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Wallman-ordered compactification of an ordered plane.
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1. INTRODUCTION.
Our notation and terminology will agree with that of [4]. If A is a non-empty subset of a poset

(X, _), we denote by i(A) (respectively, d(A)) the increasing (respectively, decreasing) hull of A,
defined by i(A) {z E X. a

_
z for some a E A}. A set A is said to be increasing {respectively,

decreasing) if A i(A) (respectively, A d(A)); A is convex if A i(A) f3 d(A).
We define an ordered topological space (or, for brevity, space) to be a triple (X, _<, T), where

(X, _) is a poset and 7" is a convez topology (i.e., a topology with a subbase consisting of increasing

and decreasing open sets). We will usually write X rather than (X, _<, 7") when no ambiguity will

result.

A space X is T-ordered if i(z) and d(:) are closed for all z X; X is T-ordered if the order

relation is closed in X X. If X is rtormallt ordered (in the sense of Nachbin, [5]) and T-ordered,

then X is said to be T-ordered. A space which is T-ordered and totally ordered is called a

totall ordered space. We use the term real ordered space to describe a totally ordered space where

underlying poset is the set of real numbers with their usual order (but not necessarily the usual

topology). A product of two real ordered spaces is called an ordered plane.

Starting with a subset A of a space X, let I(A) be the closed, increasing hull of A (i.e., the

smallest closed, increasing set containing A); the closed, decreasing hull D(A) is defined dually. A

is defined to be a c-set if A I(A) f3 D(A). A space X is called a c-space (see I4]) if, for every c-set

A, i(A) and d(A) are both closed sets.
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Each completely-regular-ordered space X (as defined in [5]) allows T2-ordered compactifications,
the largest of which is the Nachbin (or Ston(ech-ordered) compactification (see [1], [5]). In 1976,
Choe and Park introduced the Wallman-ordered compactification of an arbitrary Tl-ordered space

X, and it w shown in 1985 (see [3]) that woX and /0X are equivalent if and only if X is a T4-
ordered c-space. In this note, we show that an ordered plane is always T4 ordered, and is a c-space

if and only if it has one of four topologies. This gives necessary and sufcient conditions for 0P
and woP to coincide for an ordered plane P.
2. ORDERED PLANES.

In a real ordered space X (R, T), every point has a neighborhood base of convex sets. Then
for any z E X, basic neighborhoods are of exactly one of the following four types: (x ,x +
),[z,z + ), (z ,z], {z}. Of course, different points in X may have different types of basic

neighborhoods. Four well-known topologies on R are designated as follows: (1) T, is the usual

topology on R with basic neighborhoods (z- ,z + ) at every point z E R; (2) % is the discrete

topology; (3) is the left-Sorgen/rel topolog!/, with basic neighborhoods [z,z + ) at every point

z; (4) is the right-Sorgen/re!/topologl/, with basic neighborhoods (z- ,z] at every point z.

THEOREM 1. Let P X x Y be an ordered plane. P is a c-space iff P has one of the following

topologies: (1) T, x T,, (2) Td x Td, (3) x , (4) x .
PROOF. Assume that P has one of the four specified topologies. In Theorem 3.1, [4], it is

proved that P, equipped with T, x 7",, is a c-space. It is obvious that any poser with the discrete

topology is a c-space. Next, assume that P has the topology x %. Suppose A is closed and

convex in P; we will show by contradiction that i(A) is also closed.

Ifi(A) is not closed, then there is (z0,!/o) cli(A) (the closure of i(A)) such that (z0,1/0) i(A).
Let (z,, I,) be a sequence in i(A) converging to (z0, !/0). Since (z0, /0) i(A), A N d(z0, l/0) 0.
By assumption, all basic neighborhoods of (z0,/0) are subsets of S {(z,/) z > z0,1/_< /0), and

we assume without loss of generality that (z,, I/,) $, for all n. Indeed, since (zo, I/0) i(A), we
can assume that (z,,!/,) S0 {(z,!/) :z > Zo,/< !/0} for all n.

