ON SUBCLASSES OF CLOSE-TO-CONVEX FUNCTIONS OF HIGHER ORDER

KHALIDA INAYAT NOOR

Mathematics Department P.O. Box 2455, King Saud University Riyadh 11451, Saudi Arabia

(Received October 30, 1990 and in revised form October 21, 1991)

ABSTRACT. The classes $T_k(\rho)$, $0 < \rho < 1$, k > 2, of analytic functions, using the class $V_k(\rho)$ of functions of bounded boundary rotation, are defined and it is shown that the functions in these classes are close-toconvex of higher order. Covering theorem, arc-length result and some radii problems are solved. We also discuss some properties of the class $V_k(\rho)$ including distortion and coefficient results.

'1980 AMS SUBJECT CLASSIFICATION. 30C45.

KEY WORDS AND PHRASES: Analytic functions, close-to-convex, univalent, bounded boundary rotation, coefficient, positive real part.

1. THE CLASS $P_k(\rho)$

Let $P_k(\rho)$ be the class of functions p(z) analytic in the unit disc $E = \{z: |z| \le 1\}$ satisfying the properties p(0) = 1 and

$$\int_{0}^{2\pi} \left| \frac{\operatorname{Re} p(z) - \rho}{1 - \rho} \right| d\theta \leq k\pi, \qquad (1.1)$$

where $z = re^{i\theta}$, k>2 and $0 \le \rho \le 1$. This class has been introduced in [1]. We note that, for $\rho=0$, we obtain the class P_k defined by Pinchuk [2] and for ρ = 0, k = 2, we have the class P of functions with positive real part. The case k = 2 gives us the class $P(\rho)$ of functions with positive real part greater than ρ .

Also we can write

$$p(z) = \frac{1}{2} \int_{0}^{2\pi} \frac{1 + (1 - 2\rho) z e^{-it}}{1 - z e^{-it}} d\mu(t), \qquad (1.2)$$

where $\mu(t)$ is a function with bounded variation on $[0, 2\pi]$ such that

$$\begin{cases} 2\pi \\ 0 \\ 0 \\ \\ \frac{2\pi}{\int_{0}^{2\pi} \left| d\mu(t) \right| \leq k} \end{cases}$$
(1.3)

and

From (1.1), we have the following.

THEOREM 1.1. Let $p \in P_k(p)$. Then

$$p(z) = (\frac{k}{4} + \frac{1}{2}) p_1(z) - (\frac{k}{4} - \frac{1}{2}) p_2(z),$$

whee $p_i \in P(\rho)$, i = 1, 2.

We now prove.

THEOREM 1.2. The class $P_k(\rho)$ is a convex set.

PROOF. Let H_1 , $H_2 \in P_k(\rho)$. We shall show that, for α , $\beta > 0$

$$H(z) = \frac{1}{\alpha + \beta} \left[\alpha H_1(z) + \beta H_2(z) \right]$$

belongs to $P_k(\rho)$.

From Theorem 1.1, we can write

$$H(z) = \frac{1}{\alpha + \beta} \left[\alpha \left\{ \left(\frac{k}{4} + \frac{1}{2} \right) p_1(z) - \left(\frac{k}{4} - \frac{1}{2} \right) p_2(z) \right\} + \beta \left\{ \left(\frac{k}{4} + \frac{1}{2} \right) p_3(z) - \left(\frac{k}{4} - \frac{1}{2} \right) p_4(z) \right\} \right],$$

where $p_i \in P(\rho)$, i = 1, 2, 3, 4.

Now, writing
$$p_i(z) = (1-\rho) h_i(z) + \rho$$
, $i=1,2,3,4$, see [3], we have

$$\frac{H(z)-\rho}{1-\rho} = \left(\frac{k}{4} + \frac{1}{2}\right) \left\{\frac{1}{\alpha+\beta} \left(\alpha h_1(z) + \beta h_3(z)\right)\right\} - \left(\frac{k}{4} - \frac{1}{2}\right) \left\{\frac{1}{\alpha+\beta} \left(\alpha h_2(z) + \beta h_4(z)\right)\right\}$$
$$= \left(\frac{k}{4} + \frac{1}{2}\right) f_1(z) - \left(\frac{k}{4} - \frac{1}{2}\right) f_2(z),$$

where f_1 and $f_2\varepsilon$ P, since P is a convex set, see [2] and this gives us the required result.

