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ABSTRACT. This paper introduces a bulk queucing system with a single server processing

groups of customers of a variable size. If upon completion of service the queueing level is at least

r the server takes a batch of size r and processes it a random time arbitrarily distributed. If the

qucueing level is less than r the server idles until the queue accumulates r customers in total.

Then the server capacity is generated by a random number equals the batch size taken for ser-

vice which lasts an arbitrarily distributed time dependent on the batch size.

The objective of the paper is the stationary distribution of queueing process which is studied

via semi-regenerative techniques. An ergodicity criterion for the process is established and an

explicit formula for the generating function of the distribution is obtained.
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1. INTRODUCTION.
In many queueing systems with bulk service a server does not start service unless the num-

ber of waiting customers is at a certain fixed level. In this case the server is waiting for more ar-

riving customers until the desired level is reached. A typical situation arises in computer net-

work service, where every job to be done must go through a chain of computers (or parallel pro-

cessors). The job can not get started until all necessary computer components are free. So the

job (which now plays the role of a server) waits until the queue of waiting computers (in this

case customers) accumulates a necessary group to run the job. A version of such a queue was

modeled in Dshalalow and Russel [4]. A relevant modification of this model occurs when during

waiting time a task can be reset up or being on a preliminary service insofar requiring a dif-

ferent (generally smaller) number of computer components by the time a group of the initially

desired size becomes available. Such situations are common whenever a server, resting due to a

queue accumulating more customers, lends a part of its capacity which perhaps may not be

restored by the time the queue has reached the desired level. So by then the server begins to pro-
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cess a group of custo,nors in accordance with the available capacity.

In the present paper the authors introduce and study a queueing model with an orderly Pois-

son input flow of customers and a single server of a variable capacity. The server usually takes a

group of fixed size r if such a group is available and processes it a random time with a given

general distribution. Otherwise, the server idles until the level of the queue reaches level r. By
then however capacity is a random number less than or equal to r and it takes the correspond-

ing batch for service which lasts a random time with a general distribution dependent on the

batch size. The authors target the queueing process {Q(t)} with continuous time parameter.

They establish a steady state condition and obtain the stationary distribution for the process by

using tools for semi-regenerative processes. An imbedded Markov chain is also given a detailed

treatment.

2. DESCRIPTION OF THE MODEL.
We consider a servicing system with an infinite waiting room and a single channel processing

a stream of customers described by an orderly stationary Poisson point process {rk;k E Ihl} with

intensity A. Denote N(-) the associated counting measure. Let Q(t) denote the total number of

customers in the system a.t time _> 0 and let o 0, tl, t2, be the sequence of the successive

completions of service of groups of customers. Defining Q(t) as a right continuous process we

introduce the imbedded process Qn Q(t,), n 1, 2, Let a denote the service time of nth

group of customers. If Q, >_ r then the server takes a group of size r for service and immediately

begins processing this group completing the service by t,, + 1- In this case a,, + ,, + 1- t,, and
it is distributed according to a probability distribution function B (B(0) 0) with a finite mean

b. If Q, < r then the server waits r- Q, exponentially distributed phases, i.e. until r- Q,, more
customers arrive at the system reaching exactly level r and only then the server is ready to

begin service. But its capacity now becomes a random number 3’,,+1: fl -- {1, 2, r}
generated by the begin of n + 1st service. We assume that 3’0, 3’1, 3’2, are independent

identically distributed random variables with the common probability mass function (91, 92,

9r). Now given the server capacity 3’,+ a group of the same size will be processed during a

random time distributed according to B3’,, E {BI, B2, Br}, where the latter is a tuple of

arbitrary probability distribution functions with finite means {b, b2, b,}. In this case

t, + t, is the sum of server waiting time and the actual service time a,, + l-

With the above formalism, the terms of the sequence {Q,} therefore satisfy the following re-

cursive relation

Q,+1 {Q" + (r-Q")-3""+1+ V"+l Qn < r
(2.1),

Q, -r+V,,+l

where V,, N(a.).

