Γ-GROUP CONGRUENCES ON REGULAR Γ-SEMIGROUPS

A. SETH

Department of Pure Mathematics, University of Calcutta 35, Ballygunge Circular Road, Calcutta - 700 019. India.

(Received April 23, 1990 and in revised form September 16, 1990)

ABSTRACT. In this paper a Γ -group congruence on a regular Γ -semigroup is defined, some equivalent expressions for any Γ -group congruence on a regular Γ -semigroup and those for the least Γ -group congruence in particular are given. KEY WORDS AND PHRASES. Regular Γ -semigroup, α -idempotent, Right (left) Γ -ideal, Right (left) simple Γ -semigroup, Γ -group, Congruence, Normal family. 1980 AMS SUBJECT CLASSIFICATION CODE. 20M.

1. INTRODUCTION.

Let S and Γ be two nonempty sets, S is called a Γ -semigroup if for all a,b,c \in S, $\alpha,\beta \in \Gamma$ (i) $\alpha\alpha b \in S$ and (ii) $(\alpha\alpha b)\beta c = \alpha\alpha(b\beta c)$ hold. S is called regular Γ -semigroup if for any $a \in S$ there exist $a' \in S$, $\alpha,\beta \in \Gamma$ such that $a = a\alpha a'\beta a$. We say a' is (α,β) -inverse of a if $a = a\alpha a'\beta a$ and $a' = a'\beta a\alpha a'$ hold and in this case we write $a' \in V_{\alpha}^{\beta}(a)$. An element e of S is called α -idempotent if $e\alpha e = e$ holds in S. A right (left) Γ -ideal of a Γ -semigroup S is a nonempty subset I of S such that $I\Gamma S \subseteq I$ $(S\Gamma I \subseteq I)$. A Γ -semigroup S is said to be left (right) simple if it has no proper left (right) Γ -ideal. For some fixed $\alpha \in \Gamma$ if we define a b = a \alpha b for all $a, b \in S$ then S becomes a semigroup. We denote this semigroup by S_{α} . Throughout our discussion we shall use the notations and results of Sen and Saha [1-2]. For the sake of completeness let us recall the following results of Sen and Saha [1].

THEOREM 1.1. S_{α} is a group if and only if S is both left simple and right simple Γ -semigroup. (Theorem 2.1 of [1]).

COROLLARY 1.2. Let S be a Γ -semigroup. If S_{α} is a group for some $\alpha \in \Gamma$ then S_{α} is a group for all $\alpha \in \Gamma$. (Corollary 2.2 of [1]).

A Γ -semigroup S is called a Γ -group if S_{α} is a group for some (hence for all) $\alpha \notin \Gamma$. THEOREM 1.3. A regular Γ -semigroup S will be a Γ -group if and only if for all $\alpha, \beta \in \Gamma$, eaf = face = f and e βf = f βe = e for any two idempotents e = eae and f = f βf of S. (Theorem 3.3 of [1]).

2. Γ-GROUP CONGRUENCES IN A REGULAR Γ-SEMIGROUP.

An equivalence relation ρ on a Γ -semigroup S is called a congruence if $(a,b) \in \rho$ implies $(c\alpha a, c\alpha b) \in \rho$ and $(a\alpha c, b\alpha c) \in \rho$ for all $a, b, c \in S$, $\alpha \in \Gamma$. A congruence ρ in a regular Γ -semigroup S is called Γ -group congruence if S/ρ is a Γ -group (In S/ρ we define $(a\rho)\alpha(b\rho) = (a\alpha b)\rho$). Henceforth we shall assume S to be a regular Γ semigroup and E_{α} to be its set of α -idempotents.

A family { $K_{\alpha} : \alpha \in \Gamma$ } of subsets of S is said to be a normal family if (i) $E_{\alpha} \subseteq K_{\alpha}$ for all $\alpha \in \Gamma$;

(ii) for each $a \in K_{\alpha_{\alpha}}$ and $b \in K_{\beta}$, $a^{\alpha}b \in K_{\beta}$ and $a^{\beta}b \in K_{\alpha}$;

(iii) for each a' $\in V_{\alpha}^{\beta}(a)$ and $c \in K_{\gamma}$, $a^{\alpha}c^{\gamma}a'$ and $a^{\gamma}c^{\alpha}a' \in K_{\beta}$.

