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ABSTRACT. The classes Tk(p), 0<p<1l, k »2, of analytic functions,
using the class Vk(p) of functions of bounded boundary rotation, are
defined and it is shown that the functions In these classes are close-to-
convex of higher order. Covering theorem, arc-length result and some radii
problems are solved. We also discuss some properties of the class Vk(o)

including distortion and coefficient results.
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1. THE CLASS Pk(p)
Let P(p) be the class of functions p(z) analytic in the unit disc E =
{z:lz](l} satisfying the properties p(0) = 1 and

27 R (z) -
f l—s—¥—§*;——g|d0 < km, (l.1)

where z = relo, k>2 and 0<p<l. This class has been introduced in [l]. We

note that, for p=0, we obtain the class Py defined by Pinchuk [2] and for p
=0, k = 2, we have the class P of functions with positive real part. The
case k = 2 gives us the class P(p) of functions with positive real part

greater than p.

Also we can write

n 1 + (1 = 2p) ze-1t

-it

1
pez) 2 g 1 - ze

where u(t) is a function with bounded variation on [0,2n] such that

du(t), (1.2)

2n .
[ du(t) =2 ]
0

and (1.3)
2

L
[ aue)] <k
0

From (l.1), we have the following.
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THEOREM 1.1. Let p ¢ Pk(o). Then

p(2)=( + )p(Z) )p(z)
whee PyE P(p), i = L,2.
We now prove.
THEOREM 1.2. The class Pk(n) is a convex set.

PROOF. Let “l’ H, e Pk(p). We shall show that, for a, R > 0

2
H(z) = ?lE [« 8y (2) + 8 Hy(2)]

belongs to Pk(p).

From Theorem l.l, we can write

W) = o (ol + D p@) - & - D py(a)}

+ RGP py(2) - E =) p(2)]],

where P P(p), 1 = 1,2,3,4,

Now, writing pi(z) = (1-p) hi(z) + p, 1=1,2,3,4, see [3],

we have

H - k 1 1
Make . k4 ) [i7 (ah @) + RhyGD ] - G - D oy () + e, ()]

-EEP L@ - E-D @,

where t'l and fze P, since P is a convex set, see [2] and this gives us the

required result. -

THEOREM 1.3. Let p ¢ P, (p) and be given by p(z) =1+ I cnzn. Then

n=]
27 2 2 2
(1) %_ ! Ip(reio)lz do < 1+[k“(1-p) "~1]r
L 2
0 l1-r
and
2n
A1) 2 [ pt(rel® a0 ¢ ko)
n 2
0 1 -r
PROOF. (i) Using Parseval's identity, we have
21! oo
1 i
T [ Ip(re e)I%G = I Icnlz 2"
0 n=0
5 ® 2 2 2
1ekiaep? s 2 o LG e
n=1 (l -r )

where we have used an easily establiﬁhed sharp result Ic |<k(l-p), or all

n>l1,
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(ii) By using Theorem l.1, we can write

P(2) = o = G+ PU=p) b (2) = G =D (=) hy(a),

where hl’ h2 € P.
Therefore,
PU(2) = 4+ D) (1-p) m(2) - & -y (1-p) ny(2) (1.4)
472 | 472 Sy :
Now, for all heP, we have
L]
h'(z) - 2—"&2__.2— N
(1+w(z))
where w(z) is a Schwarz function [3], and
2n 2n ' ie
-;-; [ Ihr(re!%)ao -;—; [ witre D] Ie 5 o
0 0 11 + w(re™ )|
< —2'7 . (1.5)
l1-r
Hence, from (l.4) and (1.5), we have

2
i k(1-
T | lereretDlae K2,

which

have

1 - k(1-p)r + (1-2p)r

l1-r

is the required result.
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From Theorem l.1 and the properties of the class P(p), we immediately

the following.

THEOREM 1.4. Let p € Pk(p)- Then

1 + k(l-p)r + (l-Zp)r2

When

2.

satis

< Re p(z) <
1 - rz 1 - r2
THEOREM 1.5.  Let peP, (p). Then peP for lz] < £y, vhere ro
2 2 1
ro= 2/ [k(1-0) + /k"(1-p)" - 4(1-20)], o # 3 (1.6)

p=0, we obtain the results proved in [2].

THE CLASS Vi (o)

is given by

DEFINITION 2.1. Let Vi(p) denote the class of analytic and locally
univalent functions f in E with normalization £(0) = 0, £'(0) = 1 and

fying the condition

GO p, 0cp<l, k2

When p=0, we obtain the class Vi of functions with bounded boundary rota-

tion.

