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ABSTRACT. Many of the contractive definitions do not require continuity of the map. How-
ever, in a previous paper the second author has shown in [1] that, in most cases, the function

is continuous at a fixed point. In this paper we show that the same behavior is exhibited for

many multivalued mappings.
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In a recent paper, Rhoades [1], it was verified that, for most contractive definitions, the

contractive definition was strong enough to force continuity of the function at a fixed point,
even though continuity was neither assumed nor implied by the contractive definition.

The purpose of this paper is to prove that the situation is the same in the multivalued

arena.

Before examining the multivalued cases, we shall establish a result, which is of interest in

its own right.
PROPOSITION 1. Let T be a selfmap of a complete metric space with a fixed point p.

Then the following are equivalent:

(a) T is continuous at p.

(b) If {y,,} is any sequence contained in X with y,, - p, then limd(y.,Ty.) O.

PROOF. To show that (a) and (b) are equivalent, suppose that (a) is satisfied. Then

Yr, -- P implies that Tyn Tp p, and thus lim d(yn,Tyn) O.
Conversely, d(Tyn,Tp) < d(Ty,,y,) + d(yn,p), so that

limsupd(Tv.,Tp) <_ limsup[d(Tv.,V,) + d(y,,Tp)] 0. Then T is continuous at p.

In the multivalued case, a multivalued map T has a fixed point p if p E Tp. Let CL(X)
denote the collection of nonempty closed subsets of X,D(A,B):= inf{d(a,b):a e A,b e B}.
A multivalued map T (X,d) - (CL(X),D) will be said to be continuous at a point p if

lira, d(z,,p) 0 implies that lira, D(Tx,,Tp) O.
PROPOSITION 2. Let T (X,d) (CL(X),D), with p a fixed point of T. Then the

following are equivalent



16 T. HICKS AND B.E. RHOADES

(a) T is continuous at p,

(b) If {y,,} C X with limy,, p, then limD(y.,Ty.) O.

Suppose that (a) is satisfied, D(y.,Ty,,) < D(y.,p)+ D(p, Ty.) 0, and (b) is satisfied.

Conversely, if (b) holds, then D(Ty.,Tp) < D(Ty.,y,,) + D(y,,,p) - 0, and (a)is satisfied.

In Proposition 2, we obtain the same conclusions by replacing CL(X) with B(X), the set of

all nonempty bounded subsets of X, and replacing D by ,(A,B), where ,(A,B) := sup{d(a,b):
a E A,b B}. We can also replace CL(X) with CB(X), the collection of nonempty closed,
bounded subsets of X, and replace D with H, the Hausdorff metric.

THEOREM 1. Let F X B(X), I X X, I continuous, F,I satisfying

$(Fx,Fy) <_ cmax{6(Ix,Iy),(Ix,Fx),$(Iy,Fy),6(Ix,Fy),6(Iy,Fx)} (1)

for all x,y in X, 0 _< c < 1. If F and I commute and I(X) D_ F(X), then F and I have a

unique common fixed point z, Fz {z}, and F is continuous at z.

The fact that F and I have a unique common fixed point comes from Fisher [2 ]. Although
not mentioned in the statement of Theorem 1, Fisher [2] has shown that Iz {z}. To show

that F is continuous at z, let {y,,} C X, y. - z. From (1),

$(Fy,,,z) <_ cmax{$(Iy,,,Iz), $(Iy,,,Fy,,), $(Iz,Fz), (Iy.,Fz), (Iz, Fy.)}.

Since y,, z and I is continuous, Iy,, Iz z. Also, g(Iy.,fy,,) <_ (Iy,,,z) + (z, Fy.).
Therefore $(Fy,,,z) <_ c[(Iy.,z) + g(z,Fy.)], which implies that

(Fy,,,z) < c[$(Iy,,,z)]](1 -c) --, 0 as n - oo, and F is continuous at z.

By setting I equal to the identity map, Theorem 1 is a generalization of the result in

Fisher [3].
For an integer n,x . X,F" is defined inductively by F"(x) F(F"-I(x)).
THEOREM 2. Let F:X B(X) satisfying

6(FPx,Fy) < cmax{6(Frx,F’y),(Frx,Fr’z),6(y,Fy) 0 <_ r,r’ <_ p,s =0,1} (2)

for all x,y in X, 0 < c < 1 for some fixed integer p. If F also maps B(X) into itself, then F
has a unique fixed point z, Fz {z}, and F is continuous at z.

PROOF. The fact that F has a unique fixed point z and that Fz {z} comes from Fisher

[41. Let {y,} C X, yn z. In (2) set x z,y y, to get

(FPz,Fy.) <_ cmax{$(Frz,FSy,,),$(Frz,Fr’z),$(y,,,Fy,,) 0 <_ r,r’ <_ p,s 0, I}

cmax{g(z,y.), (z,Fy.), (y.,Fy,,)}.

Since 6(y.,Fy.) <_ 6(z,y.) + 6(z,Fy.), the above inequality becomes 6(z,Fy.) <_ c[6(z,y.) +
6(z,Fy.)], which implies that 6(z,Fy.) < c[6(z,y.)]/(1- c) 0 as n cx. Thus F is

continuous at z.

