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Abstract

Spectral and scattering theory is discussed for the Stark effect Hamiltonians Ho
-(1/2)A zl and H H0 / V where V is a long range perturbation. Most significantly,
in one dimension, and for V consisting of a slowly decaying term and am almost periodic
term, the two Hilbert space wave operators (of Isozaki and Kitada) are shown to exist and
be complete by Enss’s time dependent method.
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1 Introduction

This note concerns quantum mechanical scattering in the presence of a constant electric field.

The corresponding Stark effect" Hamiltonians are,

H0 -A- zl where A (1.1)
j--I

U Ho+ V Ho+ V + V+ Vs (1.2)

where -z is the potential corresponding to the constant electric field in the positive z direction

(x R) and H is a perturbation of H0 by another potential V V + V + Vs consisting of

two long range terms and a short range term. More precisely assume

Conditon LRI. V C(R)/s real valued and .for some e > 0

IDVL()[ < C,()-Il/z-’ for every multi-indez

where (z,)’ (1 + ).
Conditon LR2. VL 0 if the space dimension is n > bet i n then Vz, C(R) is

real valued and bounded along with all its derivatives and

Va x + -"r )d’r
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ezists as an improper Riemann integral for every z.

Condition SR. Vs is a symmetric operator which is Ho-compact and

f, II’(x > )Vs(Uo +/)-all dr. < oo

where F(.) is multiplication bt the characteristic function of the indicated set.

It should be clarified that the term VL2 which allows an almost periodic potential is only
present in the one dimensional case. Much of the recent worlq has focused on the one dimen-
sional case; see Hislop-Nakamura" [1], Jensen [2], Jensen-Yajima [3] and Ozawa [4] for example.
The methods here are primarily multi-dimensional and the role of the assumption n will
be highlighted below. Almost periodic potentials and the existence and completeness of the

ordinary wave operators (of equation (1.6) below) have been studied previously [2]. Long range
scattering in this setting is relatively new but there has been some interest recently because there
is a discrepancy between quantum and classical mechanics; the ordinary wave operators exist

in the classical setting but not the quantum one when n and VL2 0 as was noted recently
by Jensen-Yajima [3] and Jensen-Ozawa [5]. In Theorem 2 below an additional condition on

the potential is introduced which assures that the two Hilbert space wave operators equal the

ordinary wave operators. In general one expects that the two Hilbert space wave operators are

equal, up to a phase function, to the Dollard’s modified wave operators; the justification of this

expectation will be the subject of a future investigation. That result and Theorem below will

precisely delineate for which potentials of those considered here, the usual wave operators exist

and are complete. For the potentials V1 the condition is e > 1/2 (see Jensen-Yajima [3] and
Ozawa [4] when n=l) but for Vt; the condition is not obvious; see Theorem 2.

The main result is the existence and completeness of the two Hilbert space wave operators,
W+ W+(H, H0; d+) defined by

W+/- s- lim eitHJ+e-itH (1.3)

where J+/- are two bounded operators on L(R’), to be specified and "s-lim" is the limit in

the strong operator topology. Note the reversal of sign in equation (1.3) which is for historical

reasons (see Reed and Simon’s third volume [6, p. 17]). The two operators J+ could equally well
be replaced by a single operator as was previously noted by the author [7][equation (2.10)] and
as is customary in most discussions of two Hilbert space scattering. (The operators J+ are not

unique.) Isozaki and Kitada [8] were the first to introduce J+ ("time independent modifiers")
in this context; they are defined by

f ei"+’*(’O()d, (1.4)J+r(x)

where is the Fourier transform of b, dx (2r)-n/dx and 0+ are functions to be chosen. The
functions 0+ will be specified in 3 below but roughly they are chosen so that the commutator
HJ+ J+Ho is small. (Recall Cook’s method.) The symbol of HJ+ J+Ho is, at least in the
case that Vs 0:

___00+(,) " v0(,) + (,0-

+ 1/2v0(,). v0(,)+ v() + v() (.)

and this should be small; that is roughly "short range" when q= > 0. The main results may
now be stated.
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Theorem 1 Assume the Conditions Litl, LHP. and Sit. Then for .I4- as defined above

(for appropriate 04-), the wave operators W4- of (1.3) ezist, are isometries and are complete.
Moreover H has no singularly continuous spectrum, and its eigenvalues are discrete and offinite
multiplicity.