THEOREM 1.3. Let $p \in P_k(\rho)$ and be given by $p(z) = 1 + \sum_{n=1}^{\infty} c_n z^n$. Then (i) $\frac{1}{2\pi} \int_0^{2\pi} |p(re^{i\theta})|^2 d\theta \leq \frac{1 + [k^2(1-\rho)^2 - 1]r^2}{1 - r^2}$

and

(ii)
$$\frac{1}{2\pi} \int_{0}^{2\pi} |\mathbf{p}'(\mathbf{r}e^{i\theta})| d\theta < \frac{k(1-\rho)}{1-r^2}$$

PROOF. (i) Using Parseval's identity, we have

$$\frac{1}{2\pi} \int_{0}^{2\pi} |p(re^{i\theta})|^{2} d\theta = \sum_{n=0}^{\infty} |c_{n}|^{2} r^{2n}$$
$$= 1 + k^{2} (1-\rho)^{2} \sum_{n=1}^{\infty} r^{2n} = \frac{1 + [k^{2}(1-\rho)^{2} - 1]r^{2}}{(1-r^{2})},$$

where we have used an easily established sharp result $|c_n| < k(1-\rho)$, for all n > 1.

(ii) By using Theorem 1.1, we can write

$$p(z) - \rho = (\frac{k}{4} + \frac{1}{2})(1-\rho) h_1(z) - (\frac{k}{4} - \frac{1}{2}) (1-\rho) h_2(z),$$

where h_1 , $h_2 \in P$.

Therefore,

$$p'(z) = (\frac{k}{4} + \frac{1}{2}) (1-\rho) h'_1(z) - (\frac{k}{4} - \frac{1}{2}) (1-\rho) h'_2(z)$$
 (1.4)

Now, for all $h \in P$, we have

$$h'(z) = \frac{2w'(z)}{(1+w(z))^2}$$
,

where w(z) is a Schwarz function [3], and

$$\frac{1}{2\pi} \int_{0}^{2\pi} |h'(re^{i\theta})| d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{2|w'(re^{i\theta})|}{|1 + w(re^{i\theta})|^2} d\theta < \frac{2}{1-r^2}.$$
(1.5)

Hence, from (1.4) and (1.5), we have

$$\frac{1}{2\pi} \int_{0}^{2\pi} |\mathbf{p'(re^{i\theta})}| d\theta < \frac{k(1-\rho)}{1-r^2},$$

which is the required result.

From Theorem 1.1 and the properties of the class $P(\,\rho),$ we immediately have the following.

THEOREM 1.4. Let $p \in P_{L}(\rho)$. Then

$$\frac{1 - k(1-\rho)r + (1-2\rho)r^2}{1 - r^2} \leq \operatorname{Re} p(z) \leq \frac{1 + k(1-\rho)r + (1-2\rho)r^2}{1 - r^2}$$

THEOREM 1.5. Let $p \in P_k(\rho)$. Then $p \in P$ for $|z| < r_0$, where r_0 is given by

$$r_0 = 2/[k(1-\rho) + \sqrt{k^2(1-\rho)^2 - 4(1-2\rho)}], \ \rho \neq \frac{1}{2}$$
(1.6)

When $\rho=0$, we obtain the results proved in [2].

2. THE CLASS $V_k(\rho)$

DEFINITION 2.1. Let $V_k(\rho)$ denote the class of analytic and locally univalent functions f in E with normalization f(0) = 0, f'(0) = 1 and satisfying the condition

$$\frac{(zf'(z))'}{f'(z)} \in P_k(\rho), \quad 0 \le \rho \le 1, \quad k \ge 2$$

When $\rho=0$, we obtain the class V_k of functions with bounded boundary rotation. The class $V_k(\rho)$ also generalizes the class $C(\rho)$ of convex functions of order ρ .