Theorem 2 also generalizes the corresponding result in Fisher [4].
For a metric space X,N(e,A) := {x 6 X" d(x,a) < e for some a 6 A 6 CL(X),e > 0}.

The Hansdorff metric H is defined by H(A,B) inf{e > O" A C_ N(e,B) and B C_ N(e,A)},
if the infimum exists, and H(A,B) c otherwise. An equivalent definition of H is

H(A’B) max { sup d(x’A)’ sup d(z’B)l
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THEOREM 3. Let F1, F2 X CB(X) satisfying

H(Flx,F2y) <_ al6(x,Fx) + a26(y, F2y) + a:6(x,F2y) + a46(y,Fx) + ar,d(x,y) (3)

5for all x,y in X, where the al > 0, E,=I ai < 1 and a a2 or a3 a4. If z is a common

fixed point of F1 and F2 such that F1 z {z} or F2z { z}, then z is the unique common fixed

point of F1 and F2. Moreover, F and F2 are continuous at z.

PROOF. The conclusions about the fixed point z come from Mendaglio and Dube [5]. We
first observe that the hypotheses of the theorem implies that both F1 z F2z {z}. For,
suppose that F2z {z}. Then, in (3) with x y z, we have

H(Fz,F2z) <_ al(Z,flz) 4- a2(z,f2z) 4- a3(z,f2z 4- a4(z,Flz 4-

and H(Flz,{z}) < (al + a,)6(z,Fz). But H(Fz,{z}) 6(z,Fz). Therefore Fz {z}.
Similarly, F1 z {z } implies Fz {z}.

To prove continuity, let {y.} C X,y. ---} z. In (3) set x y.,y z to get

H(Fy.,F2z) <_ a(y.,Fly.) + a2(z,F2z) + a:$(y.,F2z) + a4(z,Fy.) + ahd(y.,z).

Thus

H(fltn,Z) (flln,Z) < (hi 4- a2 4- a3) d(In,Z),
1 a -a4

which tends to 0 as n -} oo, and F1 is continuous at z.

Setting x z and y y. in (3) leads to the result that F2 is continuous at z.

THEOREM 4. Let F, G X B(X)

(Fx,Gy) <_ a,(p)(x,Fx) + a(p)(y,Gy) + a3(p)(x,Gy) + a4(p)(y,Fx) + ah(p)d(x,y) (4)

for all x, yinX, where p :=8(Fx,Gy) > 0, and where each ai: (0, oo) --, [0,1) is a decreasing
function such that (a +a +2a3 + 2a4 +a)(t) < I for each > 0. Then there exists a unique
point z in X satisfying Fz Gz {z}, F and G have a unique common fixed point in X,
and F and G are continuous at z.

That z is the unique common fixed point of F and G follows from Sarnanta and Baisnab

[6]. To prove continuity, let {y, } C X, y, z. From (4), with x It,, y z, we have

(Fy.,Gz) < al(p)$(y.,Fy.) + a2(p)$(z,Gz) + a:(p)(yn,Gz) + o,(p)$(z,Fy.) + a(p)d(y.,z),

or

(Fy.,z) <_ (a(p) + a4(p))(z,Fy.) + (I(P) 4- c3(p) 4- os(p))d(yn,z);

g(Fy.,z) < l(p) 4- 3(p) 4- o5(p)
1 al(P) a4(P)

d(yn,z),
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which tends to 0 as n o0, and F is continuous at z. A similar argument shows that, G is

continuous at z.

THEOREM 5. Let F, G" X , B(X) satisfying

,(Fx,Gy) <_ ol,(x,Fx) + a2,(y,Gy) + a3,(x,Gy) + a4,5(y,Fx) + o,d(x,y) (5)

for all x,y in X, where the ai >_ 0, al + tr2 + 2a4 + as < 1 and ct + a < 1. Then F and G
have a common fixed point. If, further, a3 + aa + as < 1, then Fz Gz {z} and z is the

unique common fixed point of F and G. Moreover, if F and G have a unique common fixed

point z, then F and G are continuous at z.

The fixed point properties come from Theorem 2 of Dixit [7]. To prove continuity, let

{y,,} C X, y,, - z and set x y., y z in (5) to get

Thus

(Fy,,,Gz) <_ al,(y,,,Fy,,) 4- a2,5(zGz) 4- a3,5(y,,,Gz) 4- a4(z,Fy,.,) 4- ar, d(y,.,,z).

,5(Fy,,,z) < (al 4- a),5(z,Fy,,) 4- (ct 4- a3 4- a,)d(y.,z),

or

,(Fy,,,z) < al 4- a: 4- a3 d(y,,,z),
1-a-a4

which tends to 0 as n oo, and F is continuous at z. A similar argument shows that G is

continuous at z.

THEOREM 6. Let F, G" X .- B(X) satisfying

,(Fx,Cy) <_ cmax{,(x,Fx), ,(y,Cy), ,5(x,Cy), ,(y,Fx), d(x,y)} (6)

for all x,y in X,0 < c < 1. Then F and G have a unique common fixed point z, Fz Gz {z},
and F and G are continuous at z.

