an/-open subset of Y, but since f, f are ij SC so there exists ij r.o sets U and U in A such that
f(U;) C U,f(U) C Us. Put U’ U; U,U’ is ij r.o and f(U’) C (f(U;),f.(U)) C U x U.
Hence f is ij- SC.
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Conversely, let [ be ij SC and let a E A and Ut be an t-open subset of X containing f(a), then

U x Y is an/-open subset of X x Y containing f(a).
Since f is ij SC, there exists an ij r.o subset V of A containing a such that f(V) C U x Y

and so (fl(Y), f2(Y)) CUt Y.
Then f C Ut and therefore fl is ij SC. In a similar way we can prove that f2 is 3 SC.
THEOREM 2.10. Let f (X, rl,r2) (Y,a,a2) be a mapping and g: (X,r,r) (X x

Y, PI,Px) given by g(z) (x,f(z)) for all z in X, be the graph mapping, then g is ij SC iff f is

ij ,9C and X is/j-semi regular.
PROOF. Let g be ij SC and U be an/-open subset of X containing x, no U x Y is an/-open

subset of X x Y containing g(z). Since g is ij SC, there exists an ij r.o subset W of X contidning
z such that g(W) C U x Y. Then z E W C g-(U x Y) C U and therefore X is/j-semi regular from
Theorem 2.9 since g is ij SC and g(x) (z,f(x)), so f is ij SC.

Conversely, let f be ij-SC and X be/j-semi regular. For each x in X, and each/-neighborhood 14,’

of g(x), there exists an/-neighborhood U of z and an/-neighborhood V of f(z) such that

UxVCW.
Since X is ij-serrfi regular, there exists an ij r.o subset G of X such that z fi G C U. Since f

is ij SC, there exists an ij r.o subset G of X such that x fi Gx and f(G) C V.
Let G G Iq G. Then G is an ij r.o subset of X and 9(G) C U x V C W. Hence 9 is ij SC.

3. /j-NEARLY COMPACT SPACE AND/j-SUPER CONTINUOUS MAPPINGS.
THEOREM 3.1. A bitopologicM space X is/j-nearly compact iff every ij -6-open cover of X has

a finite subcover.
PROOF. Let X be/j-nearly compact and let L/ U{Uola A} be kn zj -open cover of X.

For each Uo E L/and z ( Uo there exists an/-open set Vo such that z Vo C int(j cl Vo) C U,,.
Then {Vo[ fi ZX} is an/-open cover for X, so there is a finite subset ZX0 such that X C U,,zxoi-
int(j cl V) C tJoo Uo. So h has finite subcollection which covers X.

Coversely, let/4 O{Uola fi A} be an/-open cover of X. Since Uo C int(j el Uo), therefore

X C Uot,Uo C Uo/i int(j cl Uo). But Uo/i int(j cl Uo) is an ij 6 open cover of X,
so there exists a finite subset A0 of A such that X C Lloi int(j ci U). Hence X is/j-nearly
compact.

COROLLARY 3.1. Any/j-regular closed subset of an/j-nearly compact space is/j-nearly compact.

PROOF. Obvious.

THEOREM 3.2, Let f:(X, rt,r) (Y,a,a) be an ij- SC mapping of an/j-nearly compact
space X into a bitopological space Y, then f(X) is/-compact.

PROOF. Let {Oo} be any /-open cover of f(X). Since f is ij- SC, so f-(Oo) is ij-

open in X and Uf-(Oo) is ij- $-open cover of X, hence X U,"=f-l(Oo,) f-(u,=, 0,.,). So,
](X) ff-’(U?=,Oo) C U,.*,,O, hence/(X) is/-compact.

DEFINITION 3.1. A subset K of X is called ij- H set if for each cover Uo c E } of K by
/-open subsets of X there exists a finite subset 70 of 7 such that K C U{j cl Uola e 70}.

DEFINITION 3.2. [1] A bitopological space (X,r,r2) is called i-Hausdorff iff for each pair of

distinct points x, y of X, there are an/-open neighborhood A of z and a j-open neighborhood B of y
such that A Iq B .
THEOREM 3.3. For a mapping f (X,r,rx) (Y,a,a) let:

(a) f is ij- SC and Y is ij-Hausdorff.

(b) for every (x,y) . G(f) there exists an ij-r.o subset U of X and ji- r.o subset V of Y containing
z and y, respectively, such that f(V) cl V (where G(f) is the graph of f).

(c) f-’(K) is ij &closed in X for every ji- H set K of Y. Then (a) (b) (c).
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PROOF. (a) (b) Let (x,y) . G(f), so y f(x) for x E X. Since Y is ij-Hausdorff, there

exists an ij r.o subset U and ji r.o subset V of Y such that f(x) U, y V and U N clV .
But f is ij SC, so there exists an ij r.o subset U’ containing x such that f(U)’ C U; hence

f(u’) n t v .
(b) (c) Let K be a ji-H set of Y and z f-l(K), for every y K, y # f(z) and

(x, y) G(f), there exists an ij r.o subset U and an ji r.o subset V such that x { U and y V
and f(U) i- cl V, . The family {VIy e K} is a j-open cover of K. Since K is a ji- H set,

there exists a finite subset K0 of K such that K C U{i cl Vly e K0}. Let U f{UIy e go}; so U
is ij r.o subset containing x and f(U) g . Then U Cl f-(g) , and f-(g) is ij 6-closed
in X.
4. STRONG FORMS OF CONTINUITY.

