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ABSTRACT. We study the rate of approximation by rectangular partial

sums, Cesro means, and de la Valle Poussin means of double Walsh-

-Fourier series of a function in a homogeneous Banach space X. In

particular, X may be Lp(12), where <= F < and 12 [0,1) [0,I), or

CW(12), the latter being the collection of uniformly W-continuous

functions on 12. We extend the results by Watari, Fine, Yano,

Jastrebova, Bljumin, Esfahanizadeh and Siddiqi from univariate to

multivariate cases. As by-products, we deduce sufficient conditions

for convergence in LP(12)-norm and uniform convergence on 12 as well

as characterizations of Lipschitz classes of functions. At the end,

we raise three problems.
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I. INTRODUCTION.

We consider the Walsh orthonormal system {w$(z):$
_

0} defined on

the unit interval I:= [0,I) in the Paley enumeration (see [7]) To be

more specific, let
if z6[0,2-I)

r
0
(x) :=

L-I if z612-1,1)
r0(x+1) := rdx),
r .(x) := r (2Jx) j >= and xeI,

be the well-known Rademacher functions. For k 0 set w0 (x):= I, and if

k:= . k .2 j, k 0 or I,
=o
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is the dyadic representation of an integer k I, then set

wk(x) := H [rj(x) 9.
j=0

We will study approximation by means of double Walsh polynomials

in the norm of a homogeneous Banach space X of functions defined on

the unit square 12:= [0,I) [0,I).

2. DOUBLE WALSH POLYNOMIALS AND MODULUS OF CONTINUITY.

We remind the reader that a double Walsh polynomial of order less

than m in x and of order less than n in y is a two variable function

of the form

m-1 n-1
P(x,y) := E . ajkwj(x)wk (y)

j=o =o
where m,n are positive integers and {ajk} is a double sequence of real

(or complex) numbers. Denote by P the collection of such Walshmn
polynomials and let

P:= u u P
m=l n=l

The members of P are called double Walsh polynomials.

Denote by E the finite o-algebra generated by the collectionmn
of dyadic intervals of the form

I (j k):= [j2-m (j+I)2-m) [k2 -n (k+1)2 -n) where0 < j < 2m 0 k < 2 n,
and m,n > 0. It is plain that the collection of x -measurable func-

ran
tions defined on 12 coincides with P The so-called dyadic

2ra 2n

topology of 12 is generated by the union of the E for m,n 0,1,

The definition of a homogeneous Banach space on the circle group

f [-,) is well-known (see Katznelson [6 ]) It is formulated on the

dyadic group I [0,1), while using Walsh polynomials (see Butzer and

Nessel [2] and also [8,pp. 154-155]). Following them, we say that a

Banach space X of functions defined on 12 with the norm |-| is homo-X
geneous if P c_ X c_ L (12) and if the following three properties hold:

(i) The norm of X dominates the L (12)-norm: for any rex
Ill Iflx;

(ii) The norm of X is translation invariant: for any (u,v)6I2 and
f6X

fa afuTuvf6X and Tuv X X
where Tuv means the dyadic translation by u in the first variable and
by v in the second one:

Xuvf(X,y) := f(x%u,y%v) (x,y)EI2.
Here and in the sequel, denotes dyadic addition.

(iii) P is dense in X with respect to the norm .I X’ i.e., for
any fEX and e > 0 there exists a double Walsh polynomial PEP such that



APPROXIMATION BY DOUBLE WALSH POLYNOMIALS 211

We recall that the norm in Lp(12) ,I p < =, is defined by

[1 1/p
ufu := II Ilf(x,y)IPdx@

P [0 0

while CW(I2) is the collection of functions f(x,y) that are uniformly

continuous from the dyadic topology of 12 to the usual topology of R,

and endowed with the "sup" norm:

fl:= sup{ If(x,//) I: (,9)eI2}
Such a function f is called un[gormly -eone[nuous.

Similarly to the un[var[ate case (c. [8, pp. 9-]) f he per-

both z and 9 is ciass[cally continuous, then s also uniformly

Z2cong[nuous on

It follows (cf. [8, p. 42] in ehe unvarae ease) hat gp(z2)
is he ciosure o he eoiiect[on P o double aish Niynais hen

us[n the norm I.I p < . B[kew[se (e. [8, pp. 56-58]),
P

C(Z2) is he uniform closure o P, .e., hen usn he norm

he extension o [8, a , p. 55] ro Z Z2 s off

mporgance in ghs par.. or any ,hX and g(Z2)

-h I I (u,e)dudel x0 0- I I uv_-h x[g (u’v)dudv
0 0

where

(2.1)

and consequently,

For e,8 > 0, the Lipschitz class is defined by

lim X (f;61’62) 0.
6 ’62+0

Lip(e,8;X) := {fEX:x(f;61 62 0(6 s 281+6 as 61,62/0}.
Unlike the classical case, Lip(s,8;X) is not trivial when s > and/or

S > (cf. [8, p. 188]).