The existence and uniqueness of the fixed point come from Fisher [8]. To prove continuity,

let {y,,} C X,y,, ---, z and set x y.,y z in (6) to get

,(Fy.,Gz) <_ cmax{,(y.,Fy,.,), ,(z,Gz), 6(y.,Gz), 6(z,Fy.), d(y.,z)},

or, since 6(y.,Fy.) < 6(y.,z) +,5(z,Fy.),6(Fy.,z) <_ c[6(y.,z) + 6(z,Fy.)], which implies that

,(Fy.,z) < c[,5(y.,z)/(1 -c)] --. 0 as n oo, and F is continuous at z.

A similar proof show that G is continuous at z.

THEOREM 7. Let F, G :X B(X), X bounded, F continuous, F commutes with G,
and satisfying

,(Ft’Gt’x,Gy) <_ cmax{$(F G x,a y),,5(F G x,F a’x),,5(y,Gy)
0 <_ r,r,s,s <_ p;i 0,1} (7)

for all x, y in X, 0 < c < 1, p a fixed positive integer Then F and G have a unique common

fixed point z, Fz Gz {z}, and G is continuous at z.
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The existence and uniqueness of the fixed point come from Theorem 2 of Fisher [9]. To
prove the continuity of G, let {y,} C X, y. z, and set x z, y y. in (7) to get

5(r’G’z,Gy.) <_ cmax{,(r"G"z,Giy.),5(F"G’z,F G z), (y.,Gy.)

0 <_ r,r,s,s <_ p;i O, 1},

or,

(z,Gv,) _< cmax{d(z,vn),5(v.,Gy.)}.

Since 6(y.,ay.) < 6(z,Gy.) + d(z,yn),6(z,Gy.) < c[6(z,ay.) + d(z,y.)], which implies that

6(z,Gy.) <_ c[d(y,.,,z)/(1 c)] 0 as n -. oo, and G is continuous at z.

THEOREM 8. Let F, G" X --, B(X) satisfying

,(Fx,Gy) <_ cmax{d(x,y), ,5(x,Gy), (y,Fx)} (8)

for each x, y in X, 0 _< c < 1. Then F and G have a unique common fixed point z, Fz Gz

{z}, and F and G are continuous at z.

The existence and uniqueness of the fixed point follow from Fisher [10]. To prove the

continuity of G, let {y.} C X, y. z, and set x y., y z in (8) to get

,5(Fy,.,,Gz) <_ cmax{d(y.,z),$(y,.,,Gz),5(z,Fy.)}

Thus ,5(Fy.,z) <_ c d(y.,z) 0 as n .--. oo, and F is continuous at z. Setting x z, y y. in

(8) leds to the fact that G is continuous at z.

THEOREM 9. Let F, G" X B(X), I, J," X ---. X satisfying

6(Fx,Gy) <_ cmax{d(Ix,Jy), 5(Ix,Gy), 5(Jy,Fx)} (9)

for all x,V in X,0 _< c < 1. If F commutes with I and G commutes with J,F(X) C_

I(X), G(X) c_ J(X) and, if F or I and G or J are continuous, then F, G,I, and J, have

a unique common fixed point z. Further, Fz Gz {z}, and z is the unique common fixed

point of F and I and G and J. If I and J are continuous, then F and G are continuous at z.

If F and G are continuous, then I and J are continuous at z.

PROOF. The existence and uniqueness of z follow from Theorem 1 of Fisher [11]. Suppose
that I and J are continuous. Let {y.} C X, yn z, and set x y.,y z in (9) to get

5(Fy.,Gz) <_ cmax{d(Iy.,Jz), 5(Iy.,Gz), (Jz,Fy.)}.

Thus ,(Fy,,z) <_ c d(Iy,.,,z) 0 as n oo, and F is continuous at z.

Now set x z, y y,, in (9) to get

(Fz,Gy. <_ c max{d(Iz,Jy. ), 5(Iz,Gy, ), 5(Jy,,Fz },

or 5(z,Gy.) <_ cd(z,Jy,.,) 0 as n oo, and G is continuous at z.

A similar argument shows that the assumption that F and J are continuous leads to the

continuity of I and J at z.
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The special case of Theorem 9 in which I is the identity map on X yields the result in

Fisher [12].
THEOREM 10. Let F, G" X --, B(X), I, d," X --, X satisfying

6(Fx,Gy) < cmax{d(Ix,Jy),6(Ix,Fx),*(Jy,Gy)} (10)

for all x,V in X,0 _< c < 1. If F commutes with I and G commutes with J, G(X) C_

I(X),F(X) C__ J(X) and, if I or J is continuous, then F, G,I, and J have a unique common

fixed point z. Further, Fz Gz {z}, and z is the unique common fixed point of F, G, I,
and J. Further, the continuity of I implies that F is continuous at z, and the continuity of J
implies that G is continuous at z.