3. ANALYSIS OF THE IMBEDDED PROCESS.
From relation (2.1) and our assumption about the input stream it is obvious that {f, ,

(px), E, Q,; n 0,1,...} E {0, 1, ...} is a homogeneous Markov chain. Its transition

probability matrix A (a,; i,j E) consists of two block matrices: The upper rectangular
block with all positive elements

au k qg’ O, 1, r l, j E,
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where qkJ fc’Au (j- r + k)/
q =0 j =0, r-k-l,

and the lower block matrix which is upr tril matrix (with Ml sitive elements on

the main diagonal and above the mn diagonM d zero elements low the mn diagonM.)
Thus A is a A.-matrix, a speciM ce of a cls of ,N-matrices studied by Alnikov d

Dukhovny [2]. According to the Alnikov/Dukhovny criterion, the equilibrium of the prs

(Q,) is bica.lly up to a certain quity of the generating function of the rth row of matrix A.
Let A,(z) denote the generating function of the ith row of A.

PROPOSITION 1.

() A,(z)= E=, (-), i=0, -t (3.)
A,() -(-) (3.2)

where fl(0) d fit(0) arc the Laplace-Stieltjes trsforms of the corresponding probability distri-

bution functions B(x) and Bt(z), k= 1, r.

PROOF: Equations (3.1) and (3.2) e due to the relation (2.1) d strghtforwd proba-
bility arguments.

Let p b. Then the following mn result of this section holds true.

THEOREM 2. The imbedded Mkov chin (Q,) is irreducible d aperiodic. It is recurrent-

positive if and only if p < r. Under this condition, the generating function P(z) of the steady
state probability vector P (P0, Pt, ...) of (Q,) satisfies the follong formula:

E- ,[A(z)-( z)]
)

_
( ) (a.a)

where A(z) is defined in (3.1).
PROOF: The chin is obviously ieducible d ariic. Due to the Alnikov/Dukhovny

criterion [2] applied to matrix A, the chn is rrent-sitive if d only if A,(1) p < r d

A(1) < , 0, r- 1. The latter is tree due to A,(1) e + , where- [7] (3.4)
a. (a.)

Formula (a.a) foos fom the relation P(z)
The determination of the unknown probabiliti P0, P- is subjt to the following
THEOREM 3. The unknown probabilities is a unique lution P0, P- of the following

system of line equations:

,: 0
, A()- ] 0, 0,..., . , ,..., s, (3.6)

where z, e the rts of the function z-( z) that long to the closed unit bMl (0,1)
in C with their multiplicity k, such that s,= xk, r- 1.

The prf of threm 3 is simil to one in Abolnikov

DEFINITIONS AND NOTATIONS.
() t (/:; : e E),wf:= ] A + z<r

b z>r

(ii) Let C denote the (stationary.) capacity of the system, defined C APf (equals the ratio of
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the mean "service cycle" Pfl and the mean interarrival time l/A). Observe that the notion of

the capacity of a system goes back to the classical model M/G/l, where C is reduced to C
--p.

(iii) Let c denote the (stationary) capacity of the server. Then obviously
c rE7 , + E[3’,]E"’,= oP,. (3.8)

One remarkable property of the system in the equilibrium is that the capacities of the server

and the system coincide.

PROPOSITION 4. Given the equilibrium condition p < r, the capacity of the system C and

the capacity of the server c are equal.
PROOF: The equation C c follows from theorem 3, equation (3.7) after some algebra.

Observe that equation (3.8) for c can be rewritten in the form C c r
in0 P,"

EXAMPLE 5.

For r 2 and B as exponential probability distribution function with parameter l/b, there is

obviously only one root of the denominator

z -/3(-z)= z- 1 + p(1- z)

1-,i1+,that belongs to the open unit ball B(0,1) and it equals z 2p
Equations (3.6) and (3.7) in theorem 3.3 are reduced to the simple system

p0(+2 +A(-b)) +p,(e+l+A(-b))=2-p
(3.9)1 1 ))=0P(A(zl) 1 + p(1 z)) + p(zA(z)- z,l + p(1 z

having a unique solution P0 and Pl.

4. QUEUEING PROCESS WITH CONTINUOUS TIME PARAMETER.
We first introduce a few notions.

DEFINITION 6. Let T be a stopping time for a stochastic process {fl,if,(P=)=,E, Z(t);
t> 0} -, (E, !8(E)). (Z(t)) is said to have the locally strong Markov property at T if for each

bounded random variable : fl--} E and for each Baire function f: E---}R, r 1,2,..., the

following holds true

EX[f o o 0T lifT] EZT[I o ] P’-a.s. on {T < oo},
where 0u is the shift operator.

DEFINITION 7. A stochastic process {fl,t, (PX)=,E, Z(t); >_ 0} (E, (E)) with E _-’_-< N
is called semi-regenerative if

a) there is a point process {t,,} on R+ such that t,,---cx (n--o) and that each t,, is a stop-

ping time relative to the canonic filtering a(Zu;y <_ t),
b) the process (Z(t)) has the locally strong Markov property at t,, n 1,2,...,

c) {Z(t, + 0), t, n 0,1,...} is a Markov renewal process.

