ON APPROXIMATION IN THE Lp-NORM BY HERMITE INTERPOLATION

MIN GUOHUA

Department of Mathematics East China Institute of Technology Nanjing, Jiangsu, 210014 People's Republic of China

(Received September 7, 1990 and in revised form January 9, 1991)

ABSTRACT. L_p -approximation by the Hermite interpolation based on the zeros of the Tchebycheff polynomials of the first kind is considered. The corresponding result of Varma and Prasad [1] is generalized and perfected.

KEY WORDS AND PHRASES. Approximation, Hermite Interpolation, L_p -Norm. 1991 AMS SUBJECT CLASSIFICATION CODE. 41A05, 41A10, 41A35.

1. INTRODUCTION.

Let $-1 < x_n < x_{n-1} < \cdots < 1$ be the zeros of $T_n(x) = \cos\theta$, $(\cos\theta = x)$, the *n*th degree Tchebycheff polynomial of the first kind.

If $f \in C^{1}[-1,1]$, then it is known that a Hermite interpolation $H_{n}^{*}(f,x)$ of degree $\leq 2n-1$ which satisfies the conditions

$$H_n^*(f, x_k) = f(x_k)$$
 and $H_n^{*\prime}(f, x_k) = f'(x_k)$ $k = 1, \cdots, n$

is given by

$$H_n^*(f,x) = \sum_{k=1}^n f(x_k) h_k(x) + \sum_{k=1}^n f'(x_k) \sigma_k(x)$$
(1.1)

where

$$h_k(x) = (1 - xx_k) \left(\frac{T_n(x)}{n(x - x_k)}\right)^2 \ge 0, \quad \sum_{k=1}^n h_k(x) \equiv 1$$
(1.2)

$$\sigma_k(x) = (x - x_k) l_k^2(x), \qquad l_k(x) = \frac{T_n(x)}{T'_n(x_k)(x - x_k)}$$
(1.3)

Concerning the polynomial $H_n^*(f, x)$, Varma and Prasad [1] proved the following: THEOREM A. Let $f \in C^1[-1,1]$, then we have

$$\left(\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} \left| H_n^*(f,x) - f(x) \right|^2 dx \right)^{1/2} \le c \ n^{-1} E_{2n-2}(f') , \tag{1.4}$$

where $E_{2n-2}(f')$ is the best approximation to f'(x) by polynomials of degree at most 2n-2 and c is a positive absolute constant.

Naturally, one raises the problem that if there is similar result of (1.4) in $L_p(p>0)$ norm. Here we give an affirmative answer for the above problem, we shall prove the following:

THEOREM 1. Let $f \in C^{1}[-1,1]$, then we have

$$\left(\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} |H_n^*(f,x) - f(x)|^p dx\right)^{1/p} \le cn^{-1} E_{2n-2}(f')$$
(1.5)

. .

Therefore the corresponding result of [1] is generalized and perfected.

2. LEMMAS AND THE PROOF OF THEOREM 1. At first, we state and prove several lemmas.

LEMMA 1 (Féjer [2]). If

$$\sum_{k=1}^{n} l_{k}^{2}(x) \le 2 , \qquad (2.1)$$

therefore it follows that

$$\sum_{k=1}^{n} |l_{k}^{2}(x)|^{r} \leq c \qquad r = 3, 4, \cdots$$
(2.2)

LEMMA 2. Let k be even and y_1, y_2, \dots, y_k be distinct integers between 1 and n, then we have (k = 2m)

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} \sigma_{\gamma_1}(x) \sigma_{\gamma_2}(x) \cdots \sigma_{\gamma_k}(x) dx = 0$$
(2.3)

PROOF. Since

$$\cos^{4m-1}n\theta = \frac{1}{2^{2(2m-1)}} \sum_{j=0}^{2m-1} \binom{4m}{j} \cos(4m-2j-1)n\theta$$
$$= \sum_{i \ge n}^{(4m-1)n} \mu_i \cosi\theta = \sum_{i \ge n}^{(4m-1)n} \mu_i T_i(x)$$
(2.4)

and

$$\frac{T_n(x)}{(x-x_{\gamma_1})\cdot\cdot\cdot(x-x_{\gamma_k})} = q_{n-2m}(x)$$
(2.5)

where $q_{n-2m}(x)$ is a polynomial of degree $\leq n-2m$.

On using these ideas together with orthogonality of Tchebycheff polynomials, we obtain

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} \sigma_{\gamma_1}(x) \sigma_{\gamma_2}(x) \cdots \sigma_{\gamma_k}(x) dx$$

=
$$\frac{1}{[T'_n(x_{\gamma_1}) \cdots T'_n(x_{\gamma_k})]^2} \sum_{i \ge n}^{(4m-1)n} \int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} T_i(x) q_{n-2m}(x) dx = 0$$

This proves Lemma 2.