The class Vi (p) also generalizes the class C(p) of convex functions

of order p.

It can easily be seen [1] that £ e Vi(p) 1f and only if there
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exists F ¢ Vi such that

£'(z) = (F'(z)""° (2.1)

In the following, we will study the distortion theorems for the class

Vk(p). We will use the hypergeometric functions

. . I ;  Datn) r(ben) 2"
6(a:bs =) = Tayrey B, T TCern) al
r(c) !

----- f ua"1 (l-u)c‘ﬂml (l-zu)-b du,
0

where Re a>0 and Re(c-a)>0. These functions are analytic for zeE [4].
In addition, we define the functions

b-1
M, (a,b; c,r) = Z;-— [6(a,b; ¢,-1) = rla G(a,b; c,-rll)]
and (2.2)
b-1
M, (a,b; c,r) = 2 [G(a b; c,-1) - r G(a,b; ¢,-r )]
2 ’ ’ » a ’ ’ ’ l » » » l »

I - r
where L r

THEOREM 2.1. Let f ¢ Vk(p). Then, for Izl =1 (0 <r <1), we have

Mz(a,b; c,r) < |f(2)] < Ml(a,b; c,r), (2.3)
where
a=&E-nDa-o+1,
2 [ ’
b = 2p (2.4)
c=G-D -9 +2 .

and M, , M are as defined in (2.2).

1’ 2
This result is sharp.

PROOF. Using (2.1) and the well—known bounds for |F'(z)| with Fev, , see
[2], we have
& - D-p) & - DO-p)
(l - lzl) < lf'(Z)l < (1 + Izl) (2'5)
(541 Q-p) & + DO-0)
(a+ |z ' - |z

Let d,. denote the radius of the largest schlicht disk centered at the
origin contained in the image of |z| < r under f£(z). Then there is a point
z ), lzol = r, such that |f(zo)| = d,. The ray from 0 to f(zo) lies
entirely in the image of E and the inverse image of this ray is a curve in
!zl <r.

Thus
dr = |f(zo)l = é [£'(z)] |dz]
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(-1 (-0
}f _(_I.LLZ.L)..‘:..-__---“ ldzl
c G+ 1) (1-p)
o+ |z
k
> = 1 (1=p)
2l 1oy 7!
> f (—l—t-’)-k_"-""-“-‘- dt
o (5 + 1) (1-p)
(1+t)
k
) }zl (L-_s)(i' D=0 g
° 1+ (140)2(1=0)
1-t -2
Let —— = f. Then —=---> dt = df .
1+t (14t)
So
k
1 (-1 (1-p)
ORI I B 1+ 720 ag
0
= &
1+|z (E - 1) (1-p) -2
- £ (1+£)"“P de}
0
1-|z 1l -r
Put Wizl T+~ "1 and § = ru .
This gives

2"-1 a
|f(z°)| > {6(a,b; c,-1) - r G(a,b; c,-rl)}
= Hz(a'b) C,l‘),

where a,b,c and M, are respectively defined by (2.4) and (2.2).

2
Similarly we can calculate the lower bound for |f(z)]| and this

establishes our result.

Equality is attained in (2.3) for the function foe Vk(p) defined by

(
(1 + 612)

(
(1 - Gzz)

- 1) (1-p)

N|=

£1(z) = v sl =gl =1 (2.6)

=

+1) (1 -9p)

We now study the behaviour of the integral transform

z

£()= (£7(eN® ae 2.7)

0

for fer(p)
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This problem has been studied for the class of univalent normalized

functions in E and for the close-to-convex functions, see [3].

We have
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THEOREM 2.2. Let f ¢ Vk(p), 0< p<1l, k >»2 and let a, 0<aKl be
given. Then £ ¢V  for n<{a(l-p)(k=-2)+2}.

PROOF. From (2.1), we have

£ ) = NP, Fev,

Now

(£ (2 = (F'(2)) ™)

f'(z)
a

mn
=exp [ -log (l-ie-it) a(l=-p) dm(t)

-n

n
exp [ ~-log (l-ge—it) du(t),
-

where  du(t) = o(l-p) dm(t) + [1 = a(l-p)] %2
Also

" " 1-a(1-p) "
[ du(t) = a(l=p) [ dm(c) + — [ dt =2,
-n -u -

and

" N 1-a(1-p)
[ ldu(e)] < o(1-p) [ Jdm(e)] + — [ at
-

< a(l=p)k + 2[1 = a(l=-p)] .

