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ABSTRACT. We study the rate of approximation by rectangular partial
sums, Cesaro means, and de la Vallée Poussin means of double Walsh-
~Fourier series of a function in a homogeneous Banach space X. In
particular, X may be Lp(Iz), where 1 < p < « and I2 = [0,1) x[0,1), or
CW(IZ), the latter being the collection of uniformly W-continuous
functions on I2. We extend the results by Watari, Fine, Yano,
Jastrebova, Bljumin, Esfahanizadeh and Siddigi from univariate to
multivariate cases. As by-products, we deduce sufficient conditions
for convergence in Lp(Iz)-norm and uniform convergence on I2 as well
as characterizations of Lipschitz classes of functions. At the end,

we raise three problems.
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1. INTRODUCTION.
We consider the Walsh orthonormal system (wj(x):j 2 0} defined on
the unit interval I:= [0,1) in the Paley enumeration (see [7]). To be

more specific, let 1

1 if xel0,27 "),

r,(x):=
0 -1
\-1 if me[z I1)I

ro(x+1):= q}x),
rj(x):= rO(ZJx), J 21 and x€I,

be the well-known Rademacher functions. For k = 0 set wo(x):= 1, and if

k:i= £ k.27, k.=0 or 1,
j=0 I J
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is the dyadic representation of an integer k¥ z 1, then set
© k.
wp(x):= 1 [rj(x)] 7.
J=0
We will study approximation by means of double Walsh polynomials
in the norm of a homogeneous Banach space X of functions defined on

the unit square IZ:= [0,1) x[0,1).

2. DOUBLE WALSH POLYNOMIALS AND MODULUS OF CONTINUITY.

We remind the reader that a double Walsh polynomial of order less
than m in z and of order less than n in y is a two variable function
of the form

m=1 n-1

Plx,y):= L z a;
J=0 k=0

where m,n are positive integers and {ajk) is a double sequence of real
(or complex) numbers. Denote by Pmn the collection of such Walsh

kwj(x)wk(y)

polynomials and let

mn*

The members of P are called double Walsh polynomials.
Denote by Emn the finite o-algebra generated by the collection
of dyadic intervals of the form

I (3,k):= [5277, (G+12™) x [k277, (k+1)27") where 0 s j < 2", 0 s k < 27,

and m,n 2 0. It is plain that the collection of Zmn-measurable func-
tions defined on I2 coincides with P — The so-called dyadic
topology of 12 is generated by the uiiéi of the Zmn for m,m = 0,1,....
The definition of a homogeneous Banach space on the circle group
T = [-n,7) is well-known (see Katznelson [6]). It is formulated on the
dyadic group I = [0,1), while using Walsh polynomials (see Butzer and

Nessel [2] and also [8,pp. 154-155]). Following them, we say that a

Banach space X of functions defined on I2 with the norm I-IX is homo-
. 1,.2
geneous if PC X C L (I°) and if the following three properties hold:
(i) The norm of X dominates the L'(IZ)-norm: for any fex

Iply s 0fl;

(ii) The norm of X is translation invariant: for any (u,v)€I2 and
fex

T,,f€X and Ituvf.X = lf'X
where T,p Weans the dyadic translation by u in the first variable and
by » in the second one:

ruvf(x,y):= flztu,ytv), (m,y)GIz-

Here and in the sequel, + denotes dyadic addition.
(iii) P is dense in X with respect to the norm I-IX, i.e., for
any f€X and € > 0 there exists a double Walsh polynomial PeP such that
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Pp-fly < e
We recall that the norm in Lp(Iz),1 < p < =, is defined by

\
1/p

11
L {1 J|flz,y) |Pdady ,
00

J
while CW(IZ) is the collection of functions f(z,y) that are uniformly

continuous from the dyadic topology of 12 to the usual topology of R,
and endowed with the "sup" norm:

IF1 = sup(|f(z,y) | (z,y)er?).