Let (a,, b,) be a sequence in 21 such that Ca,, b,) _< Oz,, !/,), for all n; it follows that Ca,, b,) E So
for all n. Since z0 < a, <_ z, for all n, (a,)-converges to z0. Furthermore (b,) has either an

increasing or a decreasing subsequence; we consider both cases.

CASE 1. Cb,) has an increasing subsequence (b,,). Since (b,) is bounded above by /0 and

increasing, it must -converge to some bo. Then (a,,b,) converges to (z0, bo), and the latter

point is in A (since A is closed). But b0 _< !/0 implies (z0, 0) i(A), a contradiction.

CASE 2. Cb,) has a decreasing subsequence (b,,). Let (a,%) be a decreasing subsequence of

(a,); if a a,,i and . bi then (a,.) is a decreasing subsequence of Ca,,b,). For arbitrary
j, we have (a,b.) <_ (a.,//l) _< (ai,1), and since A is convex, (a.,bl) A for all j. Thus the

sequence (a., g) converges to (z0, b), and (z0, bl) A since A is closed. Also, b _< /-,! /0; thus

(zo, I/o) i(A), a contradiction.

We conclude that every point in cli(a) is also in i(A), so i(A) is closed. A dual argument shows

that d(A) is closed. Similar arguments apply if P has the topology "f, x . Thus the proof is

complete in one direction.

To prove the converse, observe that if P is not equipped with one of the four specified topologies,
then some point (z0,/0) in P has basic neighborhoods of one of the following twelve types: (1)
(0-,0+)x(0}; ()[0,0+)x(0}; (s)[0,0+)x[0,0+); (,)(0-,0+)x[0,0+); (s)
(Zo}(Yo-’,Yo]; (O) {Zo}X(yo-, Yo-’t-); (7)(Zo-,Zo]X(yo-6,/o]; (8)(Zo-,ZolX(yo--,Yo-I.-); (0)
(Zo-,Zo]X{o}; (10)(Zo-,zo-t’-)x (o-,oJ; (11){Zo}X[o,Yo-I’-); (12)[Zo,zo-t-6) X(yo--,yo-f-).

First assume there is a point (Zo, /o) with basic neighborhoods of one of the types (1), (2), (3),
o (). L {(,): -, > o}. o imz o=omou =iboood
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types, d(a) D(A),I(A) i(a)U {(Xo, y): y _> /o}, and a I(A)nD(A). Thus A is a c-set, and
since i(A) is not closed, P is not a c-space.

Next assume there is a point (z0, y0) with basic neighborhoods of one of the types (5), (6), (7),
or (8). Let A be defined as in the preceding paragraph. One can verify that i(A) I(A),D(A)
d(A) u {(z, y0) z <_ z0}, and A I(A) D(A). Thus A is a c-set and A is not closed, so P is not

a c-space.

Finally, suppose there is a point (x0, y0) with basic neighborhoods of one of types (9),
or (12). Let /3 {(x,y) z -y and y > y0}. One can verify that /3 is a c-set. If the basic

neighborhoods at (z0, yo) are of type (9) or (10), then I(B) i(B) and D(B) d(B). If the basic

neighborhoods at (z0,y0) are of type (11) or (12), then D(B) d(B) and I(13) i(B).
Thus for any topology on P other than the four specified, P fails to be a c-space, and the proof

is complete.

THEOREM 2. Every ordered plane is T4-ordered.
PROOF. Let P X Y be an ordered plane. Let A be a closed, increasing subset of X x Y

and let B be a closed, decreasing subset of X Y such that A B . The method of proof is to

construct for each z E A and y E B, an open, increasing neighborhood N,.(z) of z and an open,

decreasing neighborhood M,, (y) of t such that N,. (z) B and M,, (y) 9 A ). We then show
that N,. (z) M,, (y) , for all z A and y B. Thus if 0’ UzeaN (z) and V UyeBMt (y),
then U is open, increasing, V is open, decreasing, A C_ r, B C_ V, and U 91 V .

Let z (zx, z2) A; the set N,(z) is defined for four different cases, where > 0 is arbitrary.

CASE 1: [zl, or) is open in X, [z2, oo) is open in Y.
Let N,(z) Ix, oo) x [z, o). (Note that in this case, N,(z) is the same set for all > 0.

