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Abstract. By using a certain linear operator defined by a Hadamard product or convolution, several

interesting subclasses of analytic functions in the unit disc are introduced and some unifying relationships

between them are established. A variety of characterization results involving a certain functional and some

general functions of hypergeometric type are investigated for these classes.
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1. INTRODUCTION. Let A denote the class of the function f of the form

f(z)-z + , a,z" (1.1)

which are analytic in the unit disc E z: Izl < . A function leA is said to be in the class R()if, for

z e E and 1 > -1,

Re zf (z
> -15f(z)

Also, a function fA is said to belong to the class V(I) if, for z e E and 1 > -1,

(zf’(z))’Re f’(z)’" " -"
We note that

[(z)n(f) zf’(z) v(),

and v(5) CR().

The classes V() and R([) of analytic functions have been defined and studied in [9].
We define the following.

zf’(z)Let leA and let g e R([). Then fe T(a, ) if, for a > -1 and z e E, Re > -.

Also, letfeA. en fe T*(a, )if, for a >-1, z eE and g e V(),

(1.2)
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From (1.3) and (1.4), it is clear that

s Cz’Cz))’
>-tt (1.4)

g’

.f T’Ca, 1),-, z.f’c
and T*(ct, I]) C T(o., [)

Let (z) (j 1,2)inA be given by

’o z" (air 1)(z)- a. /.

Also

rcct, IS) L 1, 2)T*(a. fi), and r*(ct,) L(2,1)r(ct, ,),

where tx > -1 and I > -1.

We can now define the classes of analytic function with which we shall be dealing.

Definition 1.!. A function fe.A is said to be in the classR(a,c;) if L (a, c )f belongs to R(IB) ffw 15 > -1,

and fe V(a,c;f3) if, and only if, zf’ eR(a,c;f3) for > -1.

Similarly we have:

Then the Hadamard product (or convolution) fi ,./(z) of ft(z) and .f,.(z) is defined by

ft.A(Z)- , a,,/,.la,,/t.2z
"/l (1.6)

Let at(j p) and fi0" 1,2 q) be complex numbers with fir " 0,-1, -2 j ,q.

Then the generalized hypergeometric function ,F, is defined by

(a,). Ca,,).
Fq(z).F(ct, ct,,;fl, a"z)’.Xo-ta,)- ,t. u’,,,.’," x:"tz". (P "q + I) (1.7)

where (X),, is the Pochhammer symbol defined by

().={1 if n-0
(.+1) (.+n-1) if neN-{l,2,3 }.

We now define the function ((a, c) by

(a),, ,,/t (c ,0,-1,-2, .,z eE) (1.8)*{a, c,z ,,.o (-, z

so that (a, c) is an incomplete Beta function with

(a c,z z=,Ft(1, a ;c,z

Corresponding to the function (a,c), Carlson and Shaffer [2] defined a linear operator L(a,c)on A by

the convolution

L(a,c)f -a,c) of (1.9)

for leA. Clearly, L(a,c) maps A onto itself, and L(c,a) is an inverse of L(a,c) provided that

a 0,-1,-2

Furthermore, L(a,a) is the identity operator, and

R([B)ffiL(1,2)V(), and V(I)- L(2, 1)R().
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Definition 1.2. A function J’eA is said to be in the class T(a,c;tt,[) ifL(a,c).l’e T(tt,l) for tt > -1 and

[3 > -1. Further ]’e. T*(a,c;(t,[) if, and only if, zf’ e. T(a,c;ct, fS) fi)r tt > -I.
The following relations can easily be verified.

V(a, c ;[) L I, 2)R(a, c;[)

R(a,c,) L(2, )V(a,c,[3)

V(f) V(a,a;) L( l,2)R(a,a;[)
and

Also

and

n ([’) R(a,a;[) L(2, l)V(a,a;[5)

T*(a, c;o., 13) L(1,2)T(a, c;ct, [3)

T(a c ;o., f3) L(2,1)T*(a, c" ;ct, I)

T*(cq [) T*(a,a;ct, lS) L l, 2)T(a,a ;o., )

T(et, fS) T(a,a;ct,,) L(2, )T*(a,a;ct,[)
We shall now connect these classes with the univalent functions. A single-valued function ./’ is said

to be _u.nivalent in a domain D if it never takes on the same value twice. By S, K, S*, C and C* denote the

subclasses ofA which are respectively univalent, close-to-convex, starlike, convex and quasi-convex in E.

In [8], Robertson defined the subclasses of C andS* by using the order of the class as follows. A finclion
(:t’))’ 1-, z e E. We denote this.f e S is called a g:On.ve:, function of order 15, 0 13 < 1, if and only if Re -] >

:f.(:)
class asC(l). Also a functionf t S is called starlike function oforder 1), 0 1 < ifand only ifRe -- > ,
z e E. We call this class S*([St). Obviously

f c(fs,) zf’ s*([)
Libera [3] introduced the terminology of order and type together in the class K((t,[) of

close-to-convex functions. A function f a is said to be close-to-convex of order (t type [’, 0 u. < 1;
z/"(:)0.[ < 1, if and only if there exists a function g e S*(O) such that Re-7-;> , z e E. Further

]" e C*(z), [) z]" e K(a, [) we refer to [7].
Indeed from the above definitions of the various subclasses of the various subclasses ofA, we deduce

readily the following:

S*([,) C S* C n([) CA,

C(,) C C C V([)C.R()CA

and

where

C*(a,, fi) C C* C T*(a, fi) C T(ct, fi) CA,

K(al, t) CK C

0sta<l, 0’15<1 and -1
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2. MAIN RESULTS
We first state certain results which will be needed in proving our main theorems.