103

Now let $e \in E_{\alpha}$ and $f \in E_{\beta}$ and $\mu \in \Gamma$. Let $x \in V_{\beta}^{\Phi}(e\mu f)$. Then $f^{\theta}x^{\phi}e \in E_{\mu}$. Thus $E_{\mu} \neq \phi$ for all $\mu \in \Gamma$, consequently $K_{\mu} \neq \phi$ for all $\mu \in \Gamma$. We further note that in an orthodox Γ -semigroup S of Sen and Saha [2] $\{E_{\alpha} : \alpha \in \Gamma\}$ is a normal family of S.

Let N be the collection of all normal families K_i of $S(i \in \Lambda)$ where $K_i = \{K_{i\alpha} : \alpha \in \Gamma\}$. Let $U_{\alpha} = \bigcap_{i \in \Lambda} K_{i\alpha}$ and $U = \{U_{\alpha} : \alpha \in \Gamma\}$. Then obviously $E_{\alpha} \subseteq U_{\alpha}$. Also if $a \in U_{\alpha}$, $b \in U_{\beta}$, then $a \in K_{i\alpha}$ for all $i \in \Lambda$, $b \in K_{i\beta}$ for all $i \in \Lambda$. Thus $a\alpha b \in K_{i\beta}$ and $a\beta b \in K_{i\alpha\beta}$ for all $i \in \Lambda$ implying $a\alpha b \in U_{\beta}$ and $a\beta b \in U_{\alpha}$. Similarly we can show that if $a' \in V_{\alpha}^{\beta}(a)$ and $c \in U_{\alpha}$ then $a\alpha c\gamma a'$, $a\gamma c\alpha a' \in U_{\beta}$. Thus U is a normal family of subsets of S and U is the least member in N if we define a partial order in N by $K_i \leq K_j$ iff $K_{i\alpha} \subseteq K_{j\alpha}$ for all $\alpha \in \Gamma$. We also observe that when S is orthodox Γ -semigroup, $U = \{E_{\alpha} : \alpha \in \Gamma\}$.

THEOREM 2.1. Let S be a regular Γ -semigroup. Then for each $K = \{K_{\alpha} : \alpha \in \Gamma\} \in N$, $\rho_{K} = \{(a,b) \in S \times S : a\alpha e = f\beta b \text{ for some } \alpha, \beta \in \Gamma \text{ and } e \in K_{\alpha}, f \in K_{\beta}\}$ is a Γ -group congruence in S.