Theorem 2 Under the hypotheses of Theorem 1 and in the special case n 1, VL1 0

and

lim VL,(x 1/2’ + It’)dr 0

it is possible to choose J4- to be the identity operator in Theorem I, that is

W+/- s- lim eitue-*u. (1.6)
t

Examples. The conditions of Thereto are verified if: for e > 0 and a, 1/2 and

7 > 1/2 and b, , b are real,

VL(X) sin(bx) + U’(x)

where U is real function which is bound along with all its derivmtiv (but V m 0 if

n > 1.) The conditions of Threms and 2 are linear and m the t of potentials vered by

thee results form linear spe. For exampl of the short range potentials Vs s Yajima [9].
Roughly Vs should be O((x)-/-) for > 0 and rome > 0 and o((x)) for < 0.

One simple example indicates that there is indd a difference betwn one and more dimen-

sions: for V(x,x) sinx +sinx and n 2 the wave operatom (1.6) do not exist by a tensor

product argument where they do if VL(m) sin m when n 1. If V(x) sin(x/3) then

Threm applies but not Thereto 2. Jenn, [2] using Mourre’s [10] method obtains a rult

similar to Thereto 2 for a cls of real valu almost periodic potentis,

r i_g() e"() prvia ( +-(() <

(and ith e and g 0). Threm 2 ruir more differenfibility but ne les enti-

derivative; mre predsely, for eh N

Threm 1, hieh indudes both lly deeyi endm periodic ptenfial, i ne.

2 Two Hilbert Space Scattering.

The derivation of Theorem 1.1 is broken into two main steps. The first step (Theorem 2.1

below) is to derive necessary conditions on J4- or, in view of (1.4), conditions on 04- to conclude
Theorem 1.1. The second step (in 3) is to construct 04- satisfying those conditions, from the

long range potential VL. Portions of the proofs will be cited from White [7] which will be quoted
frequently simply as [W] for brevity’s sake. More general potentials Vta are allowed in the one

dimensional case because

F(ID, < r))(Ho + i)- is compact if n 1. (2.1)
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since it is unitarily equivalent via exp(-iD/6) to a Hilbert Schmidt operator (see Perry [11,
Proposition 19.1]); here D =-iO/cz.

Before stating the conditions on 0+/- it is convenient to recall the Calder6n-Vaillancourt the-

orem which will be required to show that J: and related operators are bounded. Introduce

therefore the pseudo-differential operator R

for all fi $(R"). Here "Os-" indicates that the integrals are oscillatory integrals (see Kumana-
go [12]). The theorem can be stated in terms of certain norms on the symbol, p: for each integer
k

Ipl, ,p{IOO,(z,,)l, lD’O,(,,)l} (2.3)

where the sup is over all (z, y, ) /R3" and all or, , 3’ so that 0 < I1, I’rl _< 2, ,nd 0 _< I1 <
2([n/2] + k + 1) and where rn is the least integer m > 5n/4. The Calder6n-Vaillancourt theorem

[13] says that there is a constant C not depending on p so that

IIRll < Clpl0

where II" aoh operator norm on

Anticipating the use of Enss’s time dependent method ([14]) we introduce smooth versions

of the incoming and outgoing operators, F(D < 0) and F(D > 0) respectively. Choose t/in
C(R) so that

if > 1,
r/(,) and t/(,) + r/(-,) 1. (2.4)

0 if < -1

Then the smooth versions of the incoming and outgoing operators are t/(-D) and t/(D) re-

spectively. Define further t/,(,) r/(, 2) so that

if, > 3, (2.5)/’(’)= 0 if,<l.