_Lem.ma 2.[. [6] Let 9(u, v) be the complex function, : D C, D C C x C (C-complex plane) and let

u u + iu2, v v + iv2. Suppose that the function satisfies the conditions:

(i) (u, v) is continuous in D;

(ii) (l,O)cD and Re{(O, I) >0;

(iii) Re (itt2, vt) < () for all (iu2, vt) e D and such that vt (1 + u_)/2.
Let h(z)---l+cz+ be analytic in E, such that (h(z),zh’(z))e E for all z t E. If

Re {(h(z),zh’(z))} > O(z e E), then Rel(z) > 0 for z e E.

Let l(f) denote a functional defined by

.+ 11t._tf(t)d (2.1)

for feA and for a real number . 1. The functional I(J), when X N, was studied by Bernardi 11, and

in particular, l(J) was considered earlier by Liber 14] and Livingston I5]. We noe tha i.(f) is a particular

solution of the ordinary first order differential equation

tg’(t) + .g(t)(/ + 1)]’()

at the point z. Also by comparing (1.9) and (2.1), we have Ix(f) L( + 2,. + l)]’. For our next results

we refer to [9].
Tegrem 2.1. Let g R(a,c;l and let, for . -1, l(g) be defined by (2.1). The l(g) is also in

class R(a,c;).
We shall now prove the following.

Theorem 2,2. Let feT(a,c;ct,fS) and let, for :ka,l>-l, Ix(f) be defined by (2.1). Then

lx(f) e T(a, c ;ct, [).
proof: Sincef T(a,c;ct,[5), there exists g eR(a,c,[)such that

le
z[t, (a, c)f(z)]’

Now, from Theorem 2.1, we know that l.(g)eR(a,c;fS). Let

z[L(a,c)t,(f)]’
-(1 +a)h(z)-t, (2.2)

where h(z)- 1 +cz + czZ +
Note that

which readily yields

z[L(a,c)l(f)]’ (. + 1)L(a,c)f(z)- LL(a,c)lx(IQ

z-[t (a, c)&]" ( + )z[(a, c F(z)]’ (. + )z[L Ca, c)t,]

Now, differentiating both sides of (2.2) logarithmically and using (2.3) and (2.4), we obtain

(+ 1)z[L(a,c)f(z))]’ (Z.+ l)L(a,c)g(z)
z[L(a,c)lx(f)]’ L(a,c)lx(g)

(1 + a)zh ’(z
(l +aa)h(z)-a

(2.3)

(2.4)
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or, equivalently,

(K + l)L(a,c)g(z) z[L(a,c)f(z)]’ z[L(a,c)i.(g)]’} (l +(QzlF(z)

After simplification, and taking

z[L (a, c )ln(g )]’
-( +)H(z)-,L (a, c )l,(g

where ReH(z)--h > 0 and I >-1, we have, from (2.5),

z[L (a, c )J’(z )]’
-(1 +a)h(z)-a +

or

L(a,c)g(z)

z[t Ca, c )J’(z )]’

(l + ct)zh’(z)

L(a,c)g(z)

( + I)H(z)- 1 + .
+ et)zh’(z)

+ ct (1 +ct)h(z)+ (2.6)
+ I)H(z) f / .

We form the function u, v) by taking

u-h(z) and v-zh’(z)

in (2.6) as

(1 + l)v
(u, v + et)u +

(! + I)H(z)- f- + L
It is clear that the function (u, v) defined by (2.7) satisfies conditions (i) and (ii) of Lemma 2.1 easily. To

verify condition (iii), we proceed as follows.

(1 + a)v{(1 +[5)h,- + }
Rei(iu_, v)

[(1 + 15)h I + K]:’ + [( +

(2.7)

where H(z) h + ih2, ht and h: being the functions of x and y and ReH(z) ht > O.

By putting v <-(1 + u), we obtain

(1 +da)(1 +u_){(1 + [),)h- [- + .}
Re(iu2’v’)-

[(1 +)h,-15+]"- +[(1 +)hz]
0

Hence, by Lemma 2.1,Reh(z)> 0 and this implies that l,(f)r, T(a,c;ct,). This proves our theorem.

(orollary 2.1. Let fr T(a,c;ct, f5). Then, for k> (a,l > -1L(a,c)l),(f)e K

Proof: From Theorem 2.2, we clearly see thatL(a,c)l),(f)e K. "I]e second assertion follows easily from

the fact that

L (a, c )l(D IdL (a, c )flz ))

Next we have:

Theorem 2.. Let fe T*(a,c;ct,[). Then for k. ct,15 > -1,6,(f) also belongs to T*(a,c;ct,]).
Proof: Since

f e T*(a,c;ct,) zf’ e T(a,c;ct,[),
we observe, using Theorem 2.2, that

lx(zf’) e T(a, c;t, )
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and this implies that

z(I.(/9)’ e r(, c{, i).

tlence l.(J’) r T":(a, ’ ;, I)- Tills completes the proof.

Corollary 2.2. Let J’t: T*(a,c;tt.[’,). ’i’hcn, for ) tt,[ > -l.L(a,c)l;.(J’)c (.’* arid I,(L(a,t )J’(z))t (".
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