Internat. J. Math. & Math. Sci. 111
VOL. 15 NO. 1 (1992) 111-118

NONLINEAR RANDOM OPERATOR EQUATIONS
AND INEQUALITIES IN BANACH SPACES

ANTONIOS KARAMOLEGOS
and
DIMITRIOS KRAVVARITIS

Department of Mathematics
National Technical University of Athens
Zografou Campus, 157 73
Athens, Greece

(Received July 31, 1989 and in revised form May 5, 1990)

ABSTRACT. In this paper we give some new existence theorems for nonlinear random equations
and inequalities involving operators of monotone type in Banach spaces. A random Hammerstein
integral equation is also studied. In order to obtain random solutions we use some results from the
existing deterministic theory as well as from the theory of measurable multifunctions and, in

particular, the measurable selection theorems of Kuratowski/Ryll-Nardzewski and of Saint-Beuve.
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1. INTRODUCTION.

In recent years the theory of random nonlinear operator equations has attracted the attention
of many authors (e.g. Engl [1], Itoh [2,3], Kravvaritis [4,5], Papageorgiou [6]). This interest is
partly due to the fact that there are many applications of this theory to various applied fields such
as control theory, statistics, biological sciences and others. For a discussion of such applications one
may consult the books by Bharucha-Reid [7] and Padgett/Tsokos [8]. In this paper we present
some new existence theorems for solutions to random nonlinear operatér equations and inequalities.
To obtain them we use some results from the existing deterministic theory as well as from the
theory of measurable multifunctions and, in particular, the measurable selection theorems of
Kuratowski/Ryll-Nardzewski and of Sainte-Beuve.

In Section 2, we fix our notation and recall some basic definitions from the theory of
measurable multifunctions and from nonlinear functional analysis.

In Section 3, we give first a random fixed point theorem and then a perturbation result
concerning operators of monotone type.

In Section 4, we treat random nonlinear variational inequalities. Two of them involve random
operators of monotone type and a random convex function and one concerns a multivalued operator
that does not satisfy any monotonicity condition.

Finally, in Section 5, a concrete random Hammerstein integral equation is studied.

2. PRELIMINARIES.

Let (€,£) be a measurable space and X a separable Banach space. Let F:Q — 2X\{@)} be a

multifunction with closed values. We say that F is measurable if it satisfies the following

equivalent conditions:
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(i) ForallU C X open, F~(U)={weQ:F(w)NU #£0}€E,
(i1) There exist f,:Q2 — X, measurable for all n € N, such that:

F(w) = c{fn(w)}, ¢ for all w € @ (Castaing representation).

If, in addition, there exists a complete, o-finite measure p, defined on I, then (i) and (ii) are
equivalent to:
(iii) Gt F = {(w,z) € @xX:z € F(w)} € T® B(X), where B(X) is the Borel o-algebra of X.

Let X be a reflexive Banach space and X* its topological dual. By (.,.) we denote the duality
pairing between X and X*. The duality mapping J of X into X* is defined by:

Jr={z"€X*:(z",2) = ||z||and ||=*|| = || ||}

The symbols “— and “%” denote convergence in the strong and weak topology, respectively.

An operator T: D C X — X* is called (a) demicontinuous if z, € D and z, — = € D imply
Tz, 5Tz, (b) weakly continuous if z,, € D and z, > z € D imply Tz, % Tz, (c) weakly closed if
z, €D, 2,5 2€D and Tz, Sy imply y=Tz, (d) gquasi-bounded if to each M >0 there
corresponds a constant K(M) such that whenever z€ D, (Tz,z) < M| z|| and |lz|] <M it
follows that ||Tz| < K(M), (e) monotone if (Tz—Ty,z—y)>0 for all z,y € D, (f) maximal
monotone if it is monotone and there is no proper extension of T that is also a monotone operator,
(g) pseudomonotone if (D is a closed, convex subset of X) the following conditions are satisfied:
(P1) For any finite dimensional subspace F of X, T is continuous from F N D into X*, endowed
with the weak topology; (P2) If z, € D, z, % z€ D, Tz,%f and limsup(Tz,,2, —z) <0 then
f=Tz and lim(Tz,,z,)=(f,z), (h) of type (M) if z,€D, 2,5 z€D, Tz, S f and
limsup(Tzy, x, — ) < 0 imply that f =Tz

For an operator T: 2 x D — X* we will write T(w)z for the value of T at (w.z) € Q2xD.
Then T is called random, if, for any z € D, T(-)z is measurable. A random operator T is called
coercive if there exists a function c:R T — R, with c(r) — + 0o as r — + oo, such that

(T(w)z,z) 2 c(||z||) {lz|| foralweRand z€ D .