(f.g) (x,y) := f f f(x4"u,y’v)g(u,v)dudv, (x,y)612,
0 0

is the dyadic convolution of the functions f and g.

The proof of Lemma is almost identical to that of the univari-

ate lemma in [8, pp. 155-156]. We omit it.

Finally, we remind the reader that the (total) modulus of conti-

nuity of a function fEX is defined by

x(f;61,62):= sup{luvf-fl x:O < u < 61 0 v < 62
where 61,62 > 0. By the Banach-Steinhaus theorem, for any fEX

lim I vf- 0
u X

u, v/O
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3. APPROXIMATION BY RECTANGULAR PARTIAL SUMS.

As is well-known, the measurement of the rate of approximation to
a function 6X by polynomials in P is defined by

E (f;X) := inf{Jf-Pllx:P6Pmnmz

Since P is a finite dimensional subspace of X, for every f6X themn
infimum above is attained by some P 6P Such a polynomial P ismn mn mn
called a best approximation of f in P

mn
Given a function f6L 1(12), we form its double Walsh-Fourier

series as follows

where the

z z ajkw (x)w (y)
j=0 k=0 J k (3.1)

ajk:= f(u,v)wj(u)Wk(V)dudv, j,k = O,
0 0

are called double Walsh-Fourier coefficients of f. The rectangular

partial sums of series (3. I) are defined by

m-1 n-1
S (f;x,y) := Z Z a. w .(x)wk(y), m,n I.mn

j=O k=O k

Now, the modulus of continuity gives sharp estimates to the rate

of approximation by double Walsh polynomials P6P and by the
2m,2 n

rectangular partial sums S (f).
2m,2n

THEOREM I. For any f6X and m,n > O,

2-1 -m n
x(f;2 ,2- < E (f;X)

2m 2n (3.2)

< S2m 2
n(f)-fX X(f;2-m’ 2-n)"

We note that the right inequality is the Walsh analogue of the

classical Jackson inequality. The left-most inequa’lity has no trigon-

ometric analogue.

PROOF. As is well-known,

S (f;x y) S f(xSu,y$v)D (U)Dn(V)dudvmn m
0 0

where

m-1
D (u) := z w .(u), m > 1,
m j=0 J

is the Walsh-Dirichlet kernel. We recall that the Paley lemma (see,

e.g. [8, p 7]) says that

(3.3)

12 m if u6[ 0,2-m)
m2m(U) I0 if u612-m 1)

(3.4)

Now, by (2.1),
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S (f) -f
2m 2 n

X f-fl D (u)D (v)dudv
0 0 uv X

2m 2
n

2-m 2-n
2m+n uvf-fxdudv

0 0

<_ x(f,2-m -n
,2 ), (3.5)

which is the third inequality in (3.2).

The second inequality in (3.2) is trivial.

We observe that for any polynomial P6P
2m 2 nhave

P(xSu,ySv) P(u,v)

and (u,v)6I (0,0) we
mn

Consequently, for such u,v

uvf-f (f-P)-(f-P).

Now, let P be a best approximation to f in P
2m 2 n

Then

x( f;2
-m

2 n) < 211f-P|x 2E2m,2n (f;X)

This is equivalent to the first inequality in (3.2).

The following corollary of Theorem shows that the Lipschitz

classes can be used to characterize functions by their rate of

approximation by double Walsh polynomials.

COROLLARY I. Let f6X and a, > 0. Then the following five

statements are equivalent:

(a) f6Lip(a,S;X),
0(2-m+2-nB) as(b) $2m,2 n (f)-f| x

(c) E (f;X) O(2-me+2-riB) as m,n/,

2m,2 n

(d) E:ke (f;X) O(j-S+k-8) as j,k+,
(e) x(f;2-m 2-n -m n80(2 +2- as m,n/.

PROOF. According to Theorem I, (a) implies (b) and (c).

By definition,

Ejk(f;X)
_

Eil(f;X) whenever j Z i and k z 1.