PROOF. Let $a \in S$ and $a' \in V_{\alpha}^{\beta}(a)$. Then $a^{\alpha}(a'\beta a) = (a^{\alpha}a')\beta a$ implies $(a,a) \in \rho_{\kappa}$. Next let (a,b) $\in \rho_{K}$. Then there exist e $\in K_{\alpha}$, f $\in K_{\beta}$ for some $\alpha, \beta \in \Gamma$ such that $a\alpha e = f\beta b$. Let $a' \in V_{\gamma}^{\delta}(a)$ and $b' \in V_{\theta}^{\phi}(b)$ such that $b\theta((b'\phi f\beta b)\gamma(a'\delta a))$ = $((b\theta b')\phi(a\alpha e\gamma a'))\delta a$. But $b'\phi f\beta b \in K_{\theta}$, $a'\delta a \in K_{\gamma}$ and so $(b'\phi f\beta b)\gamma(a'\delta a) \in K_{\theta}$, and b0b' $\in K_{h}$, a e $\gamma a' \in K_{h}$ and so (b0b') $\phi(a e \gamma a') \in K_{h}$. Consequently, (b,a) $\in \rho_{\mu}$. Now let $(a,b) \in \rho_{K}$, $(b,c) \in \rho_{K}$. Then there exist $\alpha,\beta,\gamma,\delta \in \Gamma$, $e \in K_{\alpha}$, $f \in K_{\beta}$, $g \in K_{\gamma}$, $h \in K_{\delta}$ such that age = fbb and byg = h\deltac. But ag(eyg) = (age)yg = (fbb)yg = fb(byg) = $f\beta(h\delta c) = (f\beta h)\delta c$ where $e\gamma g \in K_{\alpha}$ and $f\beta h \in K_{\delta}$. Thus $(a,c) \in \rho_{\kappa}$ and consequently $\rho_{\rm g}$ is an equivalence relation. Let $(a,b) \in \rho_{\rm g}$, $\theta \in \Gamma$, $c \in S$. Then $a^{\alpha}e = f^{\beta}b$ for some $\alpha, \beta \in \Gamma$ and some $e \in K_{\alpha}$, $f \in K_{\beta}$. Let $c' \in V_{\gamma}^{\delta}(c)$, $y \in V_{\gamma_1}^{\delta_1}(b\theta_c)$, $x \in V_{\gamma_2}^{\delta_2}(a\theta_c)$. Now $(a\theta c)\gamma(c'\delta((c\gamma_2 x \delta_2 a)\alpha e)\theta c)\gamma_1 (y\delta_1(b\theta c)) = (a\theta c\gamma_2 x)\delta_2 f\beta(b\theta c\gamma_1 y)\delta_1(b\theta c)$. But $c\gamma_{2}x\delta_{2}a \in E_{\theta} \subseteq K_{\theta}$, so $(c\gamma_{2}x\delta_{2}a)ae \in K_{\theta}$, $c'\delta((c\gamma_{2}x\delta_{2}a)ae)\theta c \in K_{\gamma}$. Again $y\delta_1(b\theta c) \in E_{\gamma} \subseteq K_{\gamma}$ and consequently $(c'\delta((c\gamma_2 x \delta_2 a)\alpha e)\theta c)\gamma_1(y\delta_1 b\theta c) \in K_{\gamma}$. By a similar argument we can show that $(a\theta c \gamma_2 x) \delta_2 f \beta(b\theta c \gamma_1 y) \in K_{\delta}$. Thus $(a\theta c, b\theta c) \in \rho_{\kappa}$. Also it is immediate from the foregoing by duality that $(c\theta_a^{\dagger}, c\theta_b) \in \rho_{\kappa}$. Thus ρ_{κ} is a congruence on S. Also as S is regular, S/ ρ_{K} is a regular $\Gamma\text{-semigroup.}$ Let $e\in E_{\alpha},$ $f \in E_{\beta}$. Then eaf, face $\in K_{\beta}$, ebf, fbe $\in K_{\alpha}$. Now $(e\alpha f)\beta f = (e\alpha f)\beta f$ shows that $(e\alpha f, f) \in \rho_{K}$ and $(f\alpha e)\beta f = (f\alpha e)\beta f$ implies that $(f\alpha e, f) \in \rho_{K}$. Thus $(e\rho_{K})\alpha (f\rho_{K}) = f\rho_{K}$ and $(f\rho_{k})\alpha(e\rho_{k}) = f\rho_{k}$. Similarly we can show $(e\rho_{k})\beta(f\rho_{k}) = e\rho_{k}$ and $(f\rho_{k})\beta(e\rho_{k}) = e\rho_{k}$. So it follows from Theorem 1.3 that S/ρ_{χ} is a Γ -group. Thus ρ_{χ} is a Γ -group congruence on S.

For any normal family $K = \{K_{\alpha} : \alpha \in \Gamma\}$ of S, the closure KW of K is the family defined by $KW = \{(KW)_{\gamma} : \gamma \in \Gamma\}$ where $(KW)_{\gamma} = \{x \in S : e^{\alpha x} \in K_{\gamma} \text{ for some } \alpha \in \Gamma \text{ and } e \in K_{\alpha}\}$. We call K closed if K = KW.