A random operator T is said to be monotone, demicontinuous, etc., if, for every w € Q, T(w)(-)
is monotone, demicontinuous, etc. We symbolize by B(,X) the set of measurable functions
£:Q — X such that sup { || é{(w)]] : w € R} < 00.

3. RANDOM EQUATIONS.

We begin with a random fixed point theorem which generalizes Theorem 6 of Ricceri [9]. In
this and in the following sections we fix (2,Z, 1) to denote a complete, o-finite, measure space.

THEOREM 3.1. Let H be a separable Hilbert space and D a convex, closed and bounded
subset of H with 0 €intD. Let A:Q2x D — H be a random and weakly continuous operator such
that (A(w)z, ) < ||z || 2 for all z € 3D and w € . Then A admits a random fixed point, i.e., there
exists a measurable £:  — D such that A(w)é(w) = €(w) for all w € Q.

PROOF. For every w € ), we define a mapping R: 2 — 2P by R(w) = {z € D: z = A(w)z).
By Theorem 6 of Ricceri [9] we have R(w)# @ for all w€ Q. Let {yn}, cn be a dense sequence
into H. We note that

GrR = {(w, z) € Ax D: 2 — A(w)z = 0} =n°[j {(,2): (2= A() 2, n) = 0)

Now, for each n €N, the mapping f,:QxD — R defined by f,(w,z)=(z—A(w)z,y,) is
measurable in w and continuous in z. By [10, Theorem 6.1] f,, is jointly measurable, so
GrR € £ ® B(D). Applying Theorem 3 of Sainte-Beuve [11], there exists a measurable selection of

R, i.e., a measurable £: 2 — D such that
Aw)é(w)=¢w) forallwefN.

We study now perturbations of random maximal monotone operators by random operators of type



NONLINEAR RANDOM OPERATOR EQUATIONS IN A BANACH SPACE 113

{M). The deterministic case of the following theorem has been obtained in [12].

THEOREM 3.2. Let X be a separable, reflexive Banach space and D,, D, subsets of X. Let
L:QxD; — X* be a jointly measurable, maximal monotone and weakly closed operator with
L(w)0 =0 for all we Q. Also let T:QxDy— X* be a random, quasi-bounded, coercive and of
type (M) operator. Suppose that there exists a dense linear subspace X of X, which is contained
in Dy, such that for each finite dimensional subspace F' of X, the operator T: Q2 x F — X* is
demicontinuous. Then, for each y € B(Q, X*) there exists z € B(Q, X) such that:

Lw)z(w)+ T(w)z(w) =y(w) forallweq.

PROOF. We may assume, without loss of generality, that y(w) =0 for all w € Q. Also, by a
result of Trojanski, we may suppose that the spaces X and X™* are locally uniformly convex. Thus,
the mapping J~!: X* - X is continuous from the strong topology of X* to the strong topology of
X (cf. [13]). For ¢ >0 and w € Q, let L(w) be the Yosida approximant of L(w) defined by:

L(w)z = (L(w) 1 +eJ ) e

L.(w) is everywhere defined, single valued, bounded, maximal monotone with L (w)0 = 0 (cf. [13]).
We show that L.: 2x X — X* is random. Fix z € X and consider

GrLe(-)z={(w,y) €AxX*:y=(Lw) +eJ ) la} = {(w y): s € Lw)y + €71y}
={(w,9): (2 —eJy) € L(@) 'y} = {(w,):y = Lw) (e~ e Ty)}
={(@y): L(w)(z = eJ"ly) ~y =0} .