The existence and uniqueness of z follows from Theorem 1 of Fisher [13]. Suppose that I
is continuous. Let {y,) C X, y, ---, z, and set x y,, y z in (10) to get

6(Fy,,,Gz) < cmax{d(Iy,,,Jz), 6(Iy,,Fy,,), 6(Jz,Gz)};

6(Fy.,z) <_ cmax{d(Iy.,z),6(Iy.,Fy.)}, which, since 6(Iy.,Fy.) <_ 6(Iy.,z) + 6(z,Fy.),
implies that 6(fy.,z) <_ c[6(Iy.,z) + 6(z,Fy.)] - 0 as n oo, and f is continuous at z.

The assumption that J is continuous leads to the continuity of G at z.

The special case of Theorem 10 with I J Ix yields the result of Fisher [10], and the

continuity of both F and G at z.

THEOREM 11. Let F, G X - B(X),I, J,: X -, X satisfying

6(F"x,Gy) <_ cmax{(Frx,Gy),6(Frx,y) 0 <_ r < p} (II)

for all x, y in X, 0 _< c < 1, p a fixed positive integer. If F also maps B(X) into itself, then
F and G have a unique common fixed point z. Further, z is the unique fixed point of F and

G, Fz Gz {z}, and G is continuous at z.

The existence and uniqueness of z come from Theorem 2 in Fisher [14]. To prove the

continuity of F, let {y. } C X, y,, z, and set x z, y y, in (11) to get

6(Fpz,Gy. <_ c max{6(F z,Gy. ), 6(F z,y. )" 0 < r <_ p};

6(z,Gy,) <_ cmax{6(z,Gy,,), 6(z,yn)},

which implies that 6(z,Gy,) <_ c 6(z,y,) - 0 as n --, oo, and G is continuous at z.

A similar calculation verifies that G is continuous at z.

We now establish continuity for multivalued mappings with metric defined by the Hausdorff
metric.

THEOREM 12. Let T X CB(X) satisfying

H(Tx,Ty) < a(x,y)D(x,Tx) + a’(x,y)D(y,Ty) + b(x,y)D(x,Ty)+

b’(x,y)D(y,Tx) + c(x,y)d(x,y) (12)

for all x, y in X, a, a’, b, b’, c X x X -- R+ and (a + a’ + b + b’ + c)(x,y) < 1 for all x, y in X.
If
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limsup(a +a’ +b+b’ +c)(x,y) < 1,
d(,)o

then for each X in X there exists a sequence of iterates converging to a fixed point z of T,
and T is continuous at z.

The existence of a fixed point is a consequence of Garegnani and Massa [15]. To prove

continuity, let {y,,} C X,y. z, and set x y.,y z in (12) to get

Thus,

H(Ty.,Tz) <_ a(y.,z)D(y.,Ty.) + a’(y.,z)D(z,Tz) + b(y.,z)D(y.,Tz)

+ b’(y.,z)D(z,Ty.) + c(y.,z)d(y.,z).

D(Ty.,z) <_ H(Ty.,Tz) <_ a(d(u.,z) + D(z,Ty.)) + bD(y.,Tz)

+ b’D(z,Tya) + cd(y,,,z),

or

D(Ty.,z) < (a + c)d(y.,z) + bD(u.,Tz)
1 -a-b’

which tends to 0 as n ---, oo, since lim(1 a b’) > 0, and lim,, D(Ty.,z) 0, which implies

that lima D(ya,Ty.) O. Taking the limit as n oo of the inequality involving H yields

lima H(Tya,Tz) O, and T is continuous at z.

THEOREM 13. Let T: X --. CL(X),f X X such that TX C fX, fX is (T,f)-
orbitally complete and

H(Tx,Ty) <_ qmax{d(fx,fy),D(fx,Tx),D(fu,Tu), [D(fx,Ty) + D(fy,Tx)]/2} (13)

for all x, y in X, 0 < q < 1. Then T and f have a coincidence point; i.e., there exists a z in X
such that stz E Tz.

COROLLARY 1. Let f be the identity map on X. Then, under the hypotheses of Theorem

13, T has a fixed point z, and T is continuous at z.

The fact that T has a fixed point comes from Singh and Kulshrestha [16]. To prove

continuity, let {ya } C X, ya z, and set x y,,, y z in (13) to get

Thus

H(Tya,Tz) <_ qmax{d(ya,z),D(ya,Tya),D(z,Tz),[D(y.,Tz) + D(z,Tya)]/2}.

D(Tya,z) < q max{d(y.,z), D(y.,Tya), O, [D(y.,Tz) + D(z,Tya)]/2}
q

D(ya,z),
q
qD(ya,Tz)} --. 0 as n --. oo.< max{qd(y.,z),

1 q 2

and lim,, D(Tya,z) 0, which implies that lim,, D(y.,Ty.) 0. Taking the limit as n --, oo,
in the inequality involving H, yields lim,, H(Ty.,Tz) O, and T is continuous at z.
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The fixed point portion of Corollary 1 is essentially due to Ciric [17]. The theorem of Ciric

also contains a result of Reich [18] as a special ease.

