
Internat. J. Math. & Math. Sci.
VOL. 15 NO. 2 (1992) 241-254

241

LINEAR FUNCTIONALS ON ORLICZ SEQUENCE SPACES
WITHOUT LOCAL CONVEXITY

MARIAN NOWAK

Institute of Mathematics
A. Mickiewicz University

Matejki 48/49, 60-769 Poznad
Poland

(Received March 8, 1990)
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INTRODUCTION. The general form of continuous linear functionals on an Orlicz space L*, defined by

a convex Orlicz function has been found by Ando [2] (for being an N-function and for a finite measure

space) and by Rao [21], Fernandez [7] (for being a Young function and for a general measure space).

In this paper we describe the dual space (1’)" of an Orlicz sequence space 1’ defined by an arbitrary

Orlicz function (not necessarily convex) such that (u)/u oo as u o. For this purpose we shall first

use the description of the Mackey topology’t, of 1’, obtained by Kalton [8], when satisfies the A2-condition
at 0, and by Drewnowski and Nawrocki [5], in general. The Mackey topology x, is normable and we

consider two natural norms on 1’ which generate x,. Thus we can define two corresponding norms in (1’).
Moreover, we consider 1’ from the point of view of the theory of modular spaces (see [15], [16], [17]).
We investigate the conjugate modular (in the sense of Nakano [17]) on (1’) and consider two other

norms on (1’)* defined in a natural way by the conjugate modulai’. It is well-known that

(1’)* (1’) "+(1’) ", where (1’) "and (1’) "denote the sets ofall order continuous and singular linear functionals

on 1’ respectively. We first show that the Kthe dual (l)X of 1 coincides with the Orlicz sequence space
1’, where * denotes the complementary function of q in the sense of Young. Thus we obtain the corre-

sponding characterization of (1’). Next, we prove that the conjugate modular and all four norms defined

on (1’)" coincide on (1’)’. Following the idea of [2] we construct a Riesz isometric isomorphism of (1’)
onto some Riesz subspace B,(N) (dependent on ) of the Banach lattice ha(N) of all real-valued bounded

finitely additive set functions on N. We prove that there exists an isometric isomorphism of the Banach

space ((1’)’, I1" II;) (fo the definition of the norm I1" II; section 2) onto the Banach space 1" xB,(N)
given by the mapping f(y,v) such that f(x)- ,x(i)y(i)+ fx dv for all xEl* and

i-I

II/" II, yll ,. + I’1 (N). From this it follows that h* (the ideal of elements of absolutely continuous F-norm

on 1’) is anM-ideal of 1’ (see [3, definition 2.1]). As an application, we obtain that every continuous linear

function on h* has the unique norm preserving extension to 1’.
1. Preliminaries. For terminology concerning locally solid Riesz spaces we refer to [1 and [14]. For a

Riesz space (E,>) letE/- {u EE u z0} (the positive cone orE). By N we will denote the set of all

natural numbers. Denote by t.o the space of all real-valued sequences. For the sequencex, x(i) means the
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i-th coordinate ofx, and we shall denote byx(’) the n-th section ofx (that is x’)(i) x(i) for n, xt’)(i) 0
for > n). For a subsetA ofN we will denote by x.,t the sequence such thatx,t(i) x(i) for EA andxt(i) 0
for A. Iffis a linear functional on a subspace X of to, we will denote by f the functional defined as:

A(x) f(x.) for x tEX. It is known that to is a super Dedekind complete Riesz space under the ordering
x y whenever x(i) y(i) for N.

Now we recall some terminology concerning Orlicz sequence spaces (see 11 ], 12], [22], and [25]).
By an Orlicz function 9 we mean a function : [0, =o) [0,) which is non-decreasing, continuous

for u 0 and (u)- 0 iff u -0. Throughout this paper we shall assume that tp satisfies the following
condition: t(u)/u as u . Every Orlicz function determines the functional p,: to--* [0,]
defined by the formula:

p,(X)-" .1 (I x(i)l

Then 1’ {x tE to p,(:kx) < w for some . > 0} is called an Orlicz sequence space defined by . The space

1’ is an ideal of to and the functional p, restricted to 1’ is an orthogorlal additive molular, i.e., p, satisfies
the following conditions:

(1) p,(x) 0 iff x 0.

