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ABSTRACT. We prove that a semiprime ring R must be commutative if it admits a der-

ivation d such that (i) xy + d(xy) yx + d(yx) for all x,y i,n R, or (ii) xy d(xy)-

yx d(yx) for all x,y in R. In the event that R is prime, (i) or (ii) need only be

assumed for all x,y in some nonzero ideal of R.
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1. INTRODUCTION.

In the past fifteen years, there has been an ongoing interest in derivations on

prime or semiprime rings; and many of the results have involyed commutativity. (See

[1] for a partial bibliography.) In this brief note, we explore the commutativity

implications of the existence on R of a derivation d satisfying the following:

() there exists a nonzero ideal K of R such that either xy + d(xy) yx+ d(yx) for

all x,y in K, or xy d(xy) yx d(yx) for all x,y in K.

2. THE PRINCIPAL RESULTS.

Our principal results in this note are

THEOREM 1. If R is any prime ring admitting a derivation d satisfying (*), then

R is commutative.

TIIEOREM 2. Let R be a semiprime ring admitting a derivation d for which either

xy + d(xy) yx + d(yx) for all x,y in R or xy d(xy) yx d(yx) for all x,y in R.

Then R is commutative.

In fact, both of these theorems are consequences of a third theorem, which is

reminiscent of the results in [1].
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TIIEOREM 3. If R is a semiprime ring admitting a derivation d satisfying (),

the K is a central ideal.

PROOFS

The proof of Theorem 3 hinges on the following lemma.

LEMIA I. Let R be a semJprime rig and I a nonzero ideal of R. If z in R centr-

alizes the set [I,l], then z centralizes I.

PROOF. Let z centralizes [I,]. Then for all x,y in , we have z[x,xy]=[x,xy]z,

which can be rewritten as zx[x,y] x[x,y]z; hence [z,x][x,y] 0 for all x,y in I.

Replacing y by yz, we get [z,x]I[z,x] {0]. Since I is an ideal, it follows that,

[z,x]IR[z,x]l [0] l[z,x]Rl[z,x], so that [z,x]l l[z,x] [0]. Thus, [[z,x],x]=O

for all x in I; and by Theorem 3 of [2], z centralizes I.

For ease of reference, we include a second lemma, which is well-known.

LEFIA 2. (a) If R is a prime ring with a nonzero central ideal, then R is comm-

utative.

(b) If R is a semiprime ring, the center of a nonzero ideal is contained in the

center of R.

PROOF OF TIIEOREM 3. We suppose first that

xy + d(xy) yx + d(yx) for all x,y in K, (I)

which can be rewritten as

Ix,y] -d([x,y]) for all x,y in K. (2)

Now for all x,y,z in K, we have [x,y]z + d([x,y]z) z[x,y] + d(z[x,y]), which yields

[x,y]z + d([x,y])z + [x,y]d(z) z[x,y] + d(z)[x,y] + zd([x,y]);

and applying (2) we conclude that
[x,y]d(z) d(z)[x,y] for all x,y,z in K. (3)

By Lemma I, we see that d(K) centralizes K; and it follows from (I) that [x,y] is in

the center of K for all x,y in K. Another application of Lemma shows that the ideal

K is commutative; hence by Lemma 2(b), K is in tile center of R. In the event that xy-

d(xy) yx d(yx) for all x,y in K, it is equally easy to establish (3), therefore

our proof is complete.

Theorem 2 is immediate from Theorem 3, and Theorem follows from Theorem 3 and

Lemma 2(a).

We remark, in conclusion, that under the hypotheses of Theorem 3 we cannot hope

to prove commutativity of R. Consider R RIR2, where R is an integral domain, R2
is a prime ring which is not commutative, and d is the "direct sum" of derivations on

the summands R and R2.
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