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ABSTRACT. The classes Tk(O), 0 0 < I, k > 2, of analytic functions,

using the class Vk(O) of functions of bounded boundary rotation, are

defined and it is shown that the functions In these classes are close-to-

convex of higher order. Covering theorem, arc-length result and some radii

problems are solved. We also discuss some properties of the class Vk(P)
including distortion and coefficient results.
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I. THE CLASS Pk(o)
Let Pk(o) be the class of functions p(z) analytic in the unit disc E

{z:IzI<l} satisfying the properties p(0) and

2Re_(z) pf _,- Id0 k.,
0

(1.1)

i0
where z re k2 and O<p<l. This class has been introduced in [I]. We

note that, for offi0, we obtain the class Pk defined by Pinchuk [2] and for

0, k 2, we have the class P of functions with positive re’a1 part. The

case k 2 gives us the class P(p) of functions with positive real part

greater than p.

Also we can write

2 -it+ (I 2p) ze d(t)p(z)
-it

0 ze

where (t) is a function with bounded variation on [0,2] such that

and

2
J dr(t) 2
0

2

0

(1.3)

From (I.I), we have the following.
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TIIEOREFI 1.1. Let p c Pk(O). Then

k
(z) (z),pCz) (Z+-) pl (--) p2

whee pi P(0), 1,2.

We now prove.

THEOREH 1.2. The class Pk(p) is a convex set.

PROOF. Let 1t
1, i12r. Pk(O). We shall show that, for a, B 0

belongs to Pk()"
From Theorem 1.1, we can write

k ktl(z) ---- [{(g + ) PlCZ) ( )

+ {(_u k
4 ’+-) P3 (z) (" ’) P4 (z)

where pie P(O), 1,2,3,4.

Now, writing pi(z) (1-O) hi(z) + o, i=1,2,3,4, see [3],

we have

tl(z)-o k
(z) + fh (z))} (_k

o ( + 7 I-g; (-
3 7) l-( 2

+ h (,-)

(k (z) (_k (z),

where fl and f2 . P, since P is a convex set, see [2] and this gives us the

required result.

THEOREH 1.3. Let p c Pk(O) and be given by (z) + E e z Then

27
i0 2 l+[k2(l-o) 2-t r

2
(i) T; f ip(re )i dO

20 r

and

o) k(l-o)(ii) f Ip’( rei Ido 20 -r

PROOF. (t) Using Parseval’s identity, we have

21
1___ f ip(re )i2dO I 2 2"2rr

0 n=O n

k2 -1 r+ k2(1-0)2 E r
2n I+[ (l-o)

2n=l (1 -r
where we have used an easily establtsled .qharp result Icn lk(1-o), for all
nl.
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(ii) By using Theorem I.L, we can write

(_p(z) o 4
+ )(I-P) hl(z) ( -) (l-o) h2(z),

where hi, h2 c P.

Therefore,

(1.4)

Now, for all h.P, we have

2w’(z)h’(z) (l+w(z-)-) 2

where w(z) is a Schwarz function [3], and

2w

W f
0

21I
iO)ldo o

2
2

l-r
(1.5)

llence, from (1.4) and (1.5), we have

i0) id0J Ip (re 2-’
0 l-r

which t8 the required result.

From Theorem I.I and tlle properties of the class P(O), we immediately

have the followlng.

THEOREM 1.4. Let p Pk(O). Then

2-k(l-o)r + (l-2o)r + k(l-p)r + (l-2o)r 2

2
Re p(z)

2
-r -r

THEOREM 1.5. Let pPk(p). Then peP for [z] < ro, where r
0

is given by

ro= 2/[k(l-o) + 4k2(l-o) 2 4(l-2p)], p (1.6)

When o=O, we obtain the results proved in [2].