CASE 2: Ix,, oo) open in X, [=;,, oo) not open in r.
Let N,() [xl, oo) x (- ,
CASE 3: [z,, oo) not open in X, [z,, or) open in r.
Let N,(z) (z- , co) [z,
CASE 4: [zx, o) not open in X, [z2, or) not open in Y.
Let N,(z) (zx- , oo) (z- ,
CLAIM 1: For each z A, there is effi such that N,. B .
PROOF. In Case 1, N, C_ A, for all e, so effi may be chosen arbitrarily. In Case 2, since B is

closed, there is some effi such that ({z} (z effi,z]) B . Let this e, (or any smaller one)
be chosen. In Case 3, there likewise exists effi such that ({z e,,z];times{z}) ’1B , again

let this e,. be chosen. In Case 4, there exists effi such that ((z effi, zx] (z ef,z2])
let this e, be chosen. It remains to show that in every case, N,, ;I B ). Case 1 is trivial since

N,. C_ A. Assume Case 2, and let z (zx,z) N,. B. Then zx <_ z and z -e < z < z. Since

B is decreasing, (z,z2) Bf {z} (z effi, z] , a contradiction. Similar arguments apply in

Cases 3 and 4.

Let y (yx,y) B; we again consider four similar cases in defining M(y).
CSE : (-oo, u,] opt. . x, (-o,u,] open i= Y.
Let M(=;) {-oo,y] {-oo,y].
CASE b: (-oo, y] opt. in X, (-oo, U,] not op= i= Y.
Let M, (y) (-o, yl] (-oo, y2 + ).
CASE c: (-oo, yl] not open in X, (-oo,y] open in Y.
Let M,(y) (-oo, yl + e) (-o,y].
AS d: (-o,] .ot op. i. X, (-o,,] =ot opt. i. Y.
Let M,(y) {-oo, y + ) (-oo, y + ).
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CLAIM 2" For each y E B, there is e > 0 such that N+, N A
PROOF. (similar to Claim 1)
CLAIM 3: For each x E A and y B,N(x) NM(y) J.
PROOF. There are sixteen cases here to consider, but some are trivial. In particular, Cases

la, lb, lc, ld, 2a, 3a, and 4a are all trivial since in each of these Cases, either N(x) C A or

M(y) C B. Here, for example, is another case.

CASE 2b: Suppose z g(x) NM(y). Then x, _< zl _< y, and x2-

First, suppose ez < e Note that (yl x) A and x- z < z2- y < - imply that

x2 y+ < + < ev. Thus (yl,x2) A M+,(y) which is a contradiction Next suppose, < e+. Then (xl, y2) B, and again x; y < + e. Therefore, (x,y) B n N,.(x), again

a contradiction. We conclude that N(x) nM(y) .
Ce 3c will be very similar to 2b. There remain seven ces: 2c, 2d, 3b, 3d, 4b, 4c, 4d; the

details are repetitious and will be omitted.

COROLLARY. P is an ordered ple, then ToP BoP iff P h one of the four topoloties

of Theorem 1.

We conclude with ple which shows that a product of subspaces of R with the topologies

inherited from T is not necessily a e-space.

EXAMPLE. Let X be the set of rational numbers with the usual topology; let Y be R with

the usual topology. Let a be irrational number; let b be a rational number. Let (a) be an

increing sequence of rational numbers converging to a in Y. Let (b,) be a decreeing sequence

of real numbers converging to b in Y which is not eventually consist. Then {(a,, b,) "n e N} is

a c-set in X x Y. Let r be a rational number greater than a; then (r, b) i(A) but (r, b) e I(A).
This shows that X x Y is not a c-space.

It is natural to k whether the preceding results generalize to an ordered product Y Xz x

X x X, where each X is a real ordered space. Obviously, fl0Y and ToY coincide if Y is

discrete. However, it is shown in [4] that 0Yd ToY e not equivalent if Y is equipped with the

usual topolo of n-dimensional Euclide space for n 3. Whether there exist any non-discrete

topologies for Y (n 3) such that oY ToY is not presently known.
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