ON THE STRUCTURE OF SELF ADJOINT ALGEBRA OF FINITE STRICT MULTIPLICITY

S.C. ARORA and PAWAN BALA

Department of Mathematics University of Delhi Delhi-110 007, INDIA

(Received February 2, 1989, and in revised form April 30, 1989)

KEY WORDS AND PHRASES. Algebras of finite strict multiplicity, projections, self-adjoint, weakly closed algebra.

1980 AMS SUBJECT CLASSIFICATION CODES. Revision Primary 47C05, Secondary 47D25.

1. INTRODUCTION.

Throughout this paper X is a complex Hilbert space. For any subset M of X, B(M) denotes the algebra of all bounded linear operators on M. An algebra \mathcal{A} means a strongly closed subalgebra of B(X) containing the identity element I. \mathcal{A} is said to be an algebra of finite strict multiplicity (a.f.s.m.), if there exists a finite subset $\Gamma = \{x_1, x_2, ..., x_n\}$ of X such that $\mathcal{A}(\Gamma) = \{A_1x_1 + A_2x_2 + ... + A_nx_n, A_i \in \mathcal{A}\} = X$. In this case we denote the algebra by $(\mathcal{A}, \{x_i\}_{i=1}^n)$. If n = 1, i.e., if there exists a vector x_0 such that $\mathcal{A}x_0 = \{Ax_0 : A \in \mathcal{A}\} = X$, then \mathcal{A} is said to be a strictly cyclic algebra. In this case vector x_0 is called a strictly cyclic vector for \mathcal{A} . Algebra \mathcal{A} is said to be self-adjoint, if $A^* \in \mathcal{A}$, whenever A is in \mathcal{A} . For any subset \mathfrak{B} of B(X), the commutant of \mathfrak{B} , denoted by \mathfrak{B}' , is the collection of all operators in B(X) that commute with \mathfrak{B} .

A closed linear subspace M of X reduces the subset \mathfrak{B} of B(X), if the projection of X onto M is in \mathfrak{B}' . A collection $\{M_j\}$ of closed linear subspaces of X is said to be an orthogonal decomposition of X, if the Mj 's are pair-wise orthogonal and span X. Correspondingly, a collection $\{P_j\}$ of projections, is said to be a resolution of identity, if the collection $\{P_j(X)\}$ of ranges of P_j forms an orthogonal decomposition of X.

Strictly cyclic operator algebras have been studied by Lambert [1], [2], M. Embry [3], [4], [5], Bolstein [6] and others. The study of strictly cyclic algebras was extended to that of algebras of finite strict multiplicity by Herrero in [7], [8]. This paper aims at studying the structure of the commutant of an a.f.s.m., particularly a self-adjoint a.f.s.m. in terms of its reducing subspaces. By [5], the commutant of a self-adjoint strictly cyclic algebra cannot have any infinite collection of pair-wise orthogonal projections. [9, Theorem 2] paves the way for the following:

2. MAIN RESULTS.

THEOREM 1. If $(\mathcal{A}, \{x_i\}_{i=1}^n)$ is an a.f.s.m. on X, then each collection of mutually-orthogonal projections in \mathcal{A}' is finite.

PROOF. Let $\{P_j\}$ be a collection of mutually-orthogonal projections in \mathcal{A}' . We may assume $\{P_j\}$ to be countable. Let $Q_n = \sum_{j=1}^n P_j$ and $Q = \sum_{j=1}^\infty P_j$. Q_n converges strongly to Q. By [9,

Theorem 2], Q_n converges uniformly to Q. As $Q - Q_n$ is a projection, its norm is zero or one. Since $||Q_n - Q||$ can be made arbitrarily small, there exists m such that $||Q_n - Q|| = 0$ for all $n \ge m+1$. This implies that the collection $\{P_j\} = \{P_j\}_{j=1}^m$ is finite.

COROLLARY 2. Let $(\mathcal{A}, \{x_i\}_{i=1}^n)$ be an a.f.s.m. on X. Any operator in \mathcal{A}' with residual spectrum empty is of finite spectrum.

PROOF. Let E in \mathcal{A}' have residual spectrum empty. By [8], E has no continuous spectrum. Therefore, spectrum of E consists entirely of point spectrum. By Theorem 1, E has only finite number of distinct eigenspaces. So spectrum of E is finite.

Our next theorem generalizes [5, Theorem 3] to a self-adjoint a.f.s.m.

THEOREM 3. Let \mathcal{A} be a self-adjoint a.f.s.m. on X. Then there exists a finite orthogonal decomposition $\{M_k\}$ of X such that each M_k reduces \mathcal{A} , and $\mathcal{A}|_{M_k}$ is strongly dense in $B(M_k)$.

PROOF. If X and $\{0\}$ are the only reducing subspaces of \mathcal{A} , then by [8], \mathcal{A} is strongly dense in B(X). As such the trivial decomposition $\{X\}$ of X satisfies the requirements of the theorem.