To prove Theorem 1 in the general case, we again follow the method of Erdös and Feldheim [3], it is enough to prove for even values of p only. To illustrate the method we limit for the case p = 4. For arbitrary fixed even p the proof is similar. Let $s_{2n-1}(x)$ be the polynomial of best approximation to f(x) by the polynomials of degree $\leq 2n-1$. One can easily see that for $-1 \leq x \leq 1$:

$$H_n^*(f,x) - f(x) = H_n^*(f - s_{2n-1}, x) + s_{2n-1}(x) - f(x)$$
(2.6)

One notes that

$$|a+b|^{p} \le c(p)(|a|^{p} + |b|^{p})$$
 (2.7)

where c(p) is a constant of dependent of p only.

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} |H_n^*(f,x) - f(x)|^4 dx$$

$$\leq c \left[\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} H_n^{*4}(f - s_{2n-1}, (x) dx + \int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} (s_{2n-1}(x) - f(x))^4 dx \right]$$

$$\leq c(I_1 + I_2)$$

$$(2.8)$$

36

.

From the definition of $s_{2n-1}(x)$ we have

$$|s_{2n-1}(x) - f(x)| \le E_{2n-1}(f)$$
(2.9)

where $E_{2n-1}(f)$ is the best approximation of f(x). From (2.9) we have

$$I_2 \le \pi E_{2n-1}^4(f) \tag{2.10}$$

On using (1.1) and (2.7) we have

$$\begin{split} I_{1} \leq c \Biggl\{ \int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} \Biggl[\sum_{k=1}^{n} (f(x_{k}) - s_{2n-1}(x_{k}))h_{k}(x) \Biggr]^{4} dx \\ &+ \int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} \Biggl[\sum_{k=1}^{n} (f'(x_{k}) - s'_{2n-1}(x_{k}))\sigma_{k}(x) \Biggr]^{4} dx \\ &= c(I_{3} + I_{4}) \end{split}$$
(2.11)

Now from (1.2) and (2.9) it follows that

$$I_{3} \leq \int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} \left[\sum_{k=1}^{n} (f(x_{k}) - s_{2n-1}(x_{k}))h_{k}(x) \right]^{4} dx$$
$$\leq \pi E_{2n-1}^{4}(f)$$
(2.12)

Let
$$\Delta_{k} = f'(x_{k}) - s'_{2n-1}(x_{k})$$
 $k = 1, \cdots, n$
One notes that
$$\begin{bmatrix} \sum_{k=1}^{n} \Delta_{k}\sigma_{k}(x) \end{bmatrix}^{4} = \sum_{k\neq 1}^{n} \Delta_{k}^{4}\sigma_{k}^{4}(x) + \sum_{k\neq j} \sum_{j} \Delta_{k}^{3}\Delta_{j}(x)\sigma_{k}^{3}(x)\sigma_{j}(x)$$

$$+ \sum_{k\neq j} \sum_{j\neq i} \Delta_{k}^{2}\Delta_{j}\Delta_{i}\sigma_{k}^{2}(x)\sigma_{j}(x)\sigma_{i}(x) + \sum_{k\neq j} \sum_{j\neq i\neq s} \sum_{j} \Delta_{k}\Delta_{j}\Delta_{i}\Delta_{s}\sigma_{k}(x)\sigma_{j}(x)\sigma_{i}(x)\sigma_{s}(x)$$

$$+ \sum_{k\neq j} \sum_{j} \Delta_{k}^{2}\Delta_{j}^{2}\sigma_{j}^{2}(x)\sigma_{j}^{2}(x) = L_{1}(x) + L_{2}(x) + L_{3}(x) + L_{4}(x) + L_{5}(x)$$
(2.13)

One notes also that

$$|T_n(x)| \le 1 \tag{2.14}$$

$$1 - x_{k}^{2} | \Delta_{k} | \leq 40 E_{2n-2}(f') \quad (See [4])$$
(2.15)

and

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} l_k(x) l_j(x) dx = \begin{cases} 0 & k \neq j \\ \frac{\pi}{n} & k = j \end{cases}$$
(2.16)

Therefore from (1.3), (2.2) and (2.14)-(2.16) we have

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} L_{1}(x) dx = \sum_{k=1}^{n} \frac{\Delta_{k}^{4}}{T'_{n}^{4}(x_{k})} \int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} T_{n}^{4}(x) l_{k}^{4}(x) dx$$

$$\leq \frac{2}{n^{4}} \sum_{k=1}^{n} \left(\sqrt{1-x_{k}^{2}} |\Delta_{k}| \right)^{4} \int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} l_{k}^{2}(x) dx \leq c \frac{E_{2n-2}^{4}(f')}{n^{4}}$$
(2.17)