Now, the mapping y — z — eJ "y, being continuous, is measurable, so (w,y) = (w, z—eJ " ly)
is measurable. Composing this and L we get that (w, y) — L(w)(z — eJ"ly) is measurable. Finally,
(w,y) = L(w)(z —eJ " ly)—y is measurable and thus Gr L(-)eX®B(X*). Since (,T,u) is
complete, by Himmelberg (10, Theorem 3.4], L.( - )z is measurable, i.e., L, is random.

Let {Xp},cN be an increasing sequence of finite dimensional subspaces of X, such

that cﬁ Xy is dense in X. For each n €N, let j, be the injection mapping of X, into X and j} its
n=1
dual. Clearly, the operator K,.:Qx X, — X} defined by K,.(w)z = jp(Le(w)+ T(w))jnz is
random and continuous. Since L (w)0 =0 and T is coercive, K, is also coercive.
By Itoh [2, Proposition 3.1] there exists a measurable mapping z,.:Q — X, such that

Kpe(w)zpe(w) =0 for all w € Q. Now, we have:
0 = (Le(w) Tne () + T(w) Tne (), Tne (W) 2 (T(w) Tne (W), Tne (w) 2 e ([ Zpe(w) 1)+ || zne(w) || -
It follows from the growth property of c(r) that there exists a comstant M >0 such that
| Zpe(w)]] <M for all neN, >0 and we. We set uy(w)= L (w)zy(w) and
Upe(w) = T(w)zpe(w). Because L, is bounded and T quasi-bounded the sequences {u,.(w)} and
{vne(w)} are bounded, therefore {unc(w)+ vy (w)} is bounded and, since oLj X, is dense in X, we
n=1

get that

Une(w) + Upe(w) B 0in X* asn — oo .

Let T, (w)=weakel {z;(w):i>n}, for every neN. Under the weak topology
Bp(0)={z € X: || z|| < M} is a metrizable space. Thus, by [10, Theorem 5.6] the multifunctions
T, are weakly measurable. Then the multifunction I';: @ — 2 Bar(®) defined by
I(w) = oﬁ Iye(w), for each we
n=1

is also weakly measurable [10, Theorem 4.1]. By the well-known theorem of Kuratowski and Ryll-
Nardzewski there is a weakly measurable selector z,: 2 — B),(0) of T;. Because of the separability
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of X, z, is also measurable when B (0) has the norm topology. For a fixed w € {2, there is a
subsequence of {z,.(w)} (denoted again by {z,.(w)}) such that

Tpe(w) 5 ze(w), asn — 00

Besides, we may assume that upe(w) > ug(w) and vne(w) B ve(w) as n — co.
It is clear that

u(w)+v(w)=0 forallwe

Let {ex}.en be a sequence of positive numbers such that e, —0, as x—oo. We set
2a(w) = 2 () and
R(w) = (ho weakel {z,(w):i 2 &}
As before, we deduce that there exixst—sla measurable mapping z: @ —»X such that z(w) € R(w)

for all w€ Q. For a fixed w € Q, there exists a subsequence of {z(w)} (which, we again denote by
{zx(w)}) such that

ze(w) B 2(w), up(w) = ug (w) 5 u(w) and yy(w) = ve (W) B uw), ask—o0.
Clearly,
yw)+v(w)=0 forallweN
As in the deterministic case [12], one can prove that
u(w) = [(w)z(w) and v(w) = T(w)z(w)

o Lw)z()+T(w)z(w) =0 forallwe
i.e., z(-) is the desired solution.

REMARK. The assumptions on L are satisfied when L is random, weakly continuous,
maximal monotone and L(w)0 = 0 for all w € Q. (In particular, when L is random, linear, maximal
monotone, with D; = X). Then, clearly, L is weakly closed. In addition, L is jointly measurable.
Indeed, if y is any element of X, the operator (w, z) — (L(w)z, y) is a Carathéodory function, hence
measurable. It follows that L is weakly jointly measurable and, since X* is separable, L is also
jointly measurable.

4. NONLINEAR RANDOM INEQUALITIES.

The theorem which follows gives a random version of Theorem 4 in [9].