The hypotheses on 0: can now be stated, beginning with 0- for simplicity. The first as-

sumptions are technical: 0- fi G(R x R"), is complex valued and for all multi-indicies cr and

there are constants C > 0, and N > 0 so that

IDDO-(,)I < c provided Icrl ’_>

IO0-(,)l < C( / I1)( / I1); (2.e)

Ic%0-I., < /2. (2.7)

where () ( / I1) nd m is the least integer rn E 5n/4. Now acan .- by (1.5). The short

range assumption is

],oo 1’,(,/")’,(6/")f l, d," < o. (2.8)

Further there are two compactness assumptions and here the dependence on dimension becomes

apparent. Assume, for rt

.]i2n[I,,(=l,’),,(il,’)f l,. + I,,(=l,’),,(el,’)O0-10=l,,,+, (2.9)

+ I,,(=/,’),,(6/,’)0-1,,,] 0,
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where 30- denotes the imaginary part of 0-. When n we write z for xl etc. If n > then

a stronger assumption is needed:

,,lim[[r/(s a)(z b)qs()p-[,,, + Ir/( a)q(zs b)rt()V,O-[=+
+ I( b)( )()-I] 0 (2.0)

for all real a, b. Similar hypotheses hold for 0+ but it is more convenient to define

O+(z,) -O-(z,-) so that J+(z)= J-()(z)

("time reversal") where the bar denotes complex conjugation. Under these assumptions we have

the following theorem.

Theorem 1 Define Ho by (I.I) and let H Ho+ V.+ Vs where VL V(x) is a real valued

function which as an operator acts multiplicatively, is Ho-bounded, and has Ho-bound strictly

less than 1 and where Vs satisfies Condition SR. If J+ andp are as defined in equations (1.)
and (1.5) and if 04- and p+ satisfy the above hypotheses then the conclusions of Theorem I. are

valid.

Outline of the Proof. The proof is by Enss’s time dependent method which here is adapted
to a two Hilbert space setting appropriate for studying long range scattering. The method can

be described as follows. Let H be any self adjoint operator on L2(R") with spectral measure by
E (but H0 is defined by (1.1)) and suppose J+ be bounded operators. Assume further

Hypothesis H1. There is ao < -1 so that, for all a, a > ao

((H + i)-lJ+ J+(Ho + i)-)y(q=Dl -a) are compact.

Hypothesis H2. For every compact real interval I, there is an integer N so that

/t IIE(I)(HJ+ J+Ho)h(:FD/r)y(xl/r2)(Ho + i)-lldr < oo.

Hypothesis H3. The following operator is compact

(H + i)-[J+l(-D)(J+) + J-l(D)(J-)’- I](H +,i)-.

Hypothesis H4. eitHo((J+)*J: 1)e-irate --, 0 weakly as Too.

Enss method arguments apply to derive the present theorem from these hypotheses; see [W,
Theorems 2.1 and 2.2]. The first two hypotheses correspond to the standard Enss assumptions
for the short range case; H3 assures that the operators J are "almost" unitary and H4 assures

that the wave operators W: are isometries, if they exist.

Check therefore Hypotheses H1 through H4. Suppose n since the case of n > was

considered in [W]. Only the outgoing "-" case is considered but see (2.11).
Let P (H0 + VL)J- J-Ho so that

for p- defined by (1.5). Since Vs is H0-compact by Condition SR, it suffices to show that (H +
i)-P(Ho + i)-?(D-a) is compact for all a to verify H1. Since 1-y(D/r) is H0-compact for
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any r > 0, by (2.1), this may be simplified to showing that (H+i)-’ Prl,(IDI/r)(Ho+i)-’tt(D-a)
can be made arbitrarily close to a compact operator by choosing r large enough. The proof of

this latter statement is the same as the proof of H1 given in [W] but P there is replaced by

P,,(IOl/"). (It should be remarked that [W, Proposition 3.2 (a) and (b)], which is used in the

proof cited above, assumes that 0 is real valued but the proofs apply without change to the

complex valued case provided the factor exp(-0+/-) appearing in the Fourier integral operators
is treated as part of the symbol (and not the phase) as in the proof of H3 below.