Let $\{M_k\}_{k=1}^p$ be a collection of mutually orthogonal subspaces of X such that each M_k reduces \mathcal{A} , and $\mathcal{A}|_{M_k}$ is strongly dense in $B(M_k)$. If these M_k 's span X, the theorem follows. Otherwise,

consider $A_1 = \mathcal{A} | \begin{bmatrix} P \\ i = 1 \end{bmatrix}^{L}$. Let P be orthogonal projection of X onto $M = \begin{bmatrix} P \\ i = 1 \end{bmatrix}^{L} M_i \end{bmatrix}^{L}$. P is in \mathcal{A}' and $(\mathcal{A}, \{Px_i\}_{i=1}^n)$ is an a.f.s.m. on M. If \mathcal{A}_1 has only trivial reducing subspace, then again, by [8], \mathcal{A}_1 is strongly dense in B(M) and the construction is complete. Otherwise, \mathcal{A}_1 has a non-trivial reducing subspace. This implies \mathcal{A}_1 has a minimal reducing subspace, say M_{p+1} . By [8], $\mathcal{A}_1 \mid M_{p+1}$ is strongly dense in $B(M_{p+1})$. Thus, $M_1, M_2, ..., M_{p+1}$ are pair-wise orthogonal subspaces for \mathcal{A} , and $\mathcal{A} \mid M_p$ is strongly dense in $B(M_k)$ for k = 1, 2, ..., p+1. By Theorem 1, the

collection terminates with a finite number of pair-wise orthogonal reducing subspaces.

Our next theorem depicts the structure of commutant of a self-adjoint a.f.s.m. The theorem and its consequences can be proved by following the technique used by Embry in [5]. So we omit the proofs.

THEOREM 4. Let $(\mathcal{A}, \{x_i\}_{i=1}^n)$ be a self-adjoint a.f.s.m., $\{M_k\}$ a decomposition of X as required in Theorem 3 and P_k the orthogonal projection of X onto M_k . Then $\mathcal{A}' = \sum P_j \mathcal{A}' P_k$ and $P_j \mathcal{A}' P_k$ is of dimension one or zero for each value of j and k. In particular, \mathcal{A}' is finite-dimensional.

COROLLARY 5. If \mathcal{A} is self-adjoint a.f.s.m. with an abelian commutant, then $\mathcal{A}' = \{\sum_{j=1}^{n} \lambda_j P_j : \lambda_j \text{ is complex}\}, \text{ wherein } \{P_j\} \text{ are projections as required in Theorem 4. In }$

particular, $\{P_i\}$ consists of normal operators with finite spectra.

COROLLARY 6. Let N be a normal operator with $\{N\}'$ as an a.f.s.m. Then there exist orthogonal projections P_1 , P_2 ,..., P_n such that $\{N\}'' = \{\sum_{i=1}^n \lambda_j P_j, \lambda_j \text{ complex}\}$. COROLLARY 7. The decomposition $\{M_k\}$ in Theorem 4 is unique, if and only if, \mathcal{A}' is

COROLLARY 7. The decomposition $\{M_k\}$ in Theorem 4 is unique, if and only if, \mathcal{A}' is abelian.

If \mathcal{A} is any a.f.s.m. on X, then $\mathcal{A} = \mathcal{A}_1 \oplus \mathcal{A}_2$, where \mathcal{A}_1 is a self-adjoint a.f.s.m., and \mathcal{A}_2 is an a.f.s.m. having no reducing subspaces on which it is self-adjoint.

An operator T in B(X) is said to be of finite strict multiplicity, if the weakly closed algebra $\mathcal{A}(T)$ generated by T and I is of finite strict multiplicity. Our next theorem extends [10, Theorem 6] proved by Barnes.

THEOREM 8. For an operator T in B(X), let $\{x_1, x_2, ..., x_n\}$ be a subset of X such that $(\mathcal{A}(T), \{x_i\}_{i=1}^n)$ is an a.f.s.m. on X. Then there exists a finite mutually-orthogonal collection of subspaces $\{X_1, X_2, ..., X_n\}$ of X satisfying the following

- (i) Each X_i reduces T
- (ii) $X = X_1 \oplus X_2 \oplus ... \oplus X_k$ and thus $T = T_1 \oplus T_2 ... \oplus T_k$, where $T_i = T \mid X_i$.
- (iii) Each T_i is an irreducible operator of finite strict multiplicity on X_i .

PROOF. Let \mathfrak{B} be a closed subalgebra of B(X) generated by T, T^* and I. Define a positive functional f on \mathfrak{B} by $f:\mathfrak{B}\to C$ as $f(S)=(Sx_0, x_0)$, where $x_0=x_1+x_2+\ldots+x_n$, S in \mathfrak{B} . Let $K_f=\{S\in\mathfrak{B}; f(S^*S)=0\}=\{S\in\mathfrak{B}: Sx_0=0\}$. There are two norms on the quotient space \mathfrak{B}/K_f , viz.