THEOREM 2.2. For each $K \in N$, $\rho_{K} = \{(a,b) \in S \times S : aYb' \in (\dots, b]{o} \text{ for some } b' \in V_{\gamma}^{O}(b)\}$. PROOF. Let $(a,b) \in \rho_{K}$. Then $f\beta a = b\alpha e$ for some $\alpha, \beta \in \Gamma$ and $e \in K_{\alpha}$, $f \in K_{\beta}$. Then $f\beta(a\gamma b') = b\alpha e\gamma b' \in K_{\delta}$ for some $b' \in V_{\gamma}^{\delta}(b)$. Consequently $a\gamma b' \in (KW)_{\delta}$. Conversely, let $a\gamma b' \in (KW)_{\delta}$ for some $b' \in V_{\gamma}^{\delta}(b)$. Then $e\alpha a\gamma b' \in K_{\delta}$ for some $\alpha \in \Gamma$ and $e \in K_{\alpha}$. Therefore $e\alpha a\gamma b' = f$ where $f \in K_{\delta}$. So $(b\theta(a'\phi e\alpha a)\gamma b')\delta a = b\theta(a'\phi f\delta a)$, for some $a' \in V_{\theta}^{\phi}(a)$ where $b\theta(a'\phi e\alpha a)\gamma b' \in K_{\delta}$ and $a'\phi f\delta a \in K_{\theta}$. Consequently $(a,b) \in \rho_{K}$.

For any congruence ρ on S, let ker $\rho = \{(\ker \rho)_{\alpha} : \alpha \in \Gamma\}$ where $(\ker \rho)_{\alpha} = \{x \in S : e\rho x \text{ for some } e \in E_{\alpha}\}.$

LEMMA 2.3. For any K \in N, ker ρ_{K} = KW.

PROOF. To prove ker $o_{K} = K!!$, we are to show that $(\ker \rho_{K})_{\alpha} = (KW)_{\alpha}$ for all $\alpha \in \Gamma$. For this let $x \in (\ker \rho_{K})_{\alpha}$ for some $\alpha \in \Gamma$. Then $e\rho_{K}x$ for some $e \in E_{\alpha}$ that is $e\beta f = g\gamma x$ for some $\beta, \gamma \in \Gamma$, $e \in E_{\alpha}$, $f \in K_{\beta}$, $g \in K_{\gamma}$. So $g\gamma x \in K_{\alpha}$ as $e\beta f \in K_{\alpha}$. Thus $x \in (KW)_{\alpha}$. Next let $x \in (KW)_{\alpha}$. Then $g\gamma x \in K_{\alpha}$ for some $\gamma \in \Gamma$ and $g \in K_{\gamma}$. Now for some $e \in E_{\alpha} e_{\alpha}(g\gamma x) = (e\alpha g)\gamma x$ where $g\gamma x \in K_{\alpha}$ and $e\alpha g \in K_{\gamma}$. Thus $e\rho_{K}x$. Consequently $x \in (\ker \rho_{K})_{\alpha}$. So $(\ker \rho_{K})_{\alpha} = (KW)_{\alpha}$ for all $\alpha \in \Gamma$.

Let $K \in \mathbb{N}$ and suppose $a\gamma b' \in (KW)_{\delta}$ for some $b' \in V_{\gamma}^{\delta}(b)$. Then $e\alpha a\gamma b' \in K_{\delta}$ for some $\alpha \in \Gamma$ and $e \in K_{\alpha}$. Then for any $a' \in V_{\theta}^{\Phi}(a)$, $a' \phi(e\alpha a\gamma b') \delta a \in K_{\theta}$ and $(a' \phi e\alpha a\gamma b' \delta a) \theta a' \phi b = (a' \phi e\alpha a) \gamma b' \delta (a \theta a') \phi b \in K_{\theta}$. Thus $a' \phi b \in (KW)_{\theta}$. Conversely, suppose $a' \phi b \in (KW)_{\theta}$ for some $a' \in V_{\Phi}^{\Phi}(a)$. Then $f\beta(a' \phi b) \in K_{\theta}$ for some $\beta \in \Gamma$ and $f \in K_{\beta}$ and $a\theta(f\beta a' \phi b) \theta a' \in K_{\phi}$. Therefore for some $b' \in V_{\gamma}^{\delta}(b)$, $(a\theta f\beta a' \phi b \theta a') \phi(a\gamma b') = (a\theta f\beta a') \phi b \theta(a' \phi a) \gamma b' \in K_{\delta}$. Therefore $a\gamma b' \in (KW)_{\delta}$. Thus $a\gamma b' \in (KW)_{\delta}$ for some $(all) b' \in V_{\gamma}^{\delta}(b)$ iff $a' \phi b \in (KW)_{\theta}$ for some $(all) a' \in V_{\theta}^{\Phi}(a)$. Interchanging roles of a and b we see that $b\theta a' \in (KW)_{\phi}$ for some $(all) a' \in V_{\theta}^{\Phi}(a)$ iff $b' \delta a \in (KW)_{\gamma}$ for some $(all) b' \in V_{\gamma}^{\delta}(b)$. Moreover, the symmetric property of ρ_{K} shows that $a\gamma b' \in (KW)_{\delta}$ for some $(all) b' \in V_{\gamma}^{\delta}(b)$ iff $b' \delta a \in (KW)_{\delta}$ for some $(all) b' \in V_{\gamma}^{\delta}(b)$.