Kaneko [19] proves the Cirie result under the weaker conditions that X be a reflexive

space and the range of T is the family of all nonempty weakly compact subsets of X. He is

apparently unaware that the two standard definitions of the Hausdorff metric are equivalent.
Theorems 1 and 2 in Czerwiek [20] are special eases of Corollary 1, as are Theorem 1 of

Iseki [21] and Theorem 1 of Ray [22].
THEOREM 14. Let (X,d) be a complete metrically convex metric space, K a nonempty

closed subset of X, T X CB(X) such that there exist a,/3, 7 >- 0, a + 2/3 + 27 < 1 such
that for all x, y in X,

H(Tx,Ty) <_ od(x,y) + {D(x,Tx) + D(y,Ty)} + "7{D(x,Ty) + D(y,Tx)}. (14)

If for each x c:: OK, Tz C K and (a +/3 + -),)(1 + 13 + /)/(1 -/3 3,) < 1, then there exists a z

in K with z E Tz. Moreover T is continuous at z.

The existence of z is Theorem 1 of Itoh [23]. To show continuity, let {y,} C X, y,, z,
and set x y,, y z in (14) to get

Then

H(Ty,.,,Tz) <_ od(y,,,z) + 3{D(y,,Ty,) + D(z,Tz)} + "7{D(y,.,,Tz) + D(z,Ty,.,)}.

D(z,Ty,.,) <_ H(Ty,.,,Tz) <_ od(y,,z) + fl{D(y,,,z) + D(z,Ty,)} + "),{D(y,,Tz) + D(z,Ty,,)},

or,

D(z,Ty,,) <_ (a + 3)d(y,.,,z) + "TD(y,,,Tz)
0 as n c,

and lim, D(z,Ty,.,) 0, which implies that lim, D(y,,Ty,) 0. Now take the limit as n -in the inequlality for H to get lim, H(Tz,Tyn) O, and T is continuous at z.

THEOREM 15. Let (X,d) be a complete bounded metric space, F, X ---, CL(X), 1, 2
satisfying

H(Fax,F:y) < aaD(x,Fax) + a2D(y,F:y) + a:D(y,Fax) + a,D(x,Fy) + asd(x,y) (15)

5for all x, y in X, ai >_ O, Ei=aai < 1 and aa a2 or as a4. Then F1 and F2 have a common

fixed point z. Moreover F and F2 are continuous at z.

The existence of z comes from Theorem 1 of Bose and Mukherjee [24]. To prove continuity
of F, let {Yn} C X, y, -- z, and set x Yn, Y z in (15) to get

H(Fay,,,Fz) <_ aaD(y,,Fay,,) + a:D(z,Fz) + a:D(z,Fy,.,) + a,D(yr,,F:z) + ar, d(y,.,,z).

Setting x y z in (15) yields the fact that FlZ Fz. Thus

D(Fy,,z) <_ H(Fly,,Faz) <_ (a + a3)D(z,Fyn) + a4D(yn,f2z) -F (al -{- as)d(yn,z),
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and

D(z,Fly.) <_ a,tD(y.,F:z) + (al + as)d(y.,z)
1-al

which leads to the facts that lim. D(z,Fy,,) 0 and lira. D(y.,Fiy.) 0. Taking the limit
of the inequality for H, and using the fact that Fz Fz, yields lim. H(Fy.,Fz) 0, and
F, is continuous at z.

Similarly, F is continuous at z.

THEOREM 16. Let (X,d) be a complete metrically convex metric space, K a nonempty
closed subset of X. Let S, T" K --.. CB(X) satisfying

H(Sx,Ty) <_ ad(x,y) + ${D(x,Sx) + D(y,Ty)} + 7{D(x,Ty) + D(y,Sx)} (16)

for all x,y in X,a, fl, 7 > 0 with a + 2fl + 27 < 1. If for each x 6- OK, S(x) C K, T(x) C K
and (a+fl+7)(1 +fl+7)/(1-fl-"r) < 1, then there exists a z in K with z 6_ Tz and z 6- Sz.
Also S and T are continuous at z.

The properties of z come from Theorem 3.1 of Khan [24]. To establish the continuity of
S, let {y,, } C X, y,, z, and set x y,,, y z in (16) to get

Thus

H(Sy.,Tz) < od(y.,z) + fl{D(y.,Sy.) + D(z,Tz)} + 7{D(y.,Tz) + D(z,Sy.)}.

D(Sy.,z) <_ H(Sy.,Tz) ad(y.,z) + flD(y.,Sy.) + 7{D(y.,Tz) + D(z,Sy.)},

or,

(a + fl)d(y,,,z) + 7D(y.,Tz),D(Sy,., ,z

which implies that lim. D(Sy.,z) 0, and thus that lim. D(y,,,Sy.) 0. Setting x y z
in (16) yields Sz Tz. Substituting into the inequality for H yields

H(Sy,,,Tz) H(Sy,,,Sz) <_ ad(y,,,z) + D(y,,,Sy,.,) + 7{D(y.,Sz)} + D(z,Sy.),

which impies that lim,, H(Sy.,Sz) 0, and S is continuous at z.

A similar calculation verifies that T is continuous at z.