It can easily be seen [1] that f $\varepsilon V_k(\rho)$ if and only if there

exists F ϵ V_k such that

$$f'(z) = (F'(z))^{1-\rho}$$
 (2.1)

In the following, we will study the distortion theorems for the class $V_k(\rho)$. We will use the hypergeometric functions

$$G(a,b; c,z) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} \sum_{n=0}^{\infty} \frac{\Gamma(a+n)}{\Gamma(c+n)} \frac{\Gamma(b+n)}{n!} \frac{z^n}{n!}$$
$$= \frac{\Gamma(c)}{\Gamma(a)\Gamma(c-a)} \int_0^1 u^{a-1} (1-u)^{c-a-1} (1-zu)^{-b} du,$$

where Re a>0 and Re(c-a)>0. These functions are analytic for $z \in [4]$. In addition, we define the functions

$$M_{1}(a,b; c,r) = \frac{2^{b-1}}{a} \left[G(a,b; c,-1) - r_{1}^{-a} G(a,b; c,-r_{1}^{-1}) \right]$$

$$M_{2}(a,b; c,r) = \frac{2^{b-1}}{a} \left[G(a,b; c,-1) - r_{1}^{a} G(a,b; c,-r_{1}) \right] ,$$
(2.2)

and

where
$$r_1 = \frac{1-r}{1+r}$$

THEOREM 2.1. Let $f \in V_k(\rho)$. Then, for |z| = r (0 < r < 1), we have

$$M_{2}(a,b; c,r) \leq |f(z)| \leq M_{1}(a,b; c,r),$$
 (2.3)

where

$$a = (\frac{k}{2} - 1) (1 - \rho) + 1,$$

$$b = 2\rho$$

$$c = (\frac{k}{2} - 1) (1 - \rho) + 2$$
(2.4)

and $M_1^{}$, $M_2^{}$ are as defined in (2.2). This result is sharp.

PROOF. Using (2.1) and the well-known bounds for |F'(z)| with $F \epsilon V_k$, see [2], we have

$$\frac{\binom{k}{2} - 1}{\binom{k}{2} + 1} \frac{(1-\rho)}{(1-\rho)} \leq |f'(z)| \leq \frac{(1+|z|)}{(1+|z|)}$$
(2.5)
$$\frac{\binom{k}{2} + 1}{(1-|z|)} \frac{\binom{k}{2} + 1}{(1-\rho)}$$
(2.5)

Let d_r denote the radius of the largest schlicht disk centered at the origin contained in the image of |z| < r under f(z). Then there is a point z_o , $|z_o| = r$, such that $|f(z_o)| = d_r$. The ray from 0 to $f(z_o)$ lies entirely in the image of E and the inverse image of this ray is a curve in |z| < r.

Thus

$$d_{r} = |f(z_{0})| = \int_{C} |f'(z)| |dz|$$

$$\sum_{c} \frac{(\frac{1}{2} - \frac{1}{2})}{(1 + \frac{1}{2})} \frac{(\frac{k}{2} - 1)}{(1 - \rho)} |dz|$$

$$\sum_{c} \frac{|z|}{(1 + \frac{1}{2})} \frac{(\frac{k}{2} - 1)}{(1 + \frac{1}{2})} \frac{(1 - \rho)}{dt}$$

$$= \int_{0}^{|z|} \frac{(\frac{1 - t}{2})}{(\frac{1 - t}{1 + t})} \frac{(\frac{k}{2} - 1)}{(1 - \rho)} \frac{(1 - \rho)}{(1 - \rho)} \frac{dt}{(1 + t)^{2(1 - \rho)}}$$

Let $\frac{1-t}{1+t} = \xi$. Then $\frac{-2}{(1+t)^2} dt = d\xi$.

So

$$|f(z_{\rho})| > 2^{2\rho-1} \left\{ \int_{0}^{1} \xi^{\left(\frac{k}{2} - 1\right)} (1-\rho) (1+\xi)^{-2\rho} d\xi - \int_{0}^{\frac{1-|z|}{1+|z|}} \xi^{\left(\frac{k}{2} - 1\right)} (1-\rho) (1+\xi)^{-2\rho} d\xi \right\}$$

Put $\frac{1-|z|}{1+|z|} = \frac{1-r}{1+r} = r_1$ and $\xi = r_1 u$. This gives

$$|f(z_0)| > \frac{2^{b-1}}{a} \{G(a,b; c,-1) - r_1^a G(a,b; c,-r_1)\}$$

= M₂(a,b, c,r),

where a,b,c and M_2 are respectively defined by (2.4) and (2.2). Similarly we can calculate the lower bound for |f(z)| and this establishes our result.