(2) P.Cx,) p.Cx:,) if x, x l.
(3) p.(hx) 0 if ),, O.

4) p,Cx, + x:,) p,Cx,) + p,Cx2) if x, ,, o.
These conditions imply that P,(Xl v x,) p,(xl) + P,(X2) for x,x: a.O. Moreover, p, satisfies the following

axiom of completeness (see [15]):

(C) If x,, 0 for n- 1,2 and p,(x,,) <w, then there exists y 1’ such that y-supx,, and

p,,,(y) .., p,fx.).

If is a convex Orlicz function, then the modular p, is convex, i.e.,

p,(ax + bx2) ap,(x) + bp,(x.z) for a,b 0 with a + b 1.

In 1’ the complete Riesz F-norm I1" II, can be defined by

Ixl,-inf{.>0 p,(x).: .}.

We shall denote by :, the topology of the F-norm l" 1,- Leth* {x E 1’ p,(hx) < oo for all . 0}. Then

h* is the ideal of elements of absolutely continuous F-norm [, on 1’.
We say that satisfies the A:-condition at0, whenever limsuptg(2u)/tg(u)< oo. It is known that

"*0

1’-h* (i.e. 1’ is separable) iff satisfies the A2-condition at 0.

We say that two Orlicz functions and ap are equivalent at 0, in symbols ap, if there exist positive

numbers a,b,c,d and Uo 0 such that abu) ap(u) cdu) for 0 u Uo. It is well-known that if xp

then 1’- 1’ and "t,- x.,. Moreover, the space (l*,’t,) is locally convex iff there exists a convex Orlicz

function ap such that ~p (see [25], Theorem 3.1.5]. Separable Orlicz sequence spaces without local

convexity have been investigated in detail by Kalton [8]. For examples of non-separable and non-locally

convex Orlicz sequence spaces see [5].
We denote by p, the Minkowski functional of the absolutely convex absorbing subset

k*- {x E to p,(x) < oo} of 1’. Thus

p,Cx) inf{:k 0 p,(xf) < w}

for allx tE 1’, p,(x)lxl,,forx 1’, andh*- ker p,.
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2. Norms on the dual space (1)* of 1. In this section we define in two different ways some natural

norms on (1’)*. For this purpose we shall first use the description of the Mackey topology of (1’, %) given

in [5], and next, we apply the Nakano’s theory of conjugate modulars [17].
Let us put

’( v)=sup{uv-(u) u :,.0} for v>0.

Then q" will be called t.he function complementary to q in the sense of Young. It is seen that q" is a convex

function, taking only finite values, and q’(0)- 0. This means that q" is a .Young function (see [12], [13],

[26]). The additional properties of q are included in the following

LEMMA2.1. (a) If lira inf (u)/u O, then" vanishes only at 0 and lim q’(v)/v 0, lim ’(v)/v
u_O

(i.e. q" is an N-function in the sense of 11 ]).
(b) If lira infq(u)/u > 0, then q" vanishes near zero and lira ’(v)/v o (i.e. 1" 1"*).

u-O

PROOF. (a) We can easily verify that q’(v) > 0 for v > 0. In the same way as in [4, {}2] we can

show that lim ’(v)/v 0 and lim ’(v)/v
v-O

Co) We shall show that there exists v0 > 0 such that $’(v) .- 0 for 0 v Vo, and $’(v) > 0 for v > Vo.
ihdeed, since liminf(u)/u > 0 there exist numbers v’ > 0 and u’ > 0 such that uv’ -: (u) for 0 u u’,

and since lira p(u)/u oo (by our assumption) there exists a number u" > 0 with u" > u’ such that u q(u)

foru : u". Taking v" > 0such that 1/v" sup{u##(u ): u’ su u"}, we have uv" (u)for u’ su su".