LEMMA 2.4. For each $K \in N$, $a\rho_{K}b$ iff one of the following equivalent conditions hold.

(i) $a\gamma b' \in (KW)_{\delta}$ for some (all) $b' \in V^{\delta}_{\gamma}(b)$. (ii) $b'\delta a \in (KW)_{\gamma}$ for some (all) $b' \in V^{\delta}_{\gamma}(b)$.

(iii) $a' \phi b \in (KW)_{\theta}'$ for some (all) $a' \in V_{\theta}^{\phi}(a)$.

(iv) b $\theta a' \in (KW)_{\phi}$ for some (all) $a' \in V_{\theta}^{\phi}(a)$.

Let \overline{N} denote the collection of all closed families in N, then $\overline{N}\subseteq N.$

THEOREM 2.5. The mapping $K \neq \rho_{K} = \{(a,b) \in S \times S : a\gamma b' \in K_{\delta} \text{ for some } b' \in V_{\gamma}^{\circ}(b)\}$ is a one to one order preserving mapping of \overline{N} onto the set of Γ -group congruences on S.

PROOF. Let ρ be a $\Gamma\text{-group}$ congruence on S. Let us denote ker ρ

by K and (ker ρ)_{α} by K_{α}. Then K_{α} = {x \in S : x ρ e when $e \in E_{\alpha}$ }. Then E_{α} \subseteq K_{α}. Let $a \in K_{\alpha}$, $b \in K_{\beta}$ then ape and bpf where $e \in E_{\alpha}$ and $f \in E_{\beta}$. Now $(a\alpha b)\rho = (a\rho)\alpha(b\rho)$ = $(e\rho)\alpha(f\rho) = f\rho$. Thus a phi f, where $f \in E_{\beta}$. Thus $a\alpha b \in K_{\beta}$. Similarly $a\beta b \in K_{\alpha}$. Next let a' $\in V_{\alpha}^{\beta}(a)$ and $c \in K_{\gamma}$. Then $c\rho g$ where $g \in E_{\gamma}$. Then $(a\alpha c\gamma a')\rho = (a\rho)\alpha(c\rho)\gamma(a'\rho)$ = $(a\rho)\alpha((g\rho)\gamma(a'\rho)) = (a\rho)\alpha(a'\rho) = (a\alpha a')\rho$. Thus $a\alpha c\gamma a'\rho a\alpha a'$ where $a\alpha a' \in E_{\beta}$. Hence accya' \in K_g. Similarly aycca' \in K_g. Therefore K is a normal family of subsets of S. Next $(KW)_{\gamma} = \{x \in S : eax \in K_{\gamma} \text{ where } e \in K_{\alpha} \text{ for some } \alpha \in \Gamma\}$. Then $K_{\gamma} \subseteq (KW)_{\gamma}$. To show $(KW)'_{\gamma} \subseteq K_{\gamma}$, let $x \in (KW)'_{\gamma}$. Then eax $\in K_{\gamma}$ for some $\alpha \in \Gamma$ and $e \in K_{\alpha}$. Consequently $(eax)\rho = g\rho$ where $g \in E_{\gamma}$ or, $(e\rho)\alpha(x\rho) = g\rho$ or, $x\rho = g\rho$ or, $x \in K_{\gamma}$. Thus $(KW)_{\gamma} \subseteq K_{\gamma}$. Therefore K = KW and so K = ker $\rho \in \overline{N}$. Thus if ρ is a Γ -group congruence, then ker $\rho = K \in \overline{N}$. We shall now prove that $\rho_{K} = \rho$. If (a,b) $\in \rho_{K}$, then ayb' $\in K_{\delta}$ for some b' $\in V_{\gamma}^{\delta}(b)$. Thus a $\gamma b' \rho$ h for some h $\in E_{\delta}$ and a $\rho = (a\rho)\gamma((b'\delta b)\rho) = (h\rho)\delta(b\rho) = b\rho$. Thus $\rho_{\mathbf{K}} \subseteq \rho$. Conversely, if (a,b) $\in \rho$ and b' $\in V_{\mathbf{Y}}^{0}(b)$, then $a\mathbf{Y}b' \supset b\mathbf{Y}b' \in \mathbb{E}_{0}$ and so $(a,b) \in \rho_{\mathbf{K}}$. Therefore $\rho = \rho_{K}$. Thus from above and by lemma 2.3 for any K $\in \overline{N}$, K $\neq \rho_{K}$ is a oneto-one mapping from \overline{N} onto the set of all $\Gamma\text{-}group$ congruences on S. Also it is easy to see that $K \neq \rho_{K}$ is an order preserving mapping.