THEOREM 17. Let T,., X ---, CB(X) satisfying

{H(Tl x,T.y)} < kmax{D(x,Tx)D(y,T.y),D(x,T.y)D(y,Tx), D(x,T x)D(x,T.y),

D(y,T x)D(y,T.y), d(x,y)} (17)

for all x,y in x,n > 2,0 < k < 1/2. Then {T.} has a coon fixed point and F(T)
F(T.), n > 1, where F(T) denotes the fixed point set of T. Moreover the {T.} are continuous
at each fixed point.

The conclusion concerning the fixed points follows from Theorem 3 of Popa [26]. To prove
continuity, let {y,,} C X,y,, -- z, and set x z,y yk in (17) to get
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or

{H(,T)} _< ={D(,T)O(,T),O(,)O(,),O(,)O(,),

D(y,Tlz)D(y,,T.yk), d2(z,y,)},

{H(Tz,Tr,y,)}2 <_ kmax{0, D(z,Tr,y,)D(y,Tz),O, D(ye,Tz)D(y.,T,,y,), d2(z,y)}.

Setting z y z in (17) yields Tlz Tr, z. Substituting in the above inequality yields

limsup{H(Tr,z,T,y,)}2 0 and each T, is continuous at z.

THEOREM 18. Let (X,d) be a complete metric space, T1, T2: X -, CB(X) satisfying

d’(x,T, x) + d’(y,T2y) (18)H’(T,,T/) <
_,,,(,T, z) + -,,,(/,T/)

for each x,y in X such that ’-"n(x,Tx) + $’-’n(y,T2y) # 0,0 < c < 1, rn >_ 1,p >_ 2, rn < p.

Then T and T2 have common fixed points. Moreover T and T2 are continuous at each fixed

point.
The fact that T1 and T2 have fixed points is Theorem 2 of Popa [27]. To establish continu-

ity, let z be a common fixed point ofT1 and T2 and let {y,} C X,y, z, and set x z,y y,

in (18) to get

H’n(Tlz,Ty,) <_ c

d.(/,,,T/,,)
c <_ c d’(y.,Tyn),
--(u,Tu)

since d(y,,T2y,,) <_ (y,,T2yr,). Therefore

D(z,T2y,) <_ H(Tz,T2yr,) <_ c/rnd(y,,T2yr,) c/nD(y,,T2y,)

<_ c/’[DO/,,,z) + D(z,T/,,)],

or, D(z,T2y,,) <_ cl/’n[D(y,,z)]/(1- c) ---, 0 as n oo, and limr,D(z,T2y,) O. Also,
lim, D(yr,,Tyr,) O.

f ,-’(,T)+,-’(z,Tz) O, thT T {}. f ,-’(,T)+-"(z,T) #
0, then, from (18), Tz Tz. Substituting in the inequality for H yields H(T2z,T2yn)
H(Tz,Ty) c/D(y,,Ty) 0 n , d T is continuous at z.

Simflly, T is continuo at z.

Let C(X) denote the nonempty compact subsets of X. A spe X is sd to be xo-jointly
orbitMly complete if eve Cauchy quence of eh orbit at Xo is convergent in X.
THEOM 19. Let Fi X C(X),i 1,2,X xo-jointly complete for some Xo X.

Suppose there exists a function (R+)s R+, upper secontinous d nondecreing
in each vable, such that

7(t) max{(t, t, t, t, t), (t, t, 2t, 0, t), (t, t, 0, 2t, t)}
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satisfies -),(t) < for each > 0. Suppose that the F, satisfy

H(Flx,F2y) <_ {D(x,Flx),D(y,F2y),D(x,F2y),D(y,Flx),d(x,y)} (19)

for all x, y in X. Then F1 and F2 have a common fixed point. Moreover F1 md F2 are

continuous at each fixed point.
The existence of a fixed point is Theorem 2.1 of Guay et al [28]. To prove that F1 is

continuous at a fixed point z, let {y,} C X,y, -- z, and set x yn,y z in (19) to get

H(Fyn,Fz) <_ {D(yn,Fly),D(z,F=z),D(y,F=z), D(z,Fly,), d(yn,z)}.

Thus

D(Fly,z) <_ {D(yn,Flyn), O,D(ynF=z),D(z,Fly,),d(yz)}.

Suppose that 5 limsup D(Fly,,z) > 0. Since D(y,Fly,)

_
D(y,z) + D(z,Fy,),

lim sup D(y, ,F1 y,) _< lim sup D(z,F1 y,,). Since z E F2 z, lim sup D(y,F2 z) 0. Therefore we

have 5

_
(5, 0,0,5,0)

_
(5, 5, 5, 5,5) < 5, a contradiction. Consequently lim, D(Fy,z)= O,

and lim D(y,,Fly,) O.
From (19) with x y z,

H(Fz,F=z) <_ {D(z,Fz),D(z,F=z),D(z,F.z),D(z,Fz),d(z,z)} (0,0,0,0,0) 0,

and Fz F2z. Substituting in the inequality for H we have

H(Fly,,F z) <_ y{D(y,,Fly), O,D(y,Fl z),D(z,Fyn), d(y,,z)}.

Taking the limsup as n c, yields limsup, H(Fly,,Fz)

_
(0,0,0,0,0) 0, and F1 is

continuous at z.

A similar argument verifies that F2 is continuous at z.