Such a function f is called uniformly W-continuous.

Similarly to the univariate case (cf. [8, pp. 9-11]) if the peri-
odic extension of a function f(x,y) from I2 to R2 with period 1 in
both = and y is classically continuous, then f is also uniformly W-
continuous on Iz.

It follows (cf. [8, p. 142] in the univariate case) that Lp(Iz)
is the closure of the collection P of double Walsh polynomials when
using the norm I-Ip, 1 £ p < », Likewise (cf. [8, pp. 156-158]),
CW(Iz) is the uniform closure of P, i.e., when using the norm I.§_.

2 is of basic

The extension of [8, Lemma 1, p. 155] from I to I
importance in this paper.
LEMMA 1. For any f,h€X and g€L1(I2)

11
Vfeg-h [ | g(u,v)dudvl

11 00 (2.1)
< é é Iruvf—hlxlg(u,vﬂdudv

where
2

(f*xg) (x,y):= i i flztu,y+v)gu,v)dudv, (z,y)€I”,
is the dyadic convolution of the functions f and g.
The proof of Lemma 1 is almost identical to that of the univari-
ate lemma in [8, pp. 155-156]. We omit it. ‘
Finally, we remind the reader that the (total) modulus of conti-
nuity of a function f€X is defined by

wy(f384.8;5):= sup{lruvf-flx:o Su <8y, 05 <8,
where 84085 > 0. By the Banach-Steinhaus theorem, for any f€X

lim bt Ff=-f1, =0,

u,v>0 uv X

and consequently,
lim w,(f3;6,,8,) = 0.
X 17°2
61,62+0
For «,8 > 0, the Lipschitz class is defined by
. 8
Lip(a,B3X):= {f€X:wy(fi81,6,) = 0(87+85) as 6,,6,20).

Unlike the classical case, Lip(a,B8;X) is not trivial when a > 1 and/or
g > 1 (cf£. [8, p. 188]).
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3. APPROXIMATION BY RECTANGULAR PARTIAL SUMS.
As is well-known, the measurement of the rate of approximation to
a function feX by polynomials in Pmn is defined by

Emn(f;X):= inf(lf-PlX:Pern}.

Since Pmn is a finite dimensional subspace of X, for every f€X the
infimum above is attained by some Pmnern. Such a polynomial Pm is

n
called a best approximation of f in Pmn.

Given a function fEL'(Iz), we form its double Walsh-Fourier
series as follows

W 1
jio kioakaJ(m)wk(y) (3.1)

where the

11
agi= é é f(u,v)wj(u)wk(v)dudv, Jj.k 2z 0,

are called double Walsh-Fourier coefficients of f. The rectangular
partial sums of series (3.1) are defined by
m=1 n=1
S (fsx,y):= = L oa.w. (2w, (y), mmn 2 1.
mn 7=0 k=0 Jk7 g k
Now, the modulus of continuity gives sharp estimates to the rate
of approximation by double Walsh polynomials PeP m on and by the
27,2
rectangular partial sums S ().
2™, 2"

4

THEOREM 1. For any f€X and m,n 2 0,

-1 -m ,-n .
2 Ux(f;z ,2 ) s E2m zn(flx)
! (3.2)

m -n

< nszm zn(f)-flx S wel(f32 7,2 7).

’
We note that the right inequality is the Walsh analogue of the
classical Jackson inequality. The left-most inequality has no trigon-
ometric analogue.
PROOF. As is well-known,

11 . .
S (fizey) = é é flz+u,y+v) D, (w) D, (v)dudv (3.3)
where
m=1
Dm(u):= jio wj(u), mz 1,

is the Walsh-Dirichlet kernel. We recall that the Paley lemma (see,
e.g., [8, p 7]) says that

m

2™ if wuelo,2™™,

"o,

(3.4)

(

I
D (u) = ‘ -
2" lo if wu€l2

Now, by (2.1),
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'Tuvf-f|XDzm(u)Dzn(v)dudv

¥
O =
O =

'Szm zn(f)_flx <

-m -n

é |Tuvf-flxdudv

-n

WA

wylf,27",270, (3.5)

which is the third inequality in (3.2).