Hence the result.
2

We note that fa is univalent for a < (=9 (k=2) ° since V consists
of univalent functions for 2 < m < 4. Hence fu is univalent even if f is
not univalent provided o < ?T:S%(E:f)'

Using the standard technique, we can easily prove the
following.

THEOREM 2.3. Let g,hevk(p) and let o »0, B >0 and a + B<l - p. Then

z

H(z) = [ (g'(eN® (h'(e))? ae
0

is convex of order p, = (1 - giﬁ) for |z| < r,,
1 1-p 1

where

r, =3 [k -’ - 4] (2.8)

The result is sharp when
k
G - D(1-p)

g'(2) = h'(z) = ({72 ].
(5 + 1)(1-p)

(1+z)
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We now prove the following.

L

THEOREM 2.4. Let f:f(z) =z + ¢ anzn € Vk(p). Then, for all n > 3,
n=2
2 <k e,

k
(1-p)(5 + 1) -2
2 -2 2
la | < [P (1-0)% + k(1=p)] 2720 2B
The function f0 defined by (2.6) shows that the exponent

[(l-o)(% + 1) - 2] is best possible.

PROOF. By definition, we have

(z£'(z))' = £'(z) p(z), »p e P (o) .
Set

F(z) = (z(zf'(z))')’

= £'(2) [pi(2) + zp'(2)] .

For z = reie, we have

3 1 2m 2 ,
n lanl < —"—F_’i (f) [£'(2)| |p“(z) + zp'(2)]de

Using (2.5) and theorem 1.3, we obtain
k-2

(1-0) (53 .
nsla | < L (L+r) 2 {1+{kz(l-o)z-l}r2 + k(l-p)}
o (-0 (32 1 -2
(1-r)

)(1—»)(“2;2)-1

1 (l+r 2 2 2

=3 o {1+k(1=p) + [kK°(1=p) -1 }c 7}
r (l_r)(l‘o)(—z')ﬂ

Let r-l—%, n > 3. Then

k=2 k+2
. -2 (- &4
n’la| < [1KP(-p)? + k(1-p) Je?. (2 -3 2D 2
k+2 k
(-] 3 (1-p)(% - 1)-1
= [a-0)% k(-p) Je’. B 2T L e 2

Thus, for n>3, "
(1'9)(5 +1) -2
lagl < (=) + k(=p) J(272°. 2R

THEOREM 2.5. Let f ¢ Vg(p), p # 12. Then f maps |z| < r, onto a convex

domain where Ty is given by (l.6). The function fo’ defined by (2.6)

shows that this result is sharp.
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The proof is straightforward and follows immediately from the defini-
tion and Theorem 1.5.

Furthermore it can easily be shown that if f ¢ Vi(p), then f is con-
vex of order p for lzl < rl where tl is given by (2.8).

3. THE CLASS Ty(p).

A class Ty of analytic functions related with the class Vk has been
introduced and studied in [5]. We now define the following.

DEFINLTION 3.1. Let f with f(U) = 0, £'(0) = 1 be analytic in E. Then
feTe(p), k > 2, 0 < p<l, if there exists a function geVi(p) such that

r
%7%%% e P for z ¢ E.

Note that Tk(O) = T,  and T2(0) is the class of close-to-convex

k
functions.

THEOREM 3.1. Let f ¢ Tk(p). Then

[£(z)] > M,(a+l, b; c+l,r),

where Mz(a,b; c,r) is defined by (2.2) and a,b,c are given by (2.4).
This result is sharp.

PROOF. Since f € Ty(p), we can write

£'(z) = g'(z) h(z), g ¢ Vk(p), h € P.

It is well-known that for h € P

Inerl > 152 (3.1)

Thus, using (3.1) and (2.5), we have

- 1)(1=-p) + 1

'f'(z)l > a - l2|)
+ 1)(1-p) + 1
L+ |z])

Proceeding in the same way as in Theorem 2.1, we obtain the required
result.

REMARK 3.1. When p=0, feT, and since in this case b = 0<l, ¢ = l+a-b,
we have G(a,b; c, =1) = 1. Letting r + 1, with p = 0, in Theorem 3.1, we

see that the image of E under functions f in Ty constains the schlicht
1
disk |z] < ot

We now give a necessary condition for a function f to belong to the

class Ty(p).