Consequently, if

2m < j < 2m+I n n+1
2 < k < 2 and m,n > 0,

then

E2m+1,2n+ (fiX) < Ejk(f;X) < E2m,2n(fX).
Hence it follows that (c) and (d) are equivalent.

By Theorem and (3.7), (d) implies (e).

Finally, the fact that x(f;61,62) decreases as either 61 or 62
decreases shows that (e) and (a) are equivalent.

On closing, we note that Theorem and Corollary are the

multivariate extensions of the corresponding results by Watari [9],

proved for the cases X CW(I) and LP(I),I p < .

(3.6)

(3.7)
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4. APPROXIMATION BY CESRO MEANS.

As is well-known, the first arithmetic means or Cesaro means of

series (3. I) are de fined by

(f;x,y) := - S (f;x y), m n
mn mn

j=1 k=1 jk

It follows from (3.3) that

o (f;x,y) f f(xu,y;u)K (U)Kn(U)dudvm; m0 0

where

(4.’[)

m
K (u):= D.(u)
m m

j=1 J

is the Walsh-Fej&r kernel. This kernel has the remarkable property of

IK := IK (u)[du 2, m = I,
m 0 m

quas i-positiveness

f+/-rst proved by Yano [10]. By (2.1), we conclude that for any f6X

Omn (f) X K Kn f -< 4 f! (4.2)
m X X"

We estimate the rate of convergence when a function is approxi-

mated by the Cesaro means of its double Walsh-Fourier series.

THEOREM 2. For any f6X and j,k > 1,

m

"Ojk (f)-f X 6 z 2 i+z-m-n (f;2-i -l
X ,2 (4.3)

i=0 /=0

where m and n are defined in (3.6).

The next two corollaries are iediate consequences of Theorem 2.

COROLLARY 2. (i) If f6Lp(12) for some p < , then the Cesro
means jk (f) of its dole Walsh-Fourier series converge to f in Lp-

norm.

(ii) If f6Cw(I2), then the Ojk(f) converge to f uniformly on 12
In statement (i), the case p in really intgresting. In

Section 6, we will prove that, in the cases when < p < , even the

rectangular partial sums S$k() converge to f in LP-norm (see Theorem 5

below). Statement (ii) is the multivariate extension of the correspond-

ing result by Fine [4].

COROLLARY 3. If 6Lip(,8;X) for some e,8 > 0, then

llOjk (f) -f! X

O(j-+k-8) if 0 < s,8 < I,

O(j-I log j+k-8) if 0 < S < e,

O(j-1+k -8) if 0 < 8 < < s,

O(j-I log j+k-1 log k) if 8 1,

O(j-l+k -I log k) if 8 < ,
[O(j-1+k -I) if < m,8. (4.4)

We note that Corollary 3 is also the multivariate extension of

the corresponding results by Yano [11] (proved for 0 < < and

=< p

_
=) and by Jastrebova [5] (proved for and p ).
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PROOF OF THEOREM 2. Keeping (3.6) in mind, we may write

m+n 2m 2n
2 . . S (f)-fjk(f) f jk 2m+n i=I /=1 il

+ n + . . + . . (Sil(f)-S
i=2m+1 /=1 i=1 l=2n+1 i=2m+1 l=2n+1 2m,2n

2m+n+(
jk

(S (f)-f)
2m,2n

(f))

2m+n 2m+n
j-----(o (f)-f)+o (f-S (f)) + I- jk (S (f)-f).

2m,2n mn 2m,2n 2m,2n

Hence, by the triangle inequality and (4. I),

|jk (f)-f| x |2m,2n (f)-f| X+5|S2m,2n(f)-f| X"

Consequently, by Theorem I,

lOjk (f)-fl x < l2m,2n(f)-flx+5x(f;2-m’2-n) (4.5)

Now, we estimate the first quantity on the right-hand side of

(4.5) To this end, we recall the representation

-m 2i-mD -i-1
K2m(u) 2 2 ul+ g (u2 u

i=0 2m

(see, e.g., [8, p. 46, relation (iii)]). By (3.4), for 0 i < m

D (u$2-i-1
2m

2m if u612-i-1,2-i-1+2-m)

0 otherwise

and for i m

D (u2-m-l) D
2m 2m

(u) 12m if u6[0,2-m),

0 otherwise.