2. ’tl cAss

DEFINITION 2.1. Let Vk(0) denote the class of analytic and locally

univalent functions f in E with normalization f(0) -0, f’(0) and

satisfying the condition

(zf’(z))’
f’(z) Pk(O), 0 < p < 1, k 2

When o-0, we obtain the class Vk of functions with bounded boundary rota-

tion. The class Vk(p) also generalizes the class C(p) of convex functions

of order .
It can easily be seen [l] that f e Vk(o) if and only if there
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exists F e Vk such that

f’(z) (F’(z))i- (2.1)

In the followlng, we will study the distortion theorems for the class

Vk(o). We will use the hypergeometrlc functions

nr(c) z r(a+n) r(b+n) zG(a,b; c,z) r(a) r(b) n=O r(c+n) n’.

r(c)
u
a-I (l_u)C-a-I (l_zu)-b du,r(a)r(c-a)

0

where Re a>O and Re(c-a)>O. These functions are analytic for z.E [4].
In addition, we define the functions

2
b-I

-IMl(a,b; c,r)----a [G(a,b; c,-l)- rla G(a,b; c,-r )]
and (2.2)

2b-I
H2(a b; c r) [G(a b; c,-l) r G(a b; c-rl)a

r
where rl + r

THEOREH 2.1. Let f Vk(O). Then, for [z r (0 < r < I), we have

bt2(a,b; c,r) g if(z)l g Ml(a,b; c,r), (2.3)

where

a (-- l) (I -o) + l,

b =2o

c (- l) (l o) + 2

(2.4)

and Hi, M
2

are as defined in (2.2).

This result is sharp.

PROOF. Using (2.1) and the well-known bounds for IF’(z)l with FCVk, see

[2], we have

k

z_ )( -o
k
(+ ) (I-o)

k

k

c I--I)c / l)(l-o)
(2.5)

Let dr denote the radius of the largest schlicht disk centered at the

origin contained in the image of Izl < r under f(z). Then there is a point

I’-o] , such that If(’- )1 dr- The ray from 0 to f(z lies
o o o

entirely in the image of E and the inverse image of this ray is a curve in

Thus

d If(z )1 f If’(’-)l Idolr o
C
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k- l) (l-o)

kc (- + l) (i-o)

b
(’-"- t)
2

k

(l+t)( + l)
dt

k

f cT;7)
o

dt

(l+t)2CL-o)

l-t -2
Let 4- Then )2- dt d

l+t

So

k

lC--o>l 2- I
0

(1+6)-20

l) (L-o)
(1+0-20 d}

Put
1- z r

r rluand+r

This gives

2b-IIz )! 1oa b; c-1) -r G(a b; c-rl)0 a

M2(a,b c,r),

where a,b,c and M
2

are respectively defined by (2.4) and (2.2).

Similarly we can calculate the lower bound for If(z) and this

establishes our result.

Equality is attained in (2.3) for the function f c Vk(O) defined by
o

f’(z)
o

k

6tz)(- t)
(t +

k

62z)(- + 1) (1 O)
(1

now study the behaviour of the integral transform

z
f (z) f (f,())c dd
a 0

(2.7)

for fV
k
(0)

This problem has been studied for the class of univalent normalized

functions in E and for the close-to-convex functions, see [3]. /e have
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TIIEOREH 2.2. Let . Vk(o), 0 0 < l, k 2 and let a, O<a<l be

given. Then f V for mla(l-p)(k-2)+2].

PROOF. From (2.[), we have

f’(z) (F’(z)) I-0 F e V
k

Now

(-o)
f’(z) (f’(z)) a (F’(z))

--exp -log (l-e-it) a(l-o) din(t)

exp -log (l-e-It) d0(t),

where do(t) a(l-o) din(t) + [I a(l-O)] d_.t

Also

l-a(l-o)J d0(t) a(1-o) din(t) +-- dt 2
--W --1I I

and

i,
l-a(l-0)Ido(t)l a(l-o) Idm(t) + dt

--f[ --7 --1

a(l-o)k / 211- a(l-o)]

Hence tile result.

2
We note that fa is univalent for a < (l-o)(k-2) since Vm consists

of univalent functions for 2 m 4. Hence f is unlvalent even if f is

2
not unlvalent provided a < (l-o)(k-2)"

Using tile standard technique, we can easily prove the

following.