Let τ be a Γ -group congruence on S, by the proof of Theorem 2.5 $\tau = \rho_{K}$, where $K = \ker \tau \in \overline{N}$. Thus each Γ -group congruence is of the form ρ_{K} for some $K \in \overline{N} \subseteq N$.

Thus by lemma 2.3 we have,

THEOREM 2.6. The least Γ -group congruence σ on S is given by $\sigma = \rho_U$ and ker σ = UW. THEOREM 2.7. For any Γ -group congruence ρ_K with K in N, on a regular Γ -semigroup, the following are equivalent.

(i) ap_kb.

- (ii) $a\mu x\gamma b' \in K_{\delta}$ for some $x \in K_{\mu}$ ($\mu \in \Gamma$) and some (all) $b' \in V_{\Phi}^{\delta}(b)$. (iii) $a' \Phi x\mu b \in K_{\theta}$ for some $x \in K_{\mu}$ ($\mu \in \Gamma$) and some (all) $a' \in V_{\theta}^{\Phi}(a)$.
- (iv) $b\mu x \theta a' \in K_{\phi}$ for some $x \in K_{\mu}$ ($\mu \in \Gamma$) and some (all) $a' \in V_{\theta}^{\phi}(a)$.
- (v) b' $\delta x \mu a \in K_{\dot{v}}$ for some $x \in K_{\mu}$ ($\mu \in \Gamma$) and some (all) b' $\in V_{v}^{\delta}(b)$.
- (vi) $a\alpha e = f\beta b$ for some $\alpha, \beta \in \Gamma$ and some $e \in K_{\alpha}$, $f \in K_{\beta}$.
- (vii) $e\alpha a = b\beta f$ for some $\alpha, \beta \in \Gamma$ and some $e \in K_{\alpha}$, $f \in K_{\beta}$.
- (viii) $K_{\beta}\beta\alpha\alpha K_{\alpha} \cap K_{\beta}\beta\beta\alpha K_{\alpha} \neq \phi$ for some $\alpha, \beta \in \Gamma$.

PROOF. (ii) => (iii) Suppose $a\mu x\gamma b' \in K_{\delta}$ for some $x \in K_{\mu}$ and $b' \in V_{\gamma}^{\delta}(b)$. Then for any $a' \in V_{\theta}^{\Phi}(a)$, $a' \phi(a\mu x\gamma b') \delta b = (a' \phi a) \mu(x\gamma(b' \delta b)) \in K_{\theta}$ as $a' \phi a \in K_{\theta}$ and $x\gamma b' \delta b \in K_{\mu}$. (iii) => (vi) Let $a' \phi x\mu b \in K_{\theta}$ for $a' \in V_{\theta}^{\Phi}(a)$ and $x \in K_{\mu}$.