In particular, it follows that K (u) Z 0 for all u6I.
2m

Similarly to (3.5), we apply again (2.1) and then by an elementary

reasoning we obtain that

102m,2n(f)-flX 0; 0; luvf-flxK2m(u)K2n(V)dudv
2-m 2-n -i -n 2-m -Im-1 2 2 n-1 2

0; ; + ; .1" + ; ;
0 i=0 2-i-1 0 /=0 0 2-/-1

m-1 n-1 2-i 2-1 } XK2m+ E F. ; ’[ Zuvf-fl (u) K V dudv
i=0 /=0 2-i-1 2-/-I 2n

m-1
Z(f;2-m,2-n)+ F. 2i-m-lox(f;2-i,2 -n)

i=0
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n-1 l-n-1 -+ 2 (oxlf;2 ,2-
=0

m-1 n-1 2i_m_1 Z-n-1 -i -Z. E 2 X (.f’ 2 ,2
i=0 7.=0

n i+l-m-n (f2-i 2
-I_

Z E 2 X )"
i=O l=O

Combining (4.5) and (4.6) yields (4.3).

(4.6)

5. APPROXIMATION BY DE LA VALL.E POUSSIN MEANS.

By Corollaries and 3, the rate of approximation by odk(f) is as

good as by S (f) if fELip(a,8;X) for some 0 < a,S < 1, where m and
2m,2 n

n are defined by (3 6) However the o’jk8 are not projections from X

onto Pdk" These two important properties are satisfied by the

de la Valle Poussin means of series (3.1) defined by

2m 2n
V (f;z,y) := . F. Sj (f;x, 9) m,n Z 1.
mn mn j=m+1 k=n+

THROREM 3. or any fEX and mn 1

V (f)-fl . 37E (f;X). (5 1)
mn X mn

We note that in the univariate case, Bljumln ], Esfahanizadeh

and Siddiqi [3 studied de la Valle Poussin means and obtained an

inequality whose multivariate extension is (5.1).

PROOF. A routine computation shows that

V (f;x,y) S (f)z,)

2m-1 n-1
+ 2 E E - ajkwj(z)wk()

j=m k=O

m-1 2n-1
+ 2 F. F. --’, akwe(z)w()

j=O k=n

2m-1 2n-1
+ 4 T_. T_. -,.,,, -""- a"kZO’ze,(=)wz"

d=m k=n

Hence it follows immediately that for any PEP

Vmn (P,z,y) P(z,) (5.2)

On the other hand, it is easy to check that

Vmn(f) 42m,2n(f)-22m,n(f)-2m,2n(f)+mn(f)"
Consequently, by (4.2), for any fEZ and m,n Z we have

IV (f)l 361fl (5 3)
mn X X"

NOW, let P be a best approximation to f in P Then, combining

(5.2) and (5.3) yields
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Vmn(f)-f|x -< Vmn{f-p)|X+|P-flx

-<- 37|P-f|X 37E (f;X)

6. ESTIMATION AND SATURATION PROBLEMS.
(A) Theorem says that the rate of approximation by the

rectangular partial sums S (f) of the Walsh-Fourier series (3. I) is2m,2 n
no worse than that by double Walsh polynomials from P at all. As

2m,2n
to approximation by Stun (f), we can ensure only a weaker rate in

general.

THEOREM 4. For any f6X and m,n I,

< (I+IO amn| )E (f;X). (6.1)Smn f fax m mn

This can be proved in a routine way. For the reader’s convenience,

we sketch it.

PROOF. Let P be a best approximation to f in P Since S (P) P,

we may write that

its (f)-fa < aS (f-p)a +ap-fa (6 2)
mn x mn x x"

Taking into account (3.3), (2.1), and the fact that -ax is transla-

tion invariant gives that

aSmn(f-P)|x < S a (f-p)a ID (U)Dn(V)Idudv
0 0 uv X m

If-PIxlDml laOnll (6.3)

Now, (6.1) follows from (6.2) and (6.3).