Then for v min(1,v, we get uvt suv’.gC(u) for u >u uvt sg(u) for u -:u -:u and

uvt u u)for u u". Hence uv u) -: 0 for u : 0, so that ’(v) 0. On the other hand, there exists

a number vz > 0 such that ’(v:0 > 0. Since " is convex, there exists a number vo > 0 such that ’(v) 0

for 0 s v Vo, and ’(v) > 0 for v > v0. Moreover, as in [4, {}2] we can show that lira

For an Orlicz function 9 we shall denote by the convex min0rant of q in a neighborhood of 0, i.e.,

is the largest Orlicz function such that (u)s (u) for u 0, and is convex on the interval [0,1] (see

[8, p. 255]).
Moreover, let us put

(u)-(’)’(u) for u>0.

It is seen that is a convex Orlicz function such that lira u)/u -oo. The relation between and is

described by

LEMMA 2.2. We have and --(u) s (u) for u : 0.

PROOF. First, we shall show that u) s (u) for u : 0. Indeed, since lira ’(v)N oo, for every

u > 0 there exists v,, > 0 such that --(u) + ’(v,,) uv,,. But uv,, u) + ’(v,,); hence u) s (u)
for u : 0. In [18, Lemma 2.1] it is proved that whenever lira inf u)/u -O. Now assume that

lim inf (u)/u > 0. We can check that , where ga(u) u for u : 0 (see [18]). It suffices to show that

~. In view of Lemma 2.1 there exists a number Vo > 0 such that ’(v) 0 for0 s v v0, and ’(v) 0

for V>Vo. Moreover, since lim q’(v)/v-oo, for every u >0 there exists v,,>vo such that

uv-’(v) < 0 for v > v,,. Hence, for every u > 0, u) max(uvo, sup{uv-’(v) v0 s v v,,}). But

sup{uv ’(v) vo s v v,,} uv’- ’(v’) for some v’ with v0 s v’ v,,. Assuming that v < v’, we obtain

that --(u) uv for 0 u s u0 ’(v’)/(v’ vo), and thus t.
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For a topological vector space (E,) we shall denote by (E, )" its topological dual. We shall denote

by (1)" the dual space of (l,’t,).
Let us recall that the _Mackey topology of(E,) is the finest locally convex topology x which produces

the same continuous linear functionals as the original topology . If (E,) is an F-space then is the finest

locally convex topology on E which is weaker than (see [24]).

Kalton [8] has showed that the Mackey topology% of a separable Orlicz sequence space 1’ coincides

with the topology x,l,l, induced from ’. For an arbitrary 1’, the Mackey topology "% has been

described by Drewnowski and Nawrocki [5].

Denote by "t:, the Mackey topology of (l*,x,), by x, the Mackey topology of (h*,’t:,lj,,), and by t, the

topology defined by the Riesz seminorm p,.
Combining [5, Theorems 5.1 and 5.3] with Lemma 2.2 we get the following important descriptions

of "the and %.
THEOREM 2.3. The following equalities hold:

It is well-known (see [11], [12]) that the F-norm top.ology "t: on i can be generated by two Riesz

norms:

and

[[x[[= inf {1..0 i(piCxx) + 1)

-suP{li.,x(i)z(i)[" z E a*’,p,.(z) .,: 1}
Ill x Ill i.q > 0. x/X) 1}.

Moreover, lllx IIlllxll2111x II1 for allx i andlllx II1 1 iff pi-(x) 1.

Therefore, in view of Theorem 2.3 the Mackey topology "% can be generated by two Riesz norms:

p," "11 and p, v II1" II1
which will be of importance in our discussion. Thus two corresponding Riesz norms on (1’)" can be given

by

f II; sup[ f0x)l- x e % p,(x) 1 and Ill x II1 1]
[[[fll[’,-suI[f(x)l’xX*, p,(x)X and [[x[[il}.

Thus (1’) is a Banach lattice under each of the norms ]]-11; and II1" III;- Moreover,i o,(x) implies

p,(x) and pi(x) 1, we can put (see [19]):

[[f[[,,-sup{lf(x)[ "x 1’, p,(x) 1}.