One notes that

$$L_2(x) = \left(\sum_{k=1}^n \Delta_k^3 \sigma_k^3(x)\right) \left(\sum_{k=1}^n \Delta_k \sigma_k(x)\right) - L_1(x)$$

Using (1.3), (2.2), (2.14-(2.17) and the Cauchy inequality we have

M. GUOHUA

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} |L_{2}(x)| dx
\leq \int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} \sum_{k=1}^{n} \frac{(\sqrt{1-x_{k}^{2}}|\Delta_{k}|)^{3}}{n^{3}} |T_{n}^{3}(x)| |l_{k}^{3}(x)|
|\sum_{k=1}^{n} \frac{(-1)^{k-1}\sqrt{1-x_{k}^{2}}\Delta_{k}}{n} T_{n}(x)l_{k}(x)| dx + c\frac{E_{2n-2}^{4}(f')}{n^{4}}
\leq c\frac{E_{2n-2}^{3}(f')}{n^{4}}
\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} |\sum_{k=1}^{n} (-1)^{k-1}\sqrt{1-x_{k}^{2}}\Delta_{k}l_{k}(x)| dx + c\frac{E_{2n-2}^{4}(f')}{n^{4}}
\leq \frac{E_{2n-2}^{3}(f')}{n^{4}} \left(\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} \left[\sum_{k=1}^{n} (-1)^{k-1}\sqrt{1-x_{k}^{2}}\Delta_{k}l_{k}(x)\right]^{2} dx\right)^{1/2} + c\frac{E_{2n-2}^{4}(f')}{n^{4}}
\leq c\frac{E_{2n-2}^{4}(f')}{n^{4}}$$
(2.18)

From (1.3), (2.1), (2.15) and the estimation of $\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} |L_2(x)| dx$, we note that

$$L_3(x) = \left(\sum_{k=1}^n \Delta_k^2 \sigma_k^2(x)\right) \left[\left(\sum_{k=1}^n \Delta_k \sigma_k(x)\right)^2 - \sum_{j=1}^n \Delta_j^2 \sigma_j^2(x)\right] - L_2(x)$$

Thus we have also that

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} |L_3(x)| \, dx \le c \frac{E_{2n-2}^4(f')}{n^4} \tag{2.19}$$

Using Lemma 2 we have

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} L_4(x) dx = 0$$
(2.20)

One notes that

$$L_{5}(x) = \left(\sum_{k=1}^{n} \Delta_{k}^{2} \sigma_{k}^{2}(x)\right)^{2} - L_{1}(x)$$

and similar to estimation of $\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} |L_3(x)| dx$ we have

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} \left| L_5(x) \right| dx \le c \frac{E_{2n-2}^4(f')}{n^4}$$
(2.21)

From (2.17) - (2.21) we have

$$I_4 \le c \frac{E_{2n-2}^4(f')}{n^4} \tag{2.22}$$

Combining (2.11), (2.12) and (2.22) we obtain

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} \left| H_n^*(f,x) - f(x) \right|^4 dx \le c \frac{E_{2n-2}^4(f')}{n^4}$$
(2.23)

This proves Theorem 1.

3. REMARKS.

1. Concerning quasi-Hermite interpolation [5] based on the zeros of Tchebycheff polynomial of the second kind, there is similar result in Theorem 1.

2. For almost-Hermite interpolation [6] based on the zeros of $(1-x)J_n^{(1/2, -1/2)}(x)$ (or $(1+x)J_n^{(-1/2, 1/2)}(x)$) (where $J_n^{(\alpha, \beta)}(x)$ be the Jacobi polynomial), there is similar result of Theorem 1 also.

Here we omit the details.

REFERENCES

- VARMA, A.K. and PRASAD, J., An analogue of a problem of P. Erdos and E. Feldheim on L_p convergence of interpolatory processes, <u>J. Approx. Th., 56</u> (1989), 225-240.
- 2. SZEGO, G., Orthogonal polynomials, A.M.S. Coll. Publ., New York, 1978.
- ERDOS, P. and FELDHEIM, E., Sur le mode de convergence pour l'interpolation de Lagrange, <u>C.R. Acad. Sci. Paris, 203</u>, (1937), 913-915.
- 4. RIVLIN, T.J., Introduction to the approximation of functions, Ginn (Blaisdell), Boston, 1969.
- 5. SZASZZ, P., On quasi-Hermite-Fejér interpolation, <u>Acat Math. Acad. Sic. Hung.</u>, <u>10</u> (1959), 413-439.
- GONSKA, H.H., On almost-Hermite-Fejér, interpolation: pointwise estimates, <u>Bull. Austral.</u> <u>Math. Soc.</u>, 25 (1982), 405-423.