Equality is attained in (2.3) for the function $f_0 \in V_k(\rho)$ defined by

$$f'_{o}(z) = \frac{(1 + \delta_{1} z)}{(1 - \delta_{2} z)} \begin{pmatrix} \frac{k}{2} - 1 \end{pmatrix} (1 - \rho)}, \quad |\delta_{1}| = |\delta_{2}| = 1 \quad (2.6)$$

We now study the behaviour of the integral transform

$$f_{\alpha}(z) = \int_{0}^{z} (f'(\xi))^{\alpha} d\xi \qquad (2.7)$$

for $f \in V_k(\rho)$

This problem has been studied for the class of univalent normalized functions in E and for the close-to-convex functions, see [3]. We have

THEOREM 2.2. Let $f \in V_k(\rho)$, $0 \le \rho \le 1$, $k \ge 2$ and let α , $0 \le \alpha \le 1$ be given. Then $f_{\alpha} \in V_m$ for $m \le \{\alpha(1-\rho)(k-2)+2\}$.

PROOF. From (2.1), we have

$$f'(z) = (F'(z))^{1-\rho}, F \in V_k$$

Now

$$f'_{\alpha}(z) = (f'(z))^{\alpha} = (F'(z))^{\alpha(1-\rho)}$$

= exp $\int_{-\pi}^{\pi} -\log(1-\xi e^{-it}) \alpha(1-\rho) dm(t)$
= exp $\int_{-\pi}^{\pi} -\log(1-\xi e^{-it}) d\mu(t),$

where $d\mu(t) = \alpha(1-\rho) dm(t) + [1 - \alpha(1-\rho)] \frac{dt}{\pi}$

Also

$$\int_{-\pi}^{\pi} d\mu(t) = \alpha(1-\rho) \int_{-\pi}^{\pi} dm(t) + \frac{1-\alpha(1-\rho)}{\pi} \int_{-\pi}^{\pi} dt = 2,$$

and

$$\int_{-\pi}^{\pi} |d\mu(t)| \leq \alpha(1-\rho) \int_{-\pi}^{\pi} |dm(t)| + \frac{1-\alpha(1-\rho)}{\pi} \int_{-\pi}^{\pi} dt$$
$$\leq \alpha(1-\rho)k + 2[1-\alpha(1-\rho)].$$

Hence the result.

We note that f_{α} is univalent for $\alpha < \frac{2}{(1-\rho)(k-2)}$, since V_{m} consists of univalent functions for 2 < m < 4. Hence f_{α} is univalent even if f is not univalent provided $\alpha < \frac{2}{(1-\rho)(k-2)}$.

Using the standard technique, we can easily prove the following.

THEOREM 2.3. Let $g,h \in V_k(\rho)$ and let $\alpha > 0$, $\beta > 0$ and $\alpha + \beta < 1 - \rho$. Then

$$H(z) = \int_{0}^{z} (g'(t))^{\alpha} (h'(t))^{\beta} dt$$

is convex of order $\rho_1 = (1 - \frac{\alpha + \beta}{1 - \rho})$ for $|z| < r_1$,

where

$$r_1 = \frac{1}{2} [k - \sqrt{k^2 - 4}]$$
 (2.8)

The result is sharp when

g'(z) = h'(z) =
$$\left[\frac{(\frac{k}{2} - 1)(1-\rho)}{(\frac{k}{2} + 1)(1-\rho)}\right]$$
.

We now prove the following.

THEOREM 2.4. Let $f:f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in V_k(\rho)$. Then, for all n > 3, n=2 $2 \le k \le \infty$.

$$|a_n| < [k^2(1-\rho)^2 + k(1-\rho)] 2^{-2\rho} (\frac{2n}{3})^{(1-\rho)(\frac{k}{2}+1)} - 2$$

The function f_0 defined by (2.6) shows that the exponent $[(1-\rho)(\frac{k}{2}+1) - 2]$ is best possible.

PROOF. By definition, we have

$$(zf'(z))' = f'(z) p(z), p \in P_k(\rho)$$
.