We shall denote by (1’)- the collection of all order bounded linear functionals on 1’. It is well-known

that (1’)- (1’)" (see [1, Theorem 16.9]). An order bounded linear functional f on 1’ is said to be order

ontinuous (resp. singular) ifx, 0 in 1’ implies f(x,O 0 for a net (x,0 in 1’ (resp. f(x) 0 for allx h*)
(see [9, Ch. X]). The set of all order continuous (resp. singular) functionals on 1’ will be denoted by (1’)

(resp. (1’)).
The next theorem gives a characterization of the space (1’)’.

THEOREM 2.4. (a) For a linear functional/"on 1’ the following statements are equivalent:
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(1) f is order bounded.

(2) f is "%-continuous.

(3) There exist unique f E (1*), and tE (1*)" such that

f(x)-1",(x)+(x) for x E 1’.

(b) (1*)’- ((1*))’ (= the disjoint complement of (1*) in (1*)’), and moreover, (1*) and (1+) are

nanach lattices under each of the norms "110, II1" Ill;-
PROOF. (a) Since *,p, v I1" )" **)" *)-, by [9, Ch. VL ,, Theorem 5], we obtain that

separates the points of 1*, and to get our result it suffices to use Theorem 6 of [9, Ch. X, 3].

(b) Since (1*), is a band of (1*)- (see [1, Theorem 3.7])(*)% is a .11 ;-closed (resp. II1" III;-=o=d)
subspace of (1*)" (see [1, Theorem 5.6]). Thus (1*) is a Banach lattice, because (1’)" is a Banach lattice.

Moreover, since (1+) -((1 )), (1*)" is a band of (1*)" (see [1, p. 27]), and by the above argument (1’)"

is a Banach lattice.

In view of [17] the conjugate p’- of the modular p, can be defined on the algebraic dual .* of 1* as

follows:

p’-’(f) suP(If(x)[ p,(x) "x E 1’}.
Note that iff z 0, then

o+(.,0 sup((x) o+(x) o ,x
_

,.o p+(x),
Indeed, since {f(x)l s r(I xl) (see 1, p. 21]) and O,(X) P,({ x{) we have

p+ suplxl )-p+(lxl)" p+(lxl < }

sp(x) +(x)- 0 x , p+(x) < ).
We shall need the following definition.

A linear nctionalfon is id to be bounded for o, (see [16], [17]) if ere exists y > 0 such that

If(x)i (p,(x)+ x) for x

The collection of all bounded for p, linear nctionals on 1* will be denoted’by 1*.

The basic properties of p+ are included in the following

THEOM 2.5. e conjugate p, of the modular p+ is a convex orthogonal additive modular on. Moreover, e following equality holds: (1+)" -.
Proof. Using 17, 4] and arguing as in the proof of [16, eorem 38.2] we obtain that p+ is a convex

orthogonal additive modular on 1. To ende proof it suffices to show at (1*)" -. deed, let f
and p,(x) < . enpt(x) 1 and there exis y > 0 such at I)l (mx ,(), IIll )) ffi()+
y(p,(x) + 1), becauseu (u for u 0. usf lm; hence (1)" C. Next, letf and {etlx

Then p,(x) 1, and hence If(x){ 2y for some y > 0. is means at f (1)’, and thus C (1)’. The

proof is completed.

Thus by means of p two modular norms can be defined on (1)" in a usual way (see [16], [17]):
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Ill f [[1," inf{. > 0" p’-,(f/’A) } (the second modular norm).

3. Order Continuous Linear Functionais on 1’. We shall start this section with a description of the

K6the dual (1’) of 1’ that will be useful in obtaining a corresponding characterization of order continu-

ous linear functional on 1’ (see [20, Proposition 1.9]).

Let us recall that the K6the duaJ S" of a sequence space S is the sequence space defined by (see O,
30.1]):

TltEOREM 3.1. The following equalities hold:

In particular, if lira inf O0(u)/u 0, then (1’)" 1(R).