THEOREM 4.1. Let X be a separable, reflexive Banach space, D a convex, closed subset of X
with int AfE( D)D # @ (i.e. the interior of D, relative to the affine space generated by D, is non-
empty). If ®:2x D — X* is a multifunction such that:

1) &(w)z is non-empty, convex and weakly compact subset of X* for all w € @ and z € D.
2) The functional z -, inf  (z* y), where z € D, is lower semicontinuous for all y € D — D and

weN. z* € B(w)z
3) There exists a compact set K C D and a point y, € K with the propertx mf (x’, z—yp) >0

for all z€ D\K and we Q.

4) The graph of the multifunction @|q, x (restriction of ® to N2xK) belongs to

£® B(K)® B(X*).

Then there exist measurable mappings ¢: @ — K and n: @ — X™* such that, for all w € Q,

7(w) € 2(w){(w) and (n(w),€(w)—y)<0 forallyeD.
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PROOF. We consider the multifunction F: @—K x X* defined by
Fw)={(r,z) € K x X*: 2 € ®(w)z and (2,2 —y) <0 for all y € D}

By Theorem 4 of Ricceri [9], we have R(w) # O for all w € Q. Let {y,}, ¢ N be a sequence of points
of D, dense into D. Note that:

F(w)= N {(z,2) € Kx X*: 2z € ®(w)z and (z, = — yp) < 0}
Defining Fyy: © — K x X* by l
Fp(w)={(z,2) € K x X*: 2 € $(w)z and (z, 7 — yy,) < 0}
we have that GrF = [} GrF,, and that

n=1

GrF,={(w,z,2)€AXKxX*: z € ®w)z and (2, z — y,) < 0}
={(w,z,2) EAXKxX*: (2,2 —yp) SO}NGr | g, g

Because K and X* are Suslin spaces, it holds B(K x X*)= B(K)® B(X*). The set
{(w, z,2) € X K x X*: (2,2 — y,) < 0}, being equal to A x {(z, 2) € K x X*:(z, x — y,) < 0}, clearly
belongs to L® B(K x X*). By assumption, Grd| Ox K belongs to
L® B(K)® B(X*) =L ® B(K x X*). So GrF,€eX®B(KxX*) which in turn implies
GrF eX®B(K x X*). By the selection theorem of Sainte-Beuve, there exists a measurable
mapping h: @ — K x X* such that h(w) € F(w) for all we Q. If we put h = (£,7) it follows that
£:Q — K and 7: Q@ — X* are measurable mappings, that n(w) € ®(w)¢(w) for all w € N and that

(M(w), &(w)—y) <0 forally€e DandweN.

We shall need the concept of separability for a random function ¢:2x X — R, where X is a
separable, metrizable and complete space (cf. Bharucha-Reid [7]).

Separable random functions are characterized in the following way (for the proof, see
Papageorgiou [14]): A random function ¢: 2x X — R is separable, if, and only if, there exists a
countable, dense set D C X and a N € £, u(N) =0, such that for w ¢ N and for r € X, there exists
a sequence t,, € D, such that z,, — = and ¢(w, z,) = p(w, z).

THEOREM 4.2. Let X be a separable, reflexive Banach space and K a closed, convex and
bounded subset of X. If T: Q2 x K — X* is a random, monotone and demicontinuous operator and
p:2x K — R is a random, convex, lower semicontinuous and separable function, then for each

measurable y: @ — X™* there exists a measurable z: ! — K such that
(T(w)z(w) — y(w), z(w)—2) < p(w, z) — p(w, z(w)) for all z € K and for almost all w € .

PROOF. We may assume that y(w)=0 for all weQ. We consider the multifunction
R:Q — 2K defined by
Rw)={z€ K: (T(w)z,z—2) < p(w, 2) —p(w, z) for all z€ K} .
From Browder (15], we have R(w)# @ for all we Q). Let D= {z,}, .\ be a countable dense
subset of K and N the p-null set postulated by the separability of ¢. Then, for all w € Q\N, we
have
[e.9]
R(w) = ﬂl{:c € K: (T(w)z, z— ) < p(w, 7,) — (w, z)}

n=
We set Ry(w) ={z € K: (T(w)z, z — z,) < p(w, z5,) — p(w, 7)}.