It is obvious that the process {Q(t)} has the locally strong Maxkov property at the stopping
time t,, n 1, 2, and thus {Q(t)} is a semi-regenerative process with respect to the sequence

{t,} (see definitions 6 and 7.)
DEFINITION 8. Let (X,,t,,) be an irreducible aperiodic Markov renewal process with a

discrete state space E. Denote fl= E=[tl] the mean sojourn time of the Markov renewal process

in state {z} and let (g= ;z E E)T. Suppose that the imbedded Markov chain (X,) is ergodic
and that P is its stationary distribution. We call P the mean inter-renewal time. We call the

Markov renewal process recurrent-positive if its mean inter-renewal time is finite. An irreducible
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aperiodic and recurrent-positive Markov renewal process is called ergodic.

DEFINITION 9. Let {fl,, (P)z,E, g(t); 0} (E, (E)) a semi-regenerative
cess relative to the sequence {t.} of stopping times. Intruce the probability

g(t) e{Z() , , > }, j, .
We will call the functional matrix K(t) (Kid(t) j,kE) the semi-regenerative keel.

Before stating the main result of this section, we will recMl the mn convergence threm d
its corMlary.

THEOREM 10. (The Main Convergence Threm, cf. qinl [3], p. 347). Let {fl,ff,
Z(t); 0} (E, (E)) be a semi-regenerative sth=tic press relative to the sequence {t.}
of stopping time and let K(t) the corresnding semi-regenerative kernel. Suppose that the

sociated Mkov renewal press is ergic d that the semi-regenerative kernel is emn
integrable over R +. Then the stationary distribution r (x,; z E) of the press (g(t)) exists

d it is determined from the formula:

E,P, fo K(t)dt, ke E. (4.1)

COROLLARY 11. Denote H (h; j,k E) fo K(t)dt the integrated semi-regenerative
kernel, h(z) the generating function of jth row of matrix H d (z) the generating function of

vector . Then the following formula holds true

(z) EP h(z). (4.2)
PROOF. From (4.1) we get equivent formula in matrix form x . FinMly,

formula (4.2) is the result of elcmenty Mgebrc trsformations.

The following is the main result of this section.

THEOREM 12.

(i) The limiting distribution r (r0, r,, ..-)of the process {Q(t)} exists ifd only if p < r.

(ii) The generating function (z) of satisfies the following formula:

()= o= i i P() (),=oCI-

r>2
wh ()=

.Z.( ) ’
0, r=l

PROOF: The vMidity of sertion (i) is subject to routine pf.

(ii) Let g(t)= (Kit(t); j,k e E) denote the semi-regenerative kernel (definitions 8 d 9),
where gi(t) {Q(t) k, > t}. By element probability guments we deduce that

()-Kit(t) e’t(k- j)r
0 j k < r (4.4)

(t-=)(-=)]j’ -= (=) I1 .(=)1. d=, (4.)
0 j r-l,k r

E(t) -(t)_i) I1 (t)], <_ i <_ , (4.)

E(t)=0, 0 5 < j, j > 0 (4.)
Clely, K(t) is emn integrable over H+ d denote

= Yo K(t) dt

Apply the mMn convergence threm for semi-regenerative presses in the form of

PH (4.9)=(s threm 10). Here P c expressed through the capacity of the system C P which
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is C=r e’-i= P’ due to proposition 4.

(4.9) can be expressed in terms of the generating functions, as

r(z) - E.i F, h,(z)P.i, (4.10)
where h(z) is the generating function of the jth row of the matrix H (theorem 11.) Now
formula (g.3) follows from (4.10) d from the expressions for he(z):

h,(z)$(1 z) - z E:= ,g..( z), j= O, r- (4.11)
h(z)$(1 z) (1 ($ z)), j r. (4.12)

EXAMPLES 13.
Fo, 2, + + pl),

where C 2- g(Po + Pt). If in addition B is exnentiM distribution then P0 d p satisfy

system (3.9) in explc 5.

2) The expected length of an idle period of the server in the equilibrium satisfies the below

formula (due to straightforward probability arguments):

I=
-1 r-i

=0Pi
i=OPi

The probability that the server is idle in the stationary mode is

r- I
i= 0r 7 +

where B denotes the mean busy period which thus can be expressed in terms of known values:
l?=’r, .

0s
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