PROOF. First, we shall show that(ltf (h*f (h*f. Since (1*f C (h*f and (hSf C (hif, it suffices

to show that (h*f C (l*f and (h*f C (hSf. Indeed, lety (h if, i.e., ,-[ z(i)y(i)[ < oo for allz h *. Putting

gy(z)- . z(i)y(i) for z
i-1

by [20, Proposition 1.9] and Theorem 2.3 we get

Therefore, we can put

gy tE (h*) -(h*)--(h*, x, i,,)"- (h*,

Let now x tE 1’ (resp. x .hi),x , O. We shall show that ,.lx(i)y(i)l < o. Since x tE $ andxt’) tEh* we

get

IIIx III, ,- Ix(i)y(i)l "[ilx [11 s.P,- Ixt’)(i)l "sign y(i). y(i)

I, . (F.h’, IIIz Illffi ]-IIg,ll <-
Hence y (1if (resp. y (h $)’), that (ltf (h*f (h

We have (h;)- (h;) (h$,l)’. It is well-own at by e mapping g)the space

can be identified with (h;) (see [20, Proposition 1.9]), and e space 1 with (h*l,) (see [12, . H,

3, eorem 2]). us (h;f 1;’, and since ’- "" ’, e proof is complete.

e equality (l*f 1( has been obtained by e author in [18] in a different way, ing

the -called modular topolo on 1’.
ume now that is an Orlicz nction, not necesrily tisfying e condition:

u)/u as u. Let V be any Orlicz nction such at V(u)-(u)for 0u 1, and

V(u)/u as u . en in view of eorem 3.1 we get (l*f (lV) 1v’. us, by mma 3.1 we

get (1el- 1" for 0 <p 1.

We are now able to give a characterization of order continuous linear nctionals on 1’.

THEOM 3.2. tfbe a linear nctional on 1’.

(a) e following statements are equivalent:
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fis order continuous.

There exists a unique y 1" such

f(x)- f(x)- , x(i)y(i) for all x tE 1’.

(b) Iff is order continuous, then the following equalities hold:

p+O0 p+.(y),

I110- I111 ,- yl{

(c) Moreover, the map * D y (1’) is a Riesz isomorphism.

PROOF. (a) It follows from [20, Proposition 1.9] and Theorem 3.1.

(b) By (a) we have f(x)- x(i)y(i) for mine y 1 and all x

First, we shall show that p’,(f) PC0’). From the definition of 0" we easily obtain that ’(.[) : p,.(,y).
To prove that p,(f) p,(y) let us note that there exists 0 z such that

,(z(i))+O’(ly(i)l)-lz(i)y(i) for i- 1,2

Puttingx(i)-(signy(i)).z(i) for l, 2, we get

P+.(Y) -, 0"(1Y(i)[
-i

-s.up ,. z(i)y(i ){ z(i))

In turn, we shall show that }{fl{+- {{YI}+’- we have {{Yll,.-sup ,z(i)y(i).. "x e 1$, pi(z) 1 and

hence IlYql;llyl{+.. On the other hand, let z 1$ with pi(z) 1. Putthag x(i)-(signy(i)). {z(i){

(i 1,2, ...), we have p+(x(")) 0 and p-#(x(")) pc(z) 1. Thus

z(i)y(i) sup

-sup. ,.xO’)(i)Y(i) {{Jl+-

Thus ’ll +. II/ll 1, and hence II/ll;- yll +-.

Moreover, since p"+(Z..D p+.(.y) for Z. > 0, we get II/11 , y +..

Next, we shall show that Ill f Ill; Ill y Ill+’. To prove that Ill f Ill; Ill y Ill,-, let us assume that

x El*, p+(x) 1 and Ilxl{l. Then x lE1;, and by the HOlder’s inequality (see [11,9]) we get

{f(x)l xl{ ;’ 111Y {l{+-ll{ y Ill,., because* . Thus Ill f 111; Ill y Ill+- To prove that Ill y Ill+. Ill f Ill; let

us note that (see [11, p. 135]):
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Let now z and IIz- Putting x(i)-(signy(i))’lz(i)[(l-l,2,...) we have p,(x’)-O,

x(,)ll-: zll < , and as above we get III
Finally, since pA)- p,.(y&) for > 0, we get III/Ill.- III y II1,.

(e) See [9, Ch. VI, 1, eorem 1] and [14, eorem 18.5].