We note that

|Dma 0(log m)

and this estimate is sharp (see, e.g. [8, p. 35]). In spite of this

fact, estimate (6. I) can be essentially improved in the particular

case when X Lp(12), < p < =. We will write |-|" instead of
P

Lp (/2)
THEOREM 5. For any < p < =, there exists a constant K such

P
that for any f6LP(I2) and m,n Z we have

IS (f)-fa E (f;np (12)). (6.4)
mn p p mn

Theorem 5 is ultimately a consequence of the following result by

Paley [7]: For any < p < =, there exists a constant K such that for
P

any g6LP(I) and m we have

IS (g)l < K Igl (6.5)
m p p p

where this time

m-1

J J {1 }l/pS (g;x): Z g(u)w_.(u)du w:(x) and Igl := lg(x) IPdxm j=O 0 P 0

On the basis of (6.5) we will prove the following

LEM,LA 2. For any f6Lp(12), < p < =, and m,n I,
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IS (f)l < 21fl (6.6)
mn p p p

PROOF. We may consider f(x,y) as a function of x for each fixed y

denoted by gy(X) := f(x,y). Observe that if f6Lp(12), then gy6Lp(I) for

almost all y6I and

Smn (f;x,y) S (S (gu;X) y) m,n I.

Furthermore, if f6L(I2), then

m-1
G (y):= Sm(gy;x) r. ; gy(u)wj(u)du wj(x)6LP(I)m,x j=0 0

for all m

_
and for almost all x6I.

Now, applying Fubini’s theorem three times and the univariate

inequality (6.5) twice provides (6.6) as follows

I I ISmn (f;x,y) iPdzd
0 0

I r. I a (v), (v)dv w ()
olk=o m,x k k

0

g r. f gy(U)Wj(u)du wj(x) dz dy
P 0 j=O 0

K2 I I f(x,) IPdz,d.PO0
After these preliminaries, the proof of Theorem 5 is identical

with that of Theorem 4, except that we use (6.6) instead of (6.3). In

this way, we arrive at (6.4) with K := I+K
P

Obviously, Theorem 5 implies the following

COROLLARY 4. If f6L
p (12) for some < p < -, then the rectangular

partial sums S (f) of its double Walsh-Fourier series converge to f
in LP-norm.

Nevertheless, it seems to be very likely that estimate (6. I) is

the best possible in general.

PROBLEM I. Show that, in the cases when X L I(12) or CW(I2),
there exists a function f6X such

S (f) -f|mn X
lim sup log m log n

> 0.

(B) We guess that Corollary 3 is also the best possible in the

above sense. For example, we formulate this in connection with the

fourth estimate in (4.4).
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PROBLEM 2. Show that, in the cases when X L

there exists a function 6Lip(1, ;X) such that

I(12) or CW(I2),

Io (f)-flmn X
lim sup -I -I
m,n+ m log m + n log n

> 0.

In the univariate case, the corresponding result was proved by

Jastrebova [5] with "lim" instead of "lira sup".

(C) Finally, we discuss the so-called saturation problem. We

begin with the observation that the rate of approximation by the

Cesro means (f) to functions f6Lip (, 8) is not improved as s and

8 increase beyond I. Indeed, the following is true.

THEOREM 6. If for some f6X

lo2n 2n
(f)-fn x (2-n) as n -,

then f is constant.

PROOF. Since

E2n 2
n(f;X) < Io (f)_fl

2n,2 n X’

by hypothesis and Theorem I, we have

o(2-n) as n .S2n" 2n
(f)-fl X

Taking into account that
2n_i 2n-i

2
n

($2 n 2
n (f;x, y)-o

2
n n (f;x,y)) Z Z (j+k-2-njk)ajkWj(X)Wk (y)

2 j=0 k=0

by (6.7) and (6.8), we conclude that

2n- 2n-1
lim . z (j+k-2-njk)ajkWj(X)Wk (y) O.
n-+oo j=O k=O x

(6.7)

(6.8)

Since l.n < .II
X’ it follows that

(J+:) ’o" ’;< o

lim
2n-1 2n-1

;0 sk)jkWjWjo(X)Wko(Y) E E (j+k-2
-n

(x)wk (y)dxdy
j=o <=o

2n-1 2n-1
_-< lim F. r. (j+k-2-njk)ajkWj(z)wk (y)
n/ j=O k=O

0

> 0 such that max(J0 k0) a I. This implies thatfor all J0’k0
ajo,k 0

0 for all such pairs J0,k0, and therefore, f a00 is

constan t.

PROBLEM 3. How can one characterize those functions f6X such that

|Ojk(f)-flx O(j +k ? (6.9)

This is not known even in the univariate case. We conjecture

that in the special case when j k 2
n (12X CW or LP(I2) for

some =< p < , we have
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1o2n,2n(f)-flx 0(2-n)

if and only if

n n i+l -i -l 2nZ 2 (f;2 ,2 0( ).
i=O =0

The "if" part follows from (4.6). The proof (or disproof) of the "only

if" part is a problem.
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