Set

$$F(z) = (z(zf'(z))')'$$

= f'(z) [p²(z) + zp'(z)]

For $z = re^{i\theta}$, we have

$$n^{3}|a_{n}| \leq \frac{1}{2\pi r^{n-3}} \int_{0}^{2\pi} |f'(z)| |p^{2}(z) + zp'(z)| d\theta$$

Using (2.5) and theorem 1.3, we obtain

$$n^{3}|a_{n}| < \frac{1}{r^{n-3}} \quad \frac{(1-\rho)(\frac{k-2}{2})}{(1-r)(1-\rho)(\frac{k+2}{2})} \quad \left\{ \frac{1+\left\{k^{2}(1-\rho)^{2}-1\right\}r^{2}+k(1-\rho)}{1-r^{2}} \right\}$$

$$= \frac{1}{r^{n-3}} \frac{(1-\rho)(\frac{k-2}{2})-1}{(1-\rho)(\frac{k+2}{2})+1} \left\{ 1+k(1-\rho) + \left\{ k^2(1-\rho)^2 - 1 \right\} r^2 \right\}$$

Let $r = 1 - \frac{3}{n}$, n > 3. Then

$$n^{3}|a_{n}| \leq [k^{2}(1-\rho)^{2} + k(1-\rho)]e^{3} \cdot (2 - \frac{3}{n})^{(1-\rho)(\frac{k-2}{2})} (\frac{n}{3})^{(1-\rho)(\frac{k+2}{2})+1}$$
$$= [k^{2}(1-\rho)^{2} + k(1-\rho)]e^{3} \cdot (\frac{n}{3})^{[(1-\rho)(\frac{k+2}{2})-2]} \cdot \frac{n^{3}}{27} (2 - \frac{3}{n})^{(1-\rho)(\frac{k}{2} - 1)-1}$$

Thus, for n>3, $(1-\rho)(\frac{k}{2}+1) - 2$ $|a_n| < [k^2(1-\rho)^2 + k(1-\rho)](2)^{-2\rho}, (\frac{2n}{3})$

THEOREM 2.5. Let $f \in V_k(\rho)$, $\rho \neq l/2$. Then f maps $|z| < r_0$ onto a convex domain where r_0 is given by (1.6). The function f_0 , defined by (2.6) shows that this result is sharp.

The proof is straightforward and follows immediately from the definition and Theorem 1.5.

Furthermore it can easily be shown that if $f \in V_k(\rho)$, then f is convex of order ρ for $|z| < r_1$ where r_1 is given by (2.8).

3. THE CLASS $T_k(\rho)$.

A class T_k of analytic functions related with the class V_k has been introduced and studied in [5]. We now define the following.

DEFINITION 3.1. Let f with f(0) = 0, f'(0) = 1 be analytic in E. Then $f \varepsilon T_k(\rho)$, $k \ge 2$, $0 \le \rho \le 1$, if there exists a function $g \varepsilon V_k(\rho)$ such that $\frac{f'(z)}{\sigma'(z)} \varepsilon P$ for $z \varepsilon E$.

Note that $T_k(0) = T_k$ and $T_2(0)$ is the class of close-to-convex functions.

THEOREM 3.1. Let $f \in T_k(\rho)$. Then

 $|f(z)| > M_{2}(a+1, b; c+1,r),$

where $M_2(a,b; c,r)$ is defined by (2.2) and a,b,c are given by (2.4). This result is sharp.

PROOF. Since $f \in T_k(\rho)$, we can write

$$f'(z) = g'(z) h(z), g \in V_{L}(\rho), h \in P_{L}$$

It is well-known that for $h \in P$

$$|h(z)| > \frac{1 - |z|}{1 + |z|}$$
 (3.1)

Thus, using (3.1) and (2.5), we have

$$|f'(z)| > \frac{(1 - |z|)}{(1 + |z|)} \frac{(\frac{k}{2} - 1)(1 - \rho) + 1}{(\frac{k}{2} + 1)(1 - \rho) + 1}$$

Proceeding in the same way as in Theorem 2.1, we obtain the required result.