The second inequality in (3.2) is trivial.

We observe that for any polynomial PE€P m and (u,v)EImﬂ(0,0) we
27, :

have

P(z+u,y+v) = P(u,v).
Consequently, for such u,v
Iuvf—f = Tuu(f-P)-(f—P).

Now, let P be a best approximation to f in P — Then
27,2

(r5277,27") s 20p-p1, = 2E

WX fs ' f X - 2m 2n(f7X)-

This is equivalent to the first inequality in (3.2).
The following corollary of Theorem 1 shows that the Lipschitz

classes can be used to characterize functions by their rate of

approximation by double Walsh polynomials.

COROLLARY 1. Let f€X and a,8 > 0. Then the following five
statements are equivalent:
(a) fGLip(Grﬁix):
-ma -nB

(b) lszm 2,,(f)-fll,( =0027"427"") as m,nre,
_ -ma, ,—nB
(c) E2m 2n(f;X) = 0(2 +2 )

as myn+=,

(@) By (fi0) = 07 k") as g,kae,

(@) wy(£3:27™, 27" = 0(27"4+27"%) as m,moe.

PROOF. According to Theorem 1, (a) implies (b) and (c).
By definition,

Ejk(f;x) < Eil(f7X) whenever j 2 7 and k 2 1.

Consequently, if

sk <2™', and m,nzo0, (3.6)

then

E (£30) 5 Eg (350 < Ezm 2n(f;X). (3.7)

2m+1'2n+1 )
Hence it follows that (c) and (d) are equivalent.

By Theorem 1 and (3.7), (d) implies (e).

Finally, the fact that wX(f;61,62) decreases as either §, or &,
decreases shows that (e) and (a) are equivalent.

On closing, we note that Theorem 1 and Corollary 1 are the
multivariate extensions of the corresponding results by Watari [91,

proved for the cases X = C,(I) and tP(Iy,1 s p < =.
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4. APPROXIMATION BY CESARO MEANS.
As is well-known, the first arithmetic means or Cesaro means of
series (3.1) are defined by

1 m n
fe * = - S . z .
0mn(4 ,Jc,y). m ji] k;1 ud-k(f,-’t,y); myn z 1
It follows from (3.3) that
11
cmn(f7x,y) = é é f(x+u,y+v)Km(u)Kn(v)dudv (4.1)
where
LN
K (u):= = & u
m m =1 J

is the Walsh-Fejér kernel. This kernel has the remarkable property of
quasi-positiveness:

1
le!1:= é |Km(u)|du <2, mz1,

first proved by Yano [10]. By (2.1), we conclude that for any feX

Vo, (P, = WK LK W hfl, s alfl,. (4.2)

We estimate the rate of convergence when a function is approxi-
mated by the Cesaro means of its double Walsh-Fourier series.
THEOREM 2. For any f€X and j,k z 1,

mon i4lem- -1 -1
lo (f)=-fly s6 = = 2rTeTm Tu (F3275,270) (4.3)
J =0 1=0

where m and n are defined in (3.6).

The next two corollaries are immediate consequences of Theorem 2.

COROLLARY 2. (i) If fezP(1%) for some 1 s p < =, then the Cesaro
means ojk(f) of its double Walsh-Fourier series converge to f in LP-
norm.

(ii) If fECW(Iz), then the ojk(f) converge to f uniformly on Iz.

In statement (i), the case p = 1 in really interesting. In
Section 6, we will prove that, in the cases when 1 < p < =, even the
rectangular partial sums Sjk(f) converge to f in LP-norm (see Theorem 5
below). Statement (ii) is the multivariate extension of the correspond-
ing result by Fine [4].