THEOREM 2.3. Let g,heVk(O) and let a > O, 8 > 0 and a + 841 o. Then

Z

H(z) (g’(t)) a (h’(t)) 8 dt
0

iS convex of order 01 (I I_--Z for [z < r

where

[k lk
2 4] (2.8)

The result is sharp when

l_z.(-)_ I)(l-O)

g’(z) h’(z) [(

t( I+z)(- + I)(I-o)
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We now prove the following.

THEOREM 2.4. Let f:f(z) z + E anz E Vk(O). Then, for all n > 3,

2 <k <=.

I%1 < [k2(l-p) 2 + k(l-o)] 2-20 (._)2n (1-O)(--
+ 1) 2

The function f defined by (2.6) shows that the exponent
O

k[(I-o)( + I) 2] is best possible.

PROOF. By definition, we have

(zf’(z))’ f’(z) p(z), p Pk(p)
Set

F(z) (z(zf’(z))’)’

f’(z) [p (z) + zp’(z)]

i0For z re we have

21
2n lnl’ n-3 f if’(z)l iP (z), zp’(z)ldO

27 r 0

Using (2.5) and theorem 1.3, we obtain

(t+r)
n n-3

(l-r)

(t-)(2-)
2_1 2

"-k-. {l+JkZ(l-P)-- 2}r + k(l-0)

(t-o)--) r

(i-o)()-t
(L+r)

n-3 k+2.r (l-o)(T+t
(l-r)

3Let r n > 3. Then

{l+k(I-o) + [k2(1-0) 2-1 Jr 2}

31ani [k2(l-O) 2 + k(l-o)]e 3. (2 3)
k+2.

[k2(l-p)2+ k(l-p)]e3.()
.k+2.

l-o)(T-2] n 3:z- ( -)
k

(1-o)(-

Thus, for n)3,

lan < [kZ(1-p)2 + k(l_o)](2)-2o. (.__)2n
k

(l-o)(+ t) 2

THEOREM 2.5. Let f c Vk(p), o $ 1/2. Then f maps [z] < r
0

onto a convex

domain where r
0

is given by (I.6). The function f defined by (2.6)O’
shows that this result is sharp.
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The proof is straightforward and follows immediately from the defini-
tion and Theorem 1.5.

Furthermore it can easily be shown that if f c Vk(O) then f is con-
vex of order 0 for Izl ( r where r is given by (2.8).

3. VIlE CLASS

A class Tk of analytic functions related with the class Vk has been
introduced and studied in [5]. We now define the following.

DEFINITION 3.1. Let with f(O) O, f’(0) be analytic in E. Then

fcTk(o), k ) 2, 0 p<l, if there exists a function gcVk(p) such that

f’(z)
g’(z) e P for z e E.

Note that Tk(O) T
k

and T2(O) is the class of close-to-convex

functions.

THEOREM 3.1. Let Tk(O). Then

If(z)l )biz(a+l b; c+l,r),

where H2(a,b; c,r) is defined by (2.2) and a,b,c are given by (2.4).

This result is sharp.

PROOF. Since f c Tk(o), we can write

f’(z) g’(z) h(z), g c Vk(0), h c P.

It Is well-known that for h e P

(3.1)

Thus, using (3.1) and (2.5), we have

k

]-’(z) .(t zl)
( *)(*-) +

k

(1 +

Proceeding in the same way as in Theorem 2.1, we obtain the required

result.

REMARK 3.1. When 0=0, fcTk and since in this case b 0<1, c l+a-b,

we have G(a,b; c, -1) 1. Letting r 1, with 0- O, in Theorem 3.1, we

see that the image of E under functions f in Tk constalns the schllcht

disk Iz[ < k+’-"
We now give a necessary condition for a function f to belong to the

class Tk(O).