- (i) $||A + K_f||_f = f(A^*A)^{1/2} = ||Ax_o||$
- (ii) $||A + K_f|| = \inf \{ ||A K|| : K \in K_f \}.$

These norms are related by $||A + K_f||_f \le ||x_0|| ||A + K_f||$ for all A in B. \mathfrak{B}/K_f is complete w.r.t. both these norms. By closed graph theorem, the norms are equivalent on \mathfrak{B}/K_f . By Halpern [11], the commutant B' of B in B(X) has the following properties:

- (i) If F is a non-zero projection in \mathfrak{B}' , then F majorizes a minimal projection E in \mathfrak{B}' ;
- (ii) A maximal set of mutually orthogonal projections in **B** must be finite.

By (i), we can choose a non-empty maximal set of mutually orthogonal projections in \mathfrak{B}' and, by (ii), this set is finite. Let $\{E_1, E_2, ..., E_k\}$ be this set. Let $X_j = R(E_j)$, j = 1, 2, ..., k. Then $X = X_1 \oplus X_2 \oplus ... \oplus X_k$. The collection $\{X_1, X_2, ..., X_k\}$ reduces \mathfrak{B} ; and \mathfrak{B} acts irreducibly on each X_j , j = 1, 2, ..., k. Now $x_i \in X$ implies $x_i = x_{il} \oplus x_{i2} \oplus ... \oplus x_{ik}$, i = 1, 2, ..., n where $x_{ij} \in X_j$ for all j = 1, 2, ..., k. For $y \in X_j \subset X$, there exist operators $R_1, R_2, ..., R_n$ in A(T) such that

$$y = R_1 x_1 + R_2 x_2 + \dots + R_n x_n$$

= $R_1(x_{11} \oplus x_{12} \oplus \dots \oplus x_{lk}) + R_2(x_{21} \oplus \dots \oplus x_{2k}) + \dots + R_n(x_{n1} \oplus x_{n2} \oplus \dots \oplus x_{nk})$
= $(R_1 x_{11} + R_2 x_{21} + \dots + R_n x_{n1}) \oplus (R_1 x_{12} + R_2 x_{22} + \dots + R_n x_{n2}) \oplus \dots \oplus$

 $\oplus \left(R_1 x_{1k} + R_2 x_{2k} + \ldots + R_n x_{nk}\right)$

As T reduces X_j , A(T) also reduces X_j , j = 1, 2, ..., k. This implies that

$$\begin{split} y &= R_1 x_{1j} + R_2 x_{2j} + ... + R_n x_n j = R_1 \mid_{X_j} x_{1j} + R_2 \mid_{X_j} x_{2j} + ... + R_n \mid_{X_j} x_{nj}, \\ \text{here } R_i \mid_{X_j} \in A(T_j) \text{ for all } i = 1, \ 2, ..., \ n. \ \text{Thus } (A(T_j), \ x_{1j}, \ x_{2j}, ..., \ x_{nj}) \text{ is an a.f.s.m. on } X_j. \end{split}$$

This completes the proof of the theorem.

w

ACKNOWLEDGMENT. The authors are thankful to Prof. B.S. Yadav for the inspiration received in carrying out this study.

REFERENCES

- 1. LAMBERT, A., Strictly Cyclic Operator Algebras, Pacific J. Math. 39 (1971) 717-726.
- LAMBERT, A., Spectral Properties of Strictly Cyclic Operator Algebras, <u>Indiana Univ. Math.</u> <u>J.22</u> (1973) 959-963.
- EMBRY, M.R., Strictly Cyclic Operator Algebras on Banach Space, <u>Pacific J. Math 45</u> (1973) 445-452.
- EMBRY, M.R., Maximal Invariant Subspaces of Strictly Cyclic Operator Algebras, <u>Pacific. J.</u> <u>Math.</u> 49 (1973) 45-50.
- EMBRY, M.R., Self-adjoint Strictly Cyclic Operator Algebras, <u>Pacific J. Math 52</u> (1974), 53-57.
- 6. BOLSTEIN, R., Strictly Cyclic Operators, Duke Math J. 40 (1973) 683-688.
- HERRERO, D.A., Algebras de Operadores Que contieven Una Subalgebra de Multiplicidad Estucta Finite, <u>Rev. de la Union Mat. Argentina 26</u>(1972), 77-83
- HERRERO, D.A., Operator Algebras of Finite-Strict Multiplicity, <u>Indrana Univ. Math. J.22</u> (1972) 13-24.
- 9. ARORA, S.C. and BALA, PAWAN, Invariant Subspaces of Algebras of Finite Strict Multiplicity. (Communicated).
- 10. BARNES, BRUCE, Operators With a Strictly Cyclic Vector, Proc. Amer. Math. Soc. 41 (1973), 480-486.
- HALPERN, H., Finite Sums of Irreducible Functionals on C*-Algebras, Proc. Amer. Math. Soc. 18 (1967), 352-358.