COROLLARY 3. If f€Lip(a,B8;X) for some «,8 > 0, then

05" %+k"#) if 0<a,B <1,
0(5”" 1og j+k~F) if 0<B <1 =a,
Vo s (P)=fly = *0({::+k-8). -1 %f BT
o(J log Jj+k log k) if a =8 =1,
0 "+x™" 1og k) if 1=28¢< a,
o0 4™ if 1< a,8. (4.4)

We note that Corollary 3 is also the multivariate extension of
the corresponding results by Yano [11] (proved for 0 < a < 1 and
1 £ p s ») and by Jastrebova [5] (proved for a = 1 and p = «).
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PROOF OF THEOREM 2. Keeping (3.6) in mind, we may write

Qmin 1 2m 2"
. -f = — L S. -
o f =T U B R S0
1 f J 2" 2" k J k
+ 37{ T L+ = zn + ):m zn (Sil(f)'szm 2"(f))
li=2™+1 1=1 =1 1=2"41 i=2"+1 1=2"41 '
2m+n

+( 1 -= S -

( ) Sy D

m+n m+n

=2 - -2 -
= _EE—(UZ%Zn(f)-f)+omn(f Sz”,z"(f)) +(1-5) (Szm’zn(f) .

Hence, by the triangle inequality and (4.1),
|cjk(f)-flx < Iozm 2n(f)—flx+5|52m 2n(f)-flx.
14 ’
Consequently, by Theorem 1,
™)

lojk(f)-flx s |ozm'zn(f)-flX+5mx(f72-m,2- . (4.5)

Now, we estimate the first quantity on the right-hand side of

(4.5). To this end, we recall the representation

2 2 =0
(see, e.g., [8, p. 46, relation (iii)]). By (3.4), for 0 s 2 < m

_ o,=1j,-m m _i-m 2-t=1
K m(u) =2 {2 D}#u)+ r 2 Dzm(u+2 )}, u€l

2" if we2”tV, 27t N,

D (ui2”'TYy =
2m
0 otherwise;
and for i =m
2™ if uelo0,2™™),
so=m=1, _ _
Dzm(u+2 ) = Dz”'(u) =

0 otherwise.

In particular, it follows that X m(u) 2 0 for all ue€rI.
2
Similarly to (3.5), we apply again (2.1) and then by an elementary

reasoning we obtain that

11
Vo m (N =fly 8 1L Ne  foflyk 0K, (0)dudy
27M 27" e 27F 27T peq 27M 27
= J J +z f [ +z i I
0 0 =0 ,-i-1 0 1=0 0 ,-7-1

2
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+x ZZ-n-1wX(f;2_m,2-l)
1=0
m=1 n=-1  .__ _ e -
Jp p 2ttm 1,1-n 1“X(f’2 P Z)
i=0 1=0
m n . _—— - -
sz oz 2ty (527 27h), (4.6)
i=0 1=0

Combining (4.5) and (4.6) yields (4.3).

5. APPROXIMATION BY DE LA VALLEE POUSSIN MEANS.
By Corollaries 1 and 3, the rate of approximation by ojk(f) is as
good as by S m n(f) if feLip(a,B;X) for some 0 < a,B < 1, where m and
27,2

’
n are defined by (3.6). However, the o}ks are not projections from X
onto ij. These two important properties are satisfied by the
de la Vallée Poussin means of series (3.1) defined by

1 2m 2n
V (fix,y):= — z by S, (fix,y) mmnm 2 1.
LN M jemed k=mar 9K 00T

THEOREM 3. For any f€X and m,n 2 1,
Vv (F)=fly s 37E (FiX). (5.1)

We note that in the univariate case, Bljumin [1], Esfahanizadeh
and Siddiqgi [3] studied de la Vallée Poussin means and obtained an
inequality whose multivariate extension is (5.1).