RE egeneral form of ontinuous (ntinuous with reset m the modular p,) linear

functionals on an Orliez space L*(a,b) defined by an Odiez hnetion tisfying conditions u)/u 0 as

u 0 and u)/u as u , has been found by W. Orliez 19].
4. Singular Linear Funetionals on 1’. In is etion we aum at does not tisfy the Azondition
at 0, because otheise (1’) {0}.
e following lemma describes sitive sinlar linear hnetionals on 1’.

LEM 4.1. t[be a sitive singular linear functional on 1’.

(a) For any e > 0 there exists 0 s y with p,) < such that , s).

(b) e following equalities hold:

up{): 0, , p,<x) }.

(e) ere exis 0 s y with p,) < such at

A,-fa)for any subtA ofN

and

P,(YA)" I for any subsetA ofN with H,o, 0.

PROOF. (a) Let e > 0 be given. Since (see [26, I.emma 102.1])

lfll,-supl/(x)-Offixl*, p,(x)<l, pi(x).l},

for every kN there exists 0 zk 1’ such that p,(zk) < and fll, .f(z) + . Then p,(z) < and there

exists a strictly increasing sequence of natural numbers (nt) such that

P,(z, z")- z,(i))<

Let xk -zt-z") for k 1, 2, Then in view of the axion (C) of completeness of the modular p, there

exists 0 y co such thatx y, for all k N, and p,(y) ,. p,(x,) < t. But z") h ’ for all k N, so

that
1

1 1
/(xJ +- /’O’ +-.

Since > 0 and k are arbitrary, we conclude that fli, ’ .f(y)-

C We have

III: III; - II/ilo su/(x), o, x 1., p.(x) < 1, pi(x) <

To prove that sup{f(x)’O<x_l*, p,(x)1, )<oolll/lll; assume that O<xtEl* and
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p+(x) 1, pi-(x) < o. Given an 11 > 0, there exists n N such that pi(x -x’)) < 11. Then

IIx-x"ll + p0Cx-x’) +rl

and
f(x ./’(x -x") +/(x’) l’(x -x")

(1 + rl)III/" II1,
He.ce/Cx) III III;. .d ths ,,,. obtain

III III II/11; up{ sex)- x

Moreover, by (a) there exists 0 y co, with p,(y 1, such that II/11, ":/y). H=n==

II/11 , sup/(x

s sup{ f(x)’x

-II/11,-/(y)-supTfCx)" o-: x ,, p,(x) 1}.
Thus we proved that

I111 , III :111; !1.-=pTj-(x). 0x o, p0Cx)<.
Finally, we shall show that p, 1,. ==, by (a), for every n

with p,.) , and such that I11, .). H===

1
f.)- P,.) lift

n0, 1,, and since

we get p, -II fl,. Tu the proof oe () is completed.

(c) tA be a subset of N, and let 0 x with p,(x) < be given. guing as in (a) we obtain

that there exis 0 zt with p,(zO < (k-l,2 such at Ilfll, fC,)+ r. Since

1, suHf(z)- o z , o.(z) < (see )), we have

fCx z,) , fCz,) +.
for all k N, because p,(x v zt) p,(x) + p,(zt) < . But (x v zt -z) x v zt -zt, so we get

f(XA) f((x V Z,)A) fC(zt)A)+ (k- 1,2 ).

Choose an increasing sequence of natural numbe (m,) such that p,(z z

Then in view of the axiom (Q of completene of pe ere exists 0 y such that xt y for all k N,

and p,(y) 1. Hence

f((x.))+1/4, fO,.)+ k"
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Thus we obtain that I1!10-), because by Co),

ume now at ,= 0. Given > 0 we have p,/,)+))< , and hence, by ),

llll, /,)+))- llll +-) ffi+)+q)i, p+) , because

P,A) ffi P,) 1. USe proof of (C) is mpleted.

cOOLY.. (%,.) i nbt.
eOOF. eyomZ. ((%,K . ) ,nhi. gi,g i, pooom o

[2] we can show at IIA +All, IIAII, + IAII, fo anyA,A e ((1’);), and is means that (1’) is an abstract

L-space (see [23, . H, 9]).
By ba we denotee family of all bounded real valued finitely additive t nctions on N. It is

own atba is a vector lattice with e ual ordering: v v iffv) v) for alia

v- v*-v- and Iv] -v* + v-, where v* and v- denote e sitive and e negative pig of v ba(N).
Moreover ba(N) is a Banach space under e norm ll -Il (N)( [, . HL L, .7]).