THEOREM 3.2. Let f ¢ Tk(p). Then, with z = reie and 91( 62; 0<p<1,
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PROOF . We can write

f'(z) = (g'(z))l—p (h (z))l—”, for some g e V., h e P.
1 1 1 k 1

So 1- 1-

£'(2) = (g](2) h ()% = (£](z)) "7, (3.3)
for some flc Tk.
Hence

Al 1
(E'(2))" (1o (zfl(z)) N
£7(2) S i

The required result follows on noting that, for 01< 0,, fle Tk

0 (z£3(2))"'
2 1 k
Re "—fi'(-z's‘" do > - 77 see [S].

O

REMARK 3.2. 1In [1], Goodman introduced the class K(B) of normalized
analytic functions which are close-to-convex of order B > 0 and showed that
if f is analytic in E and £'(z) # 0, then for B > 0, feK(B) if for z = relo

and 91 < 02

0 L] L]
f 2 Re 55%7%5%1— de > - Bn

1
When 0 < g < 1, K(B) consists of univalent functions, whilst if
B > 1, £ need not even be finitely-valent.

We note that Theorem 3.2 shows that
k(1=
'rk<o)c_x(—(—2ﬁ) .

Hence Ty (p) consists entirely of univalent functions if 2 < k < T%;' It

also follows easily from the definition that the class Ty(p) forms a sub-
set of a linear-invariant family of order [%(l-p)*l].

Using the method of Clunie and Pommerenke as modified by Thomas (7],

we can easily prove the following:

THEOREM 3.3. Denote by L(r,f) the length of the image of the circle

ie
jul=r under £ and by M(r) = max|f(re' )|. Then, for 0 <r <1,
0

1
L(r) < A(k,p) M(r) log 1< °®

where A(k,p) is a constant depending only on k and p.

Let P denote the class of functions p(z) in E given by
a,l



288 K.I. NOOR

2
Z + Co72 t cercccsccceccs

p(z) =1+ ¢ 2

1
which satisfy the inequality

1 1
|p(z) - EE‘ <oz 0<cadl
The class Pa 1 has been introduced in [8]) and it is shown there that, for
i)
p e Pu,l' ]z =r < 1.
L]
jRz)y (L *e) (3.4)

P (v eyt - 1)
where c=1-=-2a

We now prove the following.

£'(z)
THEOREM 3.4. Let —_— .
et g ¢ vk(”) and let £ (2) € Pa.l Then f is a convex

function of order p for Izl < r where r € (0,1) is the least

positive root of the equation
(1-p)ex® = [(p+e) + ck(1-p) |x% + [p(k=c) = (1+k) Jx + (1=p) = O

PROOF. We can write

£'(z) = (g{(z))l-p p(z), g¢Vy» PP

5 (zg](2))"

g,(2)

Re [(zf'(z))'

e I - R

- 0] » (1-p) Re | N E)

Using Theorem 1.4 with p = 0 and (3.4), we have the required result.
Furthermore, if
T(r) = (l=p)er’® - [Cote) + ck(l-p)]r2 + [o(k=¢) = (1+k) Jr + (1-p),
then we note that
T(0) = (1-p) > O
T(1) = -2pc = 2p - ck(l=-p) = k(1-p) < O

Thus r ¢ (0,1).

COROLLARY 3.1. When a =0, ¢ =1 and p=0, f € Tk. Thus f maps

2z} <« =-%[(k+2) - 4k] onto a convex domain and this result is

sharp, see [5].

1)
COROLLARY 3.2. When p=0, a = %3 and then we have l;,é:g -1} <1 for

+1

univalent functions and in this case r =3 . This result is proved in [8].

For a = 0, k = 4 and p = 0, we obtain the known result r = 3 - 2/2 of

g € Vk. Then £ is convex for |z| < r = A For k=4, Vi consists of

Ratti [9]) and when k = 2, we have the well-known result giving us the

radius of convexity for close-to-convex functions.
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Finally we have
THEOREM 3.5. let f ¢ Vk(p) and let

F(z) -ﬁ—“; 2" [2" £(2) 'y ™ = 1,2,3,0000000 &

Then F € Tk(p) for all ]z] < Ty where, for (1-2p-m)#0, 0<p<1,

r, = 201+m)/ [(1=0)k + /(1=p) k" = 4(1-2p=m)(1+m) ],

The proof is straightforward when we note that

Fi(z) | L (e (E12D)

£7(z) ~ I+m O

Re

and then use theorem l.4.
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