By Theorem 3.1 of Papageorgiou [14] the mapping (w, z) = (T(w)z, T — z,) — p(w, T,) + (w, T)
from (Q\N)xK to R is jointly measurable. So, GrR,€ EQ\ N ®B(K) and, consequently,
GrR = O(C]) GrR, € ZQ\ N ® B(K). Since the measure space (Q2\N, EQ\ N» 1) is complete, applying

1

n=
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Sainte-Beuve’s selection theorem, we get measurable z: Q\N — K such that z(w) € R(w) for all
weMN,ie.,

(T(w)z(w), z(w)-—2)<p(w, z)~p(w, z(w)) forall z€ K and almost all we N .
Now we prove an existence theorem for random inequalities involving a pseudomonotone operator T
and a random, continuous, convex function . It would be interesting to prove this theorem with
the same assumptions on ¢ as in the previous theorem.

THEOREM 43. If T:Qx K — X* is a random, pseudomonotone and bounded operator and
¢:QOx K = R is a random, convex and continuous function, then for each measurable y: Q@ — X*
there exists a measurable z:  — X such that (T(w)z(w)— y(w),z(w) — 2) < p(w, z) — Y(w, z(w)) for
alze K and we .

PROOF. We may assume that y(w)=10 for all we . Let {X,}, <N be an increasing
sequence of finite dimensional subspaces of X, whose union is dense in X. We denote j,: X, = X,
the injection mapping of X, into X, and jj: X* — X;, its adjoint. We then define
Tha: Ax K, — X}, where K, = KN X,, by Tp(w)z = jj T(w)jpz.

We consider the multifunction R,(w) = {z € K;: (Tp(w)zx, z — z) < p(w, 2) — p(w, ) for all z € K,}.
From Browder [15], we know that R,(w)# @ for all w€ Q and n €N. Let {zp},, ¢ N be a dense

sequence into K,. We have Rp(w) = oﬁ {z € Kp: (Ty(w)z, T — 21p) < p(w, 2n) — p(w, T)}.
m=1
As in the proof of the previous theorem, we deduce that GrR, € £ ® B(K,) and, by Sainte-

Beuve’s selection theorem, there exists z,: 2 — K, measurable, such that z,(w) € R,(w), for all
weNie.

(T(w)zn(w), zn(w) = 2) S p(w, 2) — p(w, Tp(w)) for all z € Ky (41)
Let T,,: @ — 2K be defined by I'y(w) = weakel {z(w):i 2> n}, for each n €N, and let I': 2 — 2K be
such that I'w) = oﬁ) Ty(w) for all w € N.

=1

n
As in the proof of Theorem 3.2, we deduce the existence of a measurable mapping z: Q2 = K

such that z(w) € I'(w), for all w € Q. Fix w € N. There exists a subsequence of {z,(w)}, which we
again denote by {z,(w)}, such that z,(w) B z(w) € K.
Since T is bounded, we may assume (passing to a subsequence, if necessary) that

T(w)zp(w) B u(w). Now, take z€ K = cl ( oLj K ,,). On can easily verify that (4.1) implies
n=1

lim sup (T(w)zp(w), Zn(w) — 2) < p(w, 2) — p(w, 2(w)) (42)
Putting z = z(w) € K in (4.2) we get :
lim sup (T(w)zn(w), Tn(w) — #(w)) <0 .
The pseudomonotone property of T(w) implies
u(w) =T(w)z(w) and (T(w)an(w), 2zn(w)) = (T(w)z(w),2(w))
So, inequality (4.2) becomes:
(T(w)e(w)a{w) ~ 2) S p(w, ) - plw, 2(w)), for any z € K .

REMARK. Our result generalizes Theorem 24 of [16].
5. A RANDOM HAMMERSTEIN INTEGRAL EQUATION.

We study now a random nonlinear Hammerstein integral equation of the form

u’(w) x) + IK(w’ z, y) f(wv Y, u(w’ y)) dy = w(w’ :L‘) (51)

where  and A are o-finite measureAspaces. Without loss of generality, the function w(w, ) may be
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taken to be zero. Let 1 < p,q < 0o, such that %+% =1.
THEOREM 5.1. Let f: 2x A xR — R be a function such that:

1) For all u€R the function (w,y)— f(w,y,u) is measurable and for all (w,y)€NxA the
function u — f(w, y, u) is continuous.