10THEOREM 3.2. Let f c Tk(). Then, with z re and 01< 02; O(o<l,



SUBCLASSES OF CLOSE-TO-CONVEX FUNCTIONS OF HIGHER ORDER 287

02 (zf’(z))’
dO > -k(l-o) --f Re

,(..)o

PROOF. We can write

’(z))
I-p

(h (z))
I-p

f’(z) (gl for some gl e Vk, hle P.

So
f’(z) (gl(z) hL(z))l- (f(z))

-p
(3.3)

for some fi e Tk.

Hence

(zf’(z))’
f’(z)

(zf(z))’
’(z) + o(x-o)

ft
The required result follows on noting that, for 01< 02, fl e T

k

02 (zfl(z))’ kf Re
f[(z)

dO > see [5].
0

REMARK 3.2. In [t], Goodman introduced the class K(8) of normalized

analytlc functions which are close-to-convex of order 8 0 and showed that

if f is analytic in E and f’(z) O, then for 8 > O, feK(B) If for z re

and 01 < 0
2

z (zf’(z))’f Re f’(z) dO >- 8n

When 0 B < I, K(B) consists of univalent functions, whilst if

B > I, f need not even be finitely-valent.

We note that Theorem 3.2 shows tl,at

z(k(1-O))Tk(p)6__._ --’-
2Hence Tk(p) consists entirely of univalent functions if 2 (k (I--" It

also follows easily from the definition that the class Tk(p) forms a sub-

set of a llnear-invariant family of order [--(l-p)+l].
Using the method of Clunle and Pommerenke as modified by Thomas [7],

we can easily prove the followlng:

THEOREM 3.3. Denote by L(r,f) the length of the image of the circle

i0). Then, for 0 < r < I,
u[ffir under f and by M(r) max If(re

L(r) < A(k,p)M(r) log-i-i{

where A(k,p) is a constant depending only on k and p.

Let P denote the class of functions p(z) in E given by
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p(z) + e l. + 2
which satisfy the Inequality

The class P has been introduced in [8] and it is shown there that, for

p’(z) (I + c)
p(z)

, (3.4)
(1 + cr)(l r)

where c 2a

We now prove the following.

f’(z)
THEOREM 3.4. Let g e Vk(o) and let g’(z) c Pa, l" Then f is a convex

function of order p for [z < r where r c (0,I) is the least

positive root of the equation

(l-p)cx [(p+c) + ck(l-o)]x2 + [p(k-c) (l+k)]x + (l-p) 0

PROOF. We can write

,(z))
l-p

f’(z) (gl p(z), gl Vk, P Pa,
So

fi(z) -O] )(l-O) Re
gi(z) 1- p(-)-

Using Theorem 1.4 with p 0 and (3.4), we have the required result.

Furthermore, if

2T(r) (l-o)cr [(p+c) + ck(l-p)]r + [0(k-c) (l+k)]r +

then we note that

T(O) (l-p) > o

T(1) -20c 20 ck(1-p) k(1-p) < 0

Thus r e (0,I).

COROLLARY 3.1. When x 0, c and o 0, f Tk. Thus f maps

Izl < r -1/2[(k+2) -Ck
z + 4k] onto a convex domain and this result is

sharp, see [5].

if’(z), and then we have ’g’(zO < forCOROLLARY 3.2. When o=O,

g Vk. Then f is convex for Izl < r =F. For k-4, V
k

consists of

unlvalent functions and in this case r =- This result is proved in [8].

For a O, k 4 and p 0, we obtain the known result r 3 22 of

Ratti [9] and when k 2, we have the well-known result giving us the

radius of convexity for close-to-convex functions.
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Finally we have

THEOREM 3.5. Let r. Vk(0) and let

l-m
z
m

F(z) "r z E(z) I’, m 1,2,3,.

Then F E Tk(0) for all [z < r2, where, for

r
2 2(l+m)/[(l-o)k + ,/(l-o)2k 4(l-20-m)(l+m)],

The proof Is straightforward when we note that

F’(z) (zf’(z))’

and then use theorem 1.4.
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