Then $a\theta(a' \phi x \mu b) = (a\theta a' \phi x) \mu b$ which is (vi) as $a' \phi x \mu b \in K_{\theta}$ and $a\theta a' \phi x \in K_{\mu}$.

(vi) => (viii) Let a e = fb for some $\alpha, \beta \in \Gamma$ and $e \in K_{\alpha}$, $f \in K_{\beta}$. Then we have fBaaeae = fbfbbae implying $K_{\beta}BaaK_{\alpha} \cap K_{\beta}BbaK_{\alpha} \neq \phi$.

(viii) => (ii) Let $K_{\beta}\beta a\alpha K_{\alpha} \cap K_{\beta}\beta b\alpha K_{\alpha} \neq \phi$. Then $x\beta a\alpha y = x_{1}\beta b\alpha y_{1}$ for some $x, x_{1} \in K_{\beta}$, $y, y_{1} \in K_{\alpha}$. If $a' \in V_{\theta}^{\phi}(a)$, $b' \in V_{\gamma}^{\delta}(b)$, then $a' \phi x \beta a \in K_{\theta}$ and $(a' \phi x \beta a) \alpha y \in K_{\theta}$ and we have, $a\theta(a' \phi x \beta a \alpha y) \gamma b' = (a\theta a')\phi(x\beta a \alpha y) \gamma b' = (a\theta a')\phi(x_{1}\beta b\alpha y_{1}) \gamma b' = (a\theta a')\phi x_{1}\beta(b\alpha y_{1}\gamma b') \in K_{\delta}$ $as b\alpha y_{1}\gamma b' \in K_{\delta}$, $x_{1}\beta(b\alpha y_{1}\gamma b') \in K_{\delta}$ and $a\theta a' \in K_{\phi}$.

Thus (ii), (iii), (vi) and (viii) are equivalent.

Interchanging the roles of a and b we see that (iv), (v), (vii) and (viii) are equivalent. Also (i) and (vi) are equivalent by Theorem 2.1. Thus all the conditions (i) - (viii) are equivalent.

COROLLARY 2.8. Let σ denote the least Γ -group congruence on a regular Γ -semigroup S. Then the following are equivalent.

(i) a⊄b.

(ii) $a\mu x\gamma b' \in U_{\delta}$ for some $x \in U_{\mu}(\mu \in \Gamma)$ and some (all) $b' \in V_{\gamma}^{\delta}(b)$. (iii) $a'\phi x\mu b \in U_{\theta}$ for some $x \in U_{\mu}(\mu \in \Gamma)$ and some (all) $a' \in V_{\theta}^{\phi}(a)$. (iv) $b\mu x\theta a' \in U_{\phi}$ for some $x \in U_{\mu}(\mu \in \Gamma)$ and some (all) $a' \in V_{\theta}^{\phi}(a)$. (v) $b'\delta x\mu a \in U_{\gamma}$ for some $x \in U_{\mu}(\mu \in \Gamma)$ and some (all) $b' \in V_{\gamma}^{\delta}(b)$. (vi) $a\alpha e = f\beta b$ for some $\alpha, \beta \in \Gamma$ and $e \in U_{\alpha}$, $f \in U_{\beta}$. (vii) $e\alpha a = b\beta f$ for some $\alpha, \beta \in \Gamma$ and $e \in U_{\alpha}$, $f \in U_{\beta}$. (viii) $U_{\beta}\beta a\alpha U_{\alpha} \cap U_{\beta}\beta b\alpha U_{\alpha} \neq \phi$ for some $\alpha, \beta \in \Gamma$.

ACKNOWLEDGEMENT. I express my earnest gratitude to Dr. M.K. Sen, Department of Pure Mathematics, University of Calcutta, for his guidance and valuable suggestions. I also thank C.S.I.R. for financial assistance during the preparation of this paper. I am also grateful to the learned referee for his valuable suggestions for the improvement of this paper.

REFERENCES

- SEN, M.K. and SAHA, N.K., On Γ-semigroup-I. <u>Bull.Cal. Math. Soc.</u>, <u>78</u> (1986), 180-186.
- SEN, M.K. and SAHA, N.K., Orthodox F-semigroup. <u>Internat. J. Math. & Math. Sci.</u>, to appear.

106