PROOF. A routine computation shows that

an(f:m,y) = Smn(f;x.y)

2m-1 n-1 i
+2 z r (1- ) aiw.(x)w, (y)
j=m k=0 2m T Cgknd Tk
m=-1 2n-1 k
+2¢<¢ L (1=-57) a.,w.(x)w, (y)
=0 k=n 2n gk d k
2m-1 2n-1 .
k
+4 L £ (1-4L) (1-5=) a v (2w, (y).
jem  k=n 2m 2n Jkg k

Hence it follows immediately that for any PEPmn
an(P;x,y) = P(xz,y) . (5.2)
On the other hand, it is easy to check that
an(f) = 402m,2n(f)-2°2m,n(f)-2°m,2n(f)+°mn(f)'
Consequently, by (4.2), for any f€x and m,n 2 1 we have
IV”m(f)lx s 36171, (5.3)

Now, let P be a best approximation to f in Pmn' Then, combining
(5.2) and (5.3) yields
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Von (D)=Fy s WV (F=P)L +1P-F1

< I p- =
371 p f'X 37Emn(f‘x)'

6. ESTIMATION AND SATURATION PROBLEMS.
(A) Theorem 1 says that the rate of approximation by the
rectangular partial sums Szm 2n(f) of the Walsh-Fourier series (3.1) is

’
no worse than that by double Walsh polynomials from P m at all. As
2", 2"

to approximation by Smn(f), we can ensure only a weaker rate in
general.
THEOREM 4. For any fe€X and m,n 2 1,
s, ()=f1y s (41D Y UD V)E  (f3X). (6.1)

This can be proved in a routine way. For the reader’s convenience,

we sketch it.
PROOF. Let P be a best approximation to f in Pmn' Since Smn(P) =5

we may write that
Ismﬁﬂ-ﬂxglsmﬁﬁ?ﬂxﬂpqﬂr (6.2)
Taking into account (3.3), (2.1), and the fact that I-lx is transla-

tion invariant gives that

Is, (F~P)ly s

=P D 1.0D 1 (6.3)

Now, (6.1) follows from (6.2) and (6.3).
We note that
leH = 0(log m)

and this estimate is sharp (see, e.g. [8, p. 35]). In spite of this

fact, estimate (6.1) can be essentially improved in the particular

case when X = Lp(Iz), 1 <p < ». We will write l-%'instead of

i ILp(Iz).
THEOREM 5. For any 1 < p < =, there exists a constant X_ such

that for any fGLp(Iz) and m,n 2 1 we have i

15, (=71 5 K5, (510P (1?)). (6.4)

Theorem 5 is ultimately a consequence of the following result by
Paley [7]: For any 1 < p < =, there exists a constant Kp such that for
any gELp(I) and m 2 1 we have

where this time

m-1 1 1 1/p
5 (gsz):= = ( J glww.(u)du ) w.(z) and Igl_:= {f |g(x)|Pdx .
m =0 0 J J P o

On the basis of (6.5) we will prove the following
LEMMA 2. For any fefP(I1%), 1 < p < =, and m,n 2 1,
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2
1 o< k°1en . 6.6
Spn (1IN, 5 KNS (6.6)

PROOF. We may consider f(x,y) as a function of x for each fixed y
denoted by g, (z):= f(z,y). Observe that if ferP (1%), then g, €LP (1) for
almost all y€I and

Smn(f;x,y) = Sn(Sm(gy;x);y), mm 2z 1.