2) There exists functions a(w, y), with a(w, -) € L% (A) for all w € R and b(w) > 0 such that:

| flw,y,u)| <alw,y)+bw)|ulP~! forallwe®, ye 4, ueR

3) For all we and y€ A, f(w,y,u) is strictly monotone increasing with respect to u, ie.,
u>u' = f(w,y,u)> flw y, u)
4) There exist functions ¢;(w, y), with ¢;(w, -) € LY(A) for all w € N and ¢y(w) > 0 such that:
f(w,y,u)uZcz(w)|u|p—c1(w,y) forallwe®, ye A, ueR.

5) There exists a function c:R+ — R, with ¢(r) = + 0o as r — + 00, such that:

[ £, uw)uw)dy 2 e(llull p)- fullp  for all ue LP(4).

And let K: 1x A x“A — R be a function such that

6) (w,z,y)— K(w,z,y) is measurable.

7) The operator v(-) = w(-) = IK(w, -,¥)v(y)dy maps LI(A) into LP(A) for all w € .
A

8) j JK(w, 2, y)o(y)v(z) dyde >0 for all w € Q.

AA
Then there exists a function u: @ x A — R, jointly measurable, with u(w, -) € LP(A) for a.a. (almost
all) w € Q, which satisfies (5.1) for a.a w € @ and a.a. z € A.

PROOF. Consider the operator N(w)u(:)= f(w,-,u(-)). For every w€ 2, we know, by
assumptions 1) and 2), that N(w)(-) is a bounded, continuous operator from LP(A) into LI(A).
Also, from 3) and 4), it follows (see Browder [17, Proposition 1]) that for each w € Q, N(w)(-)is an
operator of type (5), hence, also, of type (M).

Fix u € LP(A) and consider the map w — N(w)u. We have

et Nl g <ar ={oen: [ 7t u)]*dy <ot}
By assumption 1), the function (w, y) = f(w, y, u(y)) isAmeasurable, hence

(w,y) = | flw, 4, u(®) |?

is measurable and so, by Fubini’s theorem, w — I | f(w, y, u(y)) | 9dy is also measurable. Therefore,

A
the above set is measurable and this proves that w — N(w)u is measurable. So

N:Qx LP(A) — LY(A) is random.

Also, assumption 5) means that, for all weQ, N(w)(-) is a coercive operator, ie., N is
coercive.
Next, we consider the linear integral operator B(w)( - ) defined by

B(w) o(-) = [K(w, - ,y)v(y)dy -
From assumption 7), for each w € Q, B(w)(-) id'an operator mapping LY(A) into LP(A). Hypothesis
8) means that B(w)(-) is positive, so, being linear, is also monotone. It follows that B(w)(-) is
continuous.
Now fix v € LI(A) and consider the mapping w — B(w)v. We have
weQ: || Bw)v|p<e}= {w €N: J IK(w, z, y) v(y)dy| dz < e”}
By assumption 5), the function (w, z,y) — K(w, z,?;)ﬁty) is measurable, therefore the same holds

for



118 A. KARAMOLEGOS AND D. KRAVVARITIS
(@,2) > [ K(w, 7, 9)o(y)dy
and for A
(@ 2) | [ K(w,z, y)v(y)dyr
and, finally, for A
w—-»J JK(w, s, y)v(y)dyrdz.
AlA

So, the above set is measurable and this proves that w — B(w)v is measurable, i.e.,

B: QO x LYA) — LP(A)

is random. Rewrite equation (5.1) as

uw(w) + B(w) N(w)u(w) =0. (5.2)
Invoking Theorem 3 in [4] we conclude that (5.2) has a solution @ € B(Q}, LP(4)). By Theorem

I11-17 of Dunford Schwartz [18] we deduce that there exists u: 2 x A — R, jointly measurable such
that u(w, -) = G(w)(-) for a.a. w € Q. So u(w, - ) € LP(A) for a.a. w € N and u(w, ) satisfies (5.1) for
a.a. w € and a.a. z € A.

10.
11.

12.

13.

14.
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16.
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18.
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