DEFINITION 4.1. A mapping f’(X,r,r--(Y,a,a2)is said to be -strongly
continuous if f(j- cl A) C f(A) for e.very subset A of X.

COROLLARY 4.1. A function f is j-strongly continuous iff f-(B) is both j-open and j-closed in

X for every subset B of Y.
PROOF. Let B C Y and let f-(B) F C X, since f is j-strongly continuous, f(j-cl F) C f(F);

hence j -clF C F; so F is j-closed. Similarly X F C X; hence X F is j-closed, so F is j-open.
DEFINITION 4.2. A mapping f (X,r,r2) -- (Y,a,az) is said. to be i’-clopen, continuous

(resp.,/j-strongly 0-continuous [7]) if for every x X and for every/-open neighborhood V of f(x)
there exists a j-closed and /-open neighborhood U of x (resp. /-open) such that f(U) C V (resp.
/(j- t u) c y).

DEFINITION 4.3. A mapping f’(X,r,r) (Y,a,a2) is sid to’ be/j-perfectly continuous

(resp. /j-completely continuous) if f-(V) is both j-closed and j-open (resp. ij r.o) in X for each
/-open subset V of Y.

DEFINITION 4.4. A mapping f" (X,r,r (Y,a,ax) is said to be an ij- R map if f-(V)
is ij r.o for every ij r.o subset V of Y.

REMARK 4.1. It is obvious that ij-clopen continuous ij-strongly O- continuous ij SC
but the converse may not be true as can be seen from the follwoing example:

EXAMPLE4.1. LetX=Y={a,b,c,d}andletr={,X,{a},{b},{a,b}}, r2={,X,{a},{b},
{a,b},{a,b,c},{a,c}}, a {,X,{a},{a,c},{a,c,d}}, a2 {,X,{b},{b,d}}. Let f (X,r,r) -(Y, al,a) be defined by f(a) f(b) a, f(c) f(d) b. Then f is 12-SC but it is not 12-strongly
0-continuous.

THEOREM 4.1. If f" (X, rl, ra) -- (Y,a,aa) is ij SC and X is/j-almost regular, then f is

/j-strongly 0-continuous.
PROOF. Let x X and let V be an/-open neighborhood of f(x). Then there exists an ij r.o

neighborhood U of X such that f(U) C V. Since X is /j-almost regular, there exists an /-open
neighborhood U’ of x such that x U’ C j -cl U’ CU. Thenf(j clg’)cf(V)C Vandsofis
/j-strongly 0-continuous.

COROLLARY 4.2. If X is/j-regular, then for a mapping f" (X, r, r2) ---* (Y,a,a2) the following
properties are equivalent:

(a) f is/j-strongly 0-continuous.

(b) f is ij SC.

(c) f is/-continuous.

PROOF. Follows from Theorems 2.2 and 4.1.
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COROLLARY 4.3. If X and Y are/j-regular, then for a mapping f (X, r, r) (Y, a, a), the

properties: /j-strongly 0-continuous, ij-SC, ij-6-continuous,/-continuous and/j-almost continuous

are equivalent.
PROOF. From Theorem 2.8 and Corollary 4.2.

THEOREM 4.2. For a mapping f :(X,r, r) (Y,a,a2) the following implications hold:
j-strongly continuous ---,/j-perfectly continuous and/j-completely continuous ij- R map
ij 6-continuous.

PROOF. If f is j-strongly continuous, then from Corlllary 4.1 f-(B) is both j-open and j-closed
for every B C Y, hence f is/j-perfectly continuous. Also, if f is/j-completely continuous, let V be

ij r.o subset of Y, then V is/-open and f-(V) is ij r.o. So f is an ij R map.
Finally, if f is an ij R map, then f-](V) is ij r.o in X for every ij- r.o subset V of Y, let

f-(V) U, since f(f-(V)) C V so f(U) C V’. Hence f is ij -g-continuous.

REMARK 4.2. The converse of the above implications may not be true as seen from the following
example:

Let X Y {a,b,c} and let r {, {a}, {b}, {a, b}, X}, r {,X}, a {,X}, a
{, {a}, {c}, {a,c},X}. Let f: (X,r,r,) (Y,a,,a,) be the identity map. Then f is 12-perfectly
continuous but it is not 2-strongly continuous.

THEOREM 4.3. If f :(X,r,r2) (Y, at,a2) is ij-completely continu.ous, then it is ij SC.
PROOF. Let V be an/-open subset of of Y and let U f-(V). Since f is/j-completely continuous,

so f-(V) is ij r.o and f(f-’(V)) C V. Hence f(U) f(i int(j cl U)) C V. So f is ij SC.
REMARK 4.3. The converse of the above theorem may not be true as shown in the following

example.
EXAMPLE 4.3. Consider Exmaple 4.1 f is ij SC but it is not/j-completely continuous.

The following diagram gives us the relations between these kinds of continuity.
ij COC"-: SC C

j-CC ij- R ij- g-C ---, ij-

also: j- SiC ij PC.
where

ij COC ij-clopen continuous, ij SOC =/j-strongly O-continuous

i-C=i-continuous, ij-CC=ij-completely continuous, ij-R= ij-R map
ij gC ij &continuous, ij aC =ij-almost continuous,
j- StC j-strongly continuous, ij PC =/j-perfectly continuous.
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