THEOREM 20. Let X be a complete metric space, F, :X -- C(X). Suppose that there

exists a function satisfying the conditions of Theorem 19 and such that

H(Fix,Fjy)

_
{D(x,Fix),D(y,Fjy),D(x,Fy),D(y,Fix), d(x,y)} (20)

for each x, y in X, for each i, j, :/: j. Then {F, } has a common fixed point, and each of the

Fi is continuous at this fixed point.
The existence of a common fixed point is Theorem 2.5 of Guay et al [28]. The continuity

is proved in the same way as in Theorem 19.
Theorem 4 of Kaneko [19] is a special case of Theorem 20.

THEOREM 21. Let (X,d) be a complete Hausdorff uniform space defined by {dx A e I}.
Let Fi X 2x,i 1,2 satisfying

Hn(Flx,F2y)

_
andn(x,FlX) + bndn(y,Fy) / cndn(x,F2y) + endn(y,Fx) + fndn(x,y)} (21)

for each x,y in X, where an, bn, cn, en, fn

_
0, an + bn + cn + en + fn < 1 and an bn or

cn en. Then F1 and F2 have a common fixed point. Also, F1 and F2 are continuous at each

common fixed point.
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The proof that there is a common fixed point z is Theorem 3.1 of Mishra [29]. To prove

that F, is continuous at z, let {y.} C X,y. -, z, and set x y.,y z in (21) to get

Hx(Flyn,F2z) <_ axdx(y.,F,y.) + bxdx(z,F2z) + cxdx(y.,Fz) + edx(z,Fly.) + fdx(y.,z).

Since dx(Fly.,z) <_ Ha(FIv.,F2z), the above inequality implies that

( + A)d(.,z) + d(.,)dx Fa y,.,,z) < 0 as n cx.
1 -ax-bx

It then follows that limndx(y,,Fy,) 0. Setting x y z in (21) yields Fz F2z.
Substituting in the inequality for H gives

H(r.,rz) < d(.,r.) + d(.,Fz) + d(,F.) + Ad(.,z).

Taking the limit as n oo we obtain lim, Hx(Fy,,FI z) O, and F is continuous at z.

Similarly, Fz is continuous at z.

The result in Mishra and Singh [30] is a special case of Theorem 3.1 of Mishra [29].
THEOREM 22. Let X be a reflexive Banach space, K a nonempty closed bounded convex

subset of X. Let T be a mapping of K into the family of nonempty weakly compact convex

subsets of K satisfying

H(Tx,Ty) < (max{D(x,Tx), D(y,Ty)} (22)

for each x, y in X, where 4: [0,oo) -, [0,oo), nondecreasing, fight continuous, such that

(t) < for each > 0. Then there exists a nonempty subset M of K such that Tx M for

each x 6 M. Moreover, T is continuous at each point of M.
The fact that a subset M exists with the stated properties is Theorem 1 of Kaneko [31].

To prove the continuity of T, let z 6 M. Let {y.} C X,y. --, z, and set x y.,y z in (22)
to get

H(Ty.,Tz) <_ (max{D(y.,Ty.),D(z,Tz)}).

Thus D(Ty.,z) <_ H(Ty.,Tz) <_ (D(y.,Ty.)). Assume that 6 limsup D(Ty.,z) > 0. Then

we have 6 _< (limsup[D(y.,z)+ D(Ty.,z)]) (6) < 6, a contradiction. Therefore 6 0 and
T is continuous at z.

THEOREM 23. Let (X,d) be a complete metric space, {S.}, {T.} sequences of maps
from X --+ CB(X). Suppose that there exists an h, 0 < h < 1, such that, for each m, n, and
each x, y in X,

H(Smz,T.y) < hmax{d(x,y),D(x,Smz),D(y,T.y), [(Dx,T.y) + D(y,S.x)]/2}. (23)

Then {S,, } and {T,} have a common fixed point z. Moreover, {S,} and {T,} are continuous

at z.

The existence of a common fixed point z is Theorem 1 of Kubiak [32]. To prove that each
S., is continuous, let {y. } C X, y. --, z, and set x yk, y z in (23) to get

H(S.yk,T.z) <_ hmax{d(y,z),D(yt,Sr.yt),D(z,Tnz), [(D(yt,T.z) + D(z,S.yk)]/2}.
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Since D(SmV,,z) < H(Smyt:,Tnz), the above inequaltiy yields

D(S.,y,,z) <_ h d(y,,z)/(1 h) 0 as k - oo.

It then follows that limk D(y,,S.y,) O.

Setting x y z in (23) gives the result that S,,,z T,,z. Substituting in the inequality
for H yields

H(S.,y,,S..,z) <_ hmax{d(y,,z),D(y,,S,,,y,),O,[(D(y,,S,-,,z) + D(z,S.,yk)]/2},

and, taking the limit as k oo gives lim, H(S,y,, S,,,z) 0, and each S., is continuous at z.

A similar argument verifies that each T. is continuous at z.