REMARK 3.1. When $\rho=0$, $f \in T_k$ and since in this case b = 0 < 1, c = 1+a-b, we have G(a,b; c, -1) = 1. Letting r + 1, with $\rho = 0$, in Theorem 3.1, we see that the image of E under functions f in T_k constains the schlicht disk $|z| < \frac{1}{k+2}$.

We now give a necessary condition for a function f to belong to the class $T_{\bf k}(\rho).$

THEOREM 3.2. Let $f \in T_k(\rho)$. Then, with $z = re^{i\theta}$ and $\theta_1 < \theta_2$; $0 < \rho < 1$,

$$\int_{\theta_1}^{\theta_2} \operatorname{Re} \frac{(zf'(z))'}{f'(z)} d\theta > -k(1-\rho) \frac{\pi}{2}.$$

PROOF. We can write

$$f'(z) = (g'_{1}(z))^{1-\rho} (h_{1}(z))^{1-\rho}, \text{ for some } g_{1} \in V_{k}, h_{1} \in P.$$

$$f'(z) = (g'_{1}(z) h_{1}(z))^{1-\rho} = (f'_{1}(z))^{1-\rho}, \qquad (3.3)$$

So

Hence

$$\frac{(zf'(z))'}{f'(z)} = (1-\rho) \frac{(zf'_1(z))'}{f'_1(z)} + \rho$$

The required result follows on noting that, for $\theta_1 < \theta_2$, $f_1 \in T_k$

$$\int_{0_1}^{\theta_2} \operatorname{Re} \frac{(zf_1'(z))'}{f_1'(z)} d0 > -\frac{k}{2} \pi , \quad \text{see [5].}$$

REMARK 3.2. In [1], Goodman introduced the class K(β) of normalized analytic functions which are close-to-convex of order $\beta > 0$ and showed that if f is analytic in E and f'(z) $\neq 0$, then for $\beta > 0$, f_EK(β) if for z = re¹⁰ and $\theta_1 < \theta_2$

$$\int_{\theta_1}^{\theta_2} \operatorname{Re} \frac{(zf'(z))'}{f'(z)} d\theta > -\beta\pi$$

When $0 < \beta < 1$, K(β) consists of univalent functions, whilst if $\beta > 1$, f need not even be finitely-valent.

We note that Theorem 3.2 shows that

$$T_k(\rho) \subset K(\frac{k(1-\rho)}{2})$$
.

Hence $T_k(\rho)$ consists entirely of univalent functions if $2 \le k \le \frac{2}{1-\rho}$. It also follows easily from the definition that the class $T_k(\rho)$ forms a subset of a linear-invariant family of order $\lfloor \frac{k}{2}(1-\rho)+1 \rfloor$.

Using the method of Clunie and Pommerenke as modified by Thomas [7], we can easily prove the following:

THEOREM 3.3. Denote by L(r,f) the length of the image of the circle |u|=r under f and by M(r) = max $|f(re^{i\theta})|$. Then, for 0 < r < 1, θ

$$L(r) \leq A(k,\rho) M(r) \log \frac{1}{1-r}$$
,

where $A(k,\rho)$ is a constant depending only on k and ρ .

Let P denote the class of functions p(z) in E given by $\alpha, 1$

$$p(z) = 1 + c_1 z + c_2 z^2 + \dots$$

which satisfy the inequality

$$|\mathbf{p}(\mathbf{z}) - \frac{1}{2\alpha}| < \frac{1}{2\alpha}, \quad 0 \leq \alpha \leq 1$$

The class P $_{\alpha,1}$ has been introduced in [8] and it is shown there that, for p ϵ P $_{\alpha,1}$, |z| = r < 1.

$$\left|\frac{p'(z)}{p(z)}\right| < \frac{(1+c)}{(1+cr)(1-r)}, \qquad (3.4)$$

where $c = 1 - 2\alpha$

We now prove the following.