Furthermore, if fELD(Iz), then
m=1 1
Lo é g, (Ww (W) du ) wj(x)ELp(I)

5
J

Gm'x(y):= Sm(gy;x) = o

for all m 2 1 and for almost all x€I.
Now, applying Fubini’s theorem three times and the univariate
inequality (6.5) twice provides (6.6) as follows
11

I 1|5, (fix,y) |Pdxdy
00 mn
1 1‘n-1 1 p
=J4{yflz (faG (V)w, (v)dv ) w,(y)| dydx
0lolk=o 0 MK k

1 1
p
<
é Kp{élom'x(y)I dy}dx

(]
=
[ Ry

p
(u)wj(u)du ) wj(:c)l dz tdy

17
=
O =
>

1
Ilg (x)lpdz dy
0 Yy

=
O -

1
I f(x,y) |Pdxdy.
0

After these preliminaries, the proof of Theorem 5 is identical
with that of Theorem 4, except that we use (6.6) instead of (6.3). In

this way, we arrive at (6.4) with
Obviously, Theorem 5 implies
COROLLARY 4. If ferP(1%) for
partial sums Smn(f) of its double
in [P-norm.
Nevertheless, it seems to be
the best possible in general.
PROBLEM 1. Show that, in the

there exists a function f€X such

Is

m,n>=

(£)-11
. mn X
lim sup log m log n

K := 1+K§.

the following

some 1 < p < «, then the rectangular
Walsh-Fourier series converge to f

very likely that estimate (6.1) is

cases when X = L1(12) or CV(IZ)r

> 0.

(B) We guess that Corollary 3 is also the best possible in the

above sense. For example, we formulate this in connection with the

fourth estimate in (4.4).
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PROBLEM 2. Show that, in the cases when X = L‘(IZ) or CW(IZ),
there exists a function feLip(1,1;X) such that
lo (f)-fl
lim sup p— L _1X > 0.
myn>e m logm + n log n

In the univariate case, the corresponding result was proved by
Jastrebova [5] with "lim" instead of "lim sup".

(C) Finally, we discuss the so-called saturation problem. We
begin with the observation that the rate of approximation by the
Cesaro means omn(f) to functions fe€Lip(a,B) is not improved as o and
B increase beyond 1. Indeed, the following is true.

THEOREM 6. If for some feX

|°2n 2n(f)-f|X = o(2

’

") as n > =, (6.7)
then f is constant.
PROOF. Since

Eon n (P10 S 0o (=51

by hypothesis and Theorem 1, we have

-n
'52" 2n(f‘)-flx =0(2"7) as n > w. (6.8)
Taking into account that " n
., 2"-1 2" .
27 (S ; - i = T z j+k=2 “gk)a.,w .
( anzn(f:x;y) Uzn'zn(fﬂt:y)) j=0 =0 (.,7 J )akaJ (.’L‘)b)k (y),
by (6.7) and (6.8), we conclude that
2"-1 2" o
lim | ¢ L (j+k=2""Gk)a v (2w, (y)] = 0.
nere | j=0 k=0 Jgrg X
Since |~|1 < |-|X, it follows that
[(Ggtkgla. l
00 ‘70'k0
11 2"-1 2"-1 -
=1lim | J w, (x)w, (y) = £ (j+k=2 "jk)a.,w.(x)w, (y)dzdy
now |00 90 Koo j=0 k=0 JKG K
2"-1 21 -
< lim z L (J+k-2 "jkla.,w.(x)w, (y) =0
nrw j=0 k=0 Jk J k

1

for all jo,k z 0 such that max(jo,ko) 2 1. This implies that

0
aJ.OIk0 = 0 for all such pairs Jo,ko, and therefore, f = agq is
constant.

PROBLEM 3. How can one characterize those functions f€X such that

~1 1
Iojk(f)—flx = 0(Jj

+k ) 2 (6.9)
This is not known even in the univariate case. We conjecture

that, in the special case when j = k = 2", X =270 (Iz) or Lp(IZ) for
W

some 1 £ p < =, we have
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-n
lozn 2n(f)-flx =0(2™"

if and only if

n n
z £ 2
=0 1=0

The "if" part follows from (4.6). The proof (or disproof) of the "only

- ,-1

L, 27 h = 02,

(fi2

if" part is a problem.
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