Special cases of Theorem 1 of gubiak [32] appear in Avram [33], Iseki [21], Popa [34- 35],
Ray [36], aus [37], and Tong [38]. Achara [39] has the same result as Kubiak [32], but with

CB(X) replaced by C(X).
THEOREM 24. Let (X,d) be a complete metric space, T,., :X CB(X). Suppose that

there exist a, >_ 0, 1, 5 such that

min{al + a2 + as + 2a4,al + a2 + a3 -t- 2as} < 1

and m # n imphes

H(T,,,x,T.y) < ald(x,y) + a2D(x,T,-.x) + a3D(y,T,.,y) + a4D(x,T,y) + asD(y,T.,x) (24)

for all x, y in X. Then {T,, has a common fixed point.
The proof that the {T,,} has a common fixed point is Theorem 1 of Kith [40]. To prove

continuity, let z be a comon fixed point of {T.}, and let {y,,} C X, yn - z.

Suppose that a4 < as. Then nfin{al +a2+as+2a4, al +a2+a3+2as} a+a2+a3+2a4 < 1.

Set x z, y y,. From (24),

H(T,..z,T,,y,) <_ a,d(z,y,) + a2D(z,T..,z) + a:D(y,,T,,y,) + a,tD(z,T,,y,) + asD(yr,,T,z),

or, since D(z,T,.,V,) < H(T..,z,T.y), we obtain

D(z,T.y,) < (01 q- a3)d(z,y,) + asD(y,,T,.,,z)
0 as k oo.

1 a3 a
Thus lim, D(z,T,,y,) 0, which implies that lim, D(y,,T,.,y,) O.

Substituting x y z into (24) verifies that T,z T.z. It then follows that

H(T,.,z,T.y,) H(Tmz,T.y,) <_ ald(z,y.) + a3D(y,,Tnyt:) + a4D(z,T,.,y,) + asD(y,,Tmz).

Taking the limit as k oo yields the result that each T. is continuous at z.

If a, > as, then, setting x y,, y z in (24) yields

D(T,y,,z) <_ (a, + a2)d(z,y,) + a.tD(y,,T,z)
0 as k oo.

1 -as -as
from which it follows that each T, is continuous at z.
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Although we have experienced some success with establishing the continuity of multivalued
maps at a fixed point, there axe some definitions that do not lend themselves to such an analysis.
We cite here three examples.

THEOREM K. (Khan and Kubiaczyk [41], Theorem 1) Let S, T, X -, B(X) be such that,
for some E := {b: (R+)5 --, R+ is upper semicontinuous from the right, nondecreasing
in each variable coordinate such that (t,t,t, at, bt) < for each t > O,a,b > O, with a+b < 2},

,5( Sx,Ty) <_ (d(x,y), ,5(x,Sx), 5(y,Ty), D(x,Ty), D(y,Tx)

for each z, l/in X. Then S and T have a unique common fixed point u such that u E Su N Tu.
In the above theorem the difficulty arises from the fact that 5(u, Tu) need not be zero.

THEOREM M. (Mukherjee and Som [42], Theorem 1) Let (X, d) be a complete metric

space, T1, T2 X -- CB(X) satisfying any one of the following conditions for each z, I/in X:
(i) (z,T] x,) 4- (I/,T2y) _< ad(x,,y), 1 _< et < 2,
(ii) (z,T,=) + (y,T2y) <_ {(z,T2y) q- H(y,T2z) + d(z,y)}, 1/2 < /< 2/3,
(iii) &(X,Tlz) + &(y,T2y) + &(Tlx, T2F) <_ 7{H(x.,T2F) + H(y,Tx)}, 1 _< 7 < 3/2,
(iv) &(Tz,T2!t) < lmax{d(z,y),H(z,T=),U(!t,T2y),[H(=,Ty) + H(y,Tz)]/2},O <_ 1 < 1.

Then T and T2 have a common fixed point.
THEOREM S. (Singh et al [43], Theorem 2.1) Let S, T, be multivalued mappings from a

metric space X --. CL(X). If there exists a function f X -- X such that SX U TX C_ f(X)
and, for each , y in X,

H(Sx,Ty) <_ (max{D(fx,Sx), D(fy,Ty), D(fz,Tll), D(fy,Sx), d(fx,fy)})

where b R+ --, R+, b upper semicontinuous and nondecreasing with b(t) < t for each > 0,
there exists a point xo in X such that (S,T) is asymptotically regular at Xo and f(x) is

(S,T;f, Xo)-orbitally complete, then f,S, and T have a coincidence point. Further, if z is a

coincidence point of f, S, T, and fz is a fixed point of f, then

(a) fz is a fixed point of S (resp T) provided f commutes weakly with S (resp T) at z,
and

(b) fz is a common fixed point of S and T at z.

ADDED IN PROOF. 1. A closer examination of the proof of Theorem K shows that

5(u, Su) (u, Tu) 0. Therefore an argument similar to the one already used repeatedly in

this paper yields that S and T axe continuous at the fixed point.
2. Theorem M contains an error in the proof. Moreover, conditions (i) and (ii) imply that

Tz T2z {z} for each z in X. The parameter values on conditions (iii) and (iv) make it

impossible to use standard proof techniques to obtain a fixed point.
3. If one assumes the continuity of f in Theorem S, then it is straightforward to verify

that S and T are continuous at the fixed point fz.
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