THEOREM 3.4. Let $g \in V_k(\rho)$ and let $\frac{f'(z)}{g'(z)} \in P_{\alpha,1}$. Then f is a convex function of order ρ for |z| < r where $r \in (0,1)$ is the least positive root of the equation

$$(1-\rho)cx^{3} - [(\rho+c) + ck(1-\rho)]x^{2} + [\rho(k-c) - (1+k)]x + (1-\rho) = 0$$

PROOF. We can write

$$f'(z) = (g'_1(z))^{1-\rho} p(z), g_1 \in V_k, p \in P_{\alpha,1}$$

So

$$\operatorname{Re} \left[\frac{(zf'(z))'}{f'(z)} - \rho \right] > (1-\rho) \operatorname{Re} \left[\frac{(zg'_1(z))'}{g'_1(z)} \right] - \left| \frac{zp'(z)}{p(z)} \right]$$

Using Theorem 1.4 with $\rho = 0$ and (3.4), we have the required result.

```
Furthermore, if
```

 $T(r) = (1-\rho)cr^{3} - [(\rho+c) + ck(1-\rho)]r^{2} + [\rho(k-c) - (1+k)]r + (1-\rho),$ then we note that

 $T(0) = (1-\rho) > 0$

$$T(1) = -2\rho c - 2\rho - ck(1-\rho) - k(1-\rho) < 0$$

Thus $r \in (0,1)$.

COROLLARY 3.1. When $\alpha = 0$, c = 1 and $\rho = 0$, $f \in T_k$. Thus f maps $|z| < r = \frac{1}{2}[(k+2) - \sqrt{k^2 + 4k}]$ onto a convex domain and this result is sharp, see [5].

COROLLARY 3.2. When $\rho=0$, $\alpha = \frac{1}{2}$, and then we have $|\frac{f'(z)}{g'(z0} - 1| < 1$ for $g \in V_k$. Then f is convex for $|z| < r = \frac{1}{k+1}$. For k=4, V_k consists of univalent functions and in this case $r = \frac{1}{5}$. This result is proved in [8]. For $\alpha = 0$, k = 4 and $\rho = 0$, we obtain the known result $r = 3 - 2\sqrt{2}$ of Ratti [9] and when k = 2, we have the well-known result giving us the radius of convexity for close-to-convex functions.

Finally we have

THEOREM 3.5. Let $f \in V_{\mu}(\rho)$ and let

$$F(z) = \frac{1}{1+m} z^{1-m} |z^m f(z)|', m = 1, 2, 3, \dots$$

Then F ϵ T_L(ρ) for all $|z| < r_2$, where, for $(1-2\rho-m)\neq 0$, $0 \le \rho \le 1$,

$$r_{2} = 2(1+m)/[(1-\rho)k + \sqrt{(1-\rho)^{2}k^{2} - 4(1-2\rho-m)(1+m)}],$$

The proof is straightforward when we note that

Re
$$\frac{F'(z)}{f'(z)} = \frac{1}{1+m} \left[\left\{ \text{Re } \frac{(zf'(z))'}{f'(z)} \right\} + m \right]$$

and then use theorem 1.4.

ACKNOWLEDGEMENT. The author is grateful to the referee for his valuable comments and suggestions.

REFERENCES

- PADMANABHAN, K.S. and PARVATHAM, R. 'Properties of a class of functions with bounded boundary rotation', <u>Ann. Polon. Math.</u> <u>31</u>(1975), 311-323.
- PINCHUK, B. Functions with bounded boundary rotation, <u>1.J. Math.</u> <u>10</u>(1971), 7-16.
- GOODMAN, A.W. <u>Univalent Functions</u>, Vol. I,II, Mariner Publishing Company, Tempa, Florida, U.S.A. (1982).
- WHITTAKER, E. and WATSON, G. <u>A course of modern analysis</u>, Cambridge Univ. Press, New York, 1927.
- NOOR, K.I. On a generalization of close-to-convexity, <u>Int. J. Math.</u> <u>& Math. Sci. 6</u>(1983), 327-334.
- GOODMAN, A.W. On close-to-convex functions of higher order, <u>Ann.</u> <u>Univ. Sci. Budapest Eötöus Sect. Math.</u> <u>25</u>(1972), 17-30.
- 7. THOMAS, D.K. On close-to-convex functions, Publ. Instit. Math. 45(1989), 85-88.
- SHAFFER, D.B. Radii of starlikeness and convexity for special classes of analytic functions, <u>J. Math. Analysis and Appl.</u> <u>45</u>(1974), 73-80.
- RATTI, J.S. The radius of convexity of certain analytic functions, <u>Indian J. Pure Appl. Math. 1</u>(1970), 30-37.