The proof of H2 is exactly as in [W]; it uses the critical short range assumption (2.8) and

the Calder6n-Vaillancourt theorem.
To verify H3, it suffices to show that

(H + i)-’[dl(=[=D)(J+)" t/(=l=D)l(H + i)-’ are compact (2.12)

because the sum of these two operators is the operator in H3. The argument is given for J- only;
the J+ case is similar (or use (2.11)). First, by Hypothesis H1, H0 is roughly "J--subordinate"

to H or more precisely

,lim II(H + i)-’J-q(D)Eo(lml > s)l 0

by [W, Lemma 2.5]. This and (2.) reduces (2.12) to showing

(H + i)-[J-tl(D/r)(J-) q(D/r)](H + i)- are compact (2.13)

for all r > 0. (Note H and H0 have to same domain and so may be interchanged in (2.1).)
The argument of [W] applies (see also [W, Proposition 3.2(c)]). The change of variables in that

argument involves only the real part 0- of 0:

’ ’(,, y) + vo(y +( y), ) d.

and uses assumption (2.9) but the proof is essentially the same.

The following theorem will be used for the proof of H4 and Theorem 1.2 both.

Theorem 2 Let - be a complex valued function on R2 satisfying (.7) and with -bounded. Let j- be defined by (1.4) with phase function O- there replaced by -. If m is the

least integer rn >_ 5n]4 and if

i.m I,,(,/.’),,(O,I.)(O-(,) -(,))1- 0

then

Proof of Theorem 2.2. By a density argument it suffices to prove the strong convergence

on states of the form, tl(Dl-a)tl(xl-b). Recall that outgoing states evolving freely constantly
accelerate in the direction of the electric field except for an error term:

I1(1 tl,(16x,/t2))e-itHrl(D, a)rl(x, b)ll O(t)-N

(see Perry [11, Lemma 19.7]). Also momentum is translated in the same direction:

e-itttrt(D a) rl(D a t)e-ittt
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by [11, Proposition 19.1] of Perry’s book. Thus it is enough to show that

lim ][(J- -)(16x/t)(D a t)][ 0.

and this is follows from the assumptions on 0- - (see [W, Proposition 3.2 (a) and (b)]).

To complete the proof of Theorem 1, it remains to check Hypothesis H4. By Theorem 2,
and assumption (2.9) make it possible to assume 0- is real valued and in this case the proof in

[W] applies. (There is an error in the proof just before equation (3.23) [W]: the definitions of q
and q3 have been interchanged.)

Remark. To extend the above proof to n-dimensions, one would need a criterion, replacing

(2.1) when n > 1, for a pseudo-differential operator like R in (2.2) to be compact with respect
to H0 which does not require the symbol to decay to 0 as

3 Theorem 1.1.

The proof of Theorem 1.1 involves simply choosing 0- and checking the hypotheses of Theorem

2.1. The short range assumption (2.8) is the crucial to the choice.

Outline of the Proof of Theorem 1.1. Again it suffices to consider the n and the

outgoing "-" case. Moreover the construction of 0- (and thereby J-) was carried out in [W]
in the case when VL2 0 and n _> 1. Denote that function now as 0i’. Next we construct 0
as the appropriate choice of 0- for general VL2 and V 0 (and n 1); then the appropriate
choice of 0- in the general case will turn out to be simply 0- 0i" + 0. Define

where p is a small parameter to be fixed after checking property (2.7). The Condition LR2
assures that the integral exists as an improper Riemann integral and defines 0 to be a con-

tinuous function. In fact 0 is infinitely differentiable and the derivatives may be computed
by differentiating under the integral sign because if the derivatives are computed formally by
this formula then the resultant integrals converge locally uniformly. This convergence can be

checked by integrating by parts, V being integrated. The choice of 0 is made with the short

range assumption (2.8) in mind. Compute

p-(,O

[/-(OA(-) -()()
d]+f(-() -())( 1/2 + +

It is a routine matter of checking that 0 satisfies the hypotheses of Theorem 2.2 and it suffices
to remark that in checking (2.7) one must choose p sufficiently small; p then remains fixed. To
do the check of the same hypotheses for 0- 0[ +0 there is only one nonlinear condition that

requires checking and that is the short range condition (2.8). Since

and xO, 0(()-t)
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(see [W, equation 4.10]) this is easily checked. O

Proof of Theorem 1.2. This Theorem follows directly from Theorem 2.3 if one chooses
0"- 0 there, o
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