For given f((l%)* let us put v//)-A, for any sabot A of N. en by rollary 4.2,

vf e (ha(N))" and AI vAN)" I11 .
e following definition is justified by mma 4.1.

A v be(N) is id to be in claB,(N) ifere exis 0 y , with p,) < , such thatP,A)"
for any subtA of N with vl ) o.

One can show atB,(N) a Rie subspa ofba(N). ew ofmma 4.1 we havee following

Th.w a. dn a mapping r: ((1’);)" (,(N))" given by

In view of rollary 4.2 e mapping T is additive.

For any v (ha(N))* we define a sitive nctional I on (1’)* by

Ix infl,,p,(x,,)}
where e imum is token over all finite disjoint paaitionst of N.

Byemeargument as ine proofofmma5 of [2] wenprove atenetional I. is additive

on (1’)*. I. has a ique sitive exteion m a linear netional on 1’ (see [1, mma 3.1]). is
extension (denoted again by I.) ven by lx)-Idx3-Ix-) for all x 1’.

PROOF. Since I. is sitive on I I. is order bounded. It is seen at lx) 0 for all x h*, so
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Thus we can define a mapping G: (B,(N)) ((1+):’) by

GCv) L for any v (B,(N))
THEOREM 4.5. The following statements hold:

(1) (GoT)(f)-f forany ffE((1)),i.e.,
f(x) l,,l(x) for all x 1’.

(2) (T G)(v) v for any v E (B(N))/, i.e.,

A) -II (,)ll. for any subsetA of N.

PROOF. (1) Using Corollary 4.2 and Lemma 4.4, it suffices to repeat the arguments of the proof
of Theorem 2 of [2].

(2) We first prove the case A N. Since v E (B,(N))/, there exists 0 y E o such that p,(y) < oo

and p,0,e) 1 for any subsetE ofNwith v(E) > 0. Then for any finite disjoint partition (E ofN we have

p,(yt)v(E) v(N), so I,,0’) v(N). According to Lemma 4.1, we have 11, ) (N). Moreover,

we have l,,(x) p,(x)vCN) for all 0 x E 1*. Hence 11. v<), o 1. vc). Assume now thatA is a

fixed subset of N, and let vl(B) v(A ClB) for anyB C N. One can easily show that Iv (Iv),. Hence, by

the above, we get ()11. -II ,110 (s) (A), and the proof is completed.

By Theorem 4.5 the mapping G is additive, because Tis additive. Thus Tand G have unique positive
extensions to linear mappings ’ (1’) B,(N) and t B,(N) (1’) (see [1, Lemma 3.1]) given by

tff)-Vr-Vr and t(v)-/o-/.
Let us put: v, yr. v

F
and I, -/. -/.. For any v EB+CN) we shall write

xdv l(x) for all x 1’.

THEOREM 4.6. (see [2, Theorem 4]). The mapping ’: (1’) B,(N) is a Riesz isomorphism.

PROOF. In view of Theorem 4.5, we get (t )(f) f, for any ff (1’)’, and (/’ )(v)- v, for

any v EB+(N). Thus is a Riesz isomorphism, because ’ is positive (see [14, Theorem 18.5]).
The final result of this section gives a characterization of singular linear functionals on 1

THEOREM 4.7. Letfbe a linear functional on

(a) The following statements are equivalent:

(1) fis singular.

(2) There exists a unique v B,(N) such that

f(x)- fxdv for all xel*

(b) Iffis singular, then the following equalities hold:

p-0- II/ll 0- lift0-111 f Ill:-
PROOF. (a) See the proof of Theorem 4.6.
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(b) According to Theorem 4.6, we get vl/l(N [v/[ (N). Thus, in view of Lemma 4.1, we get

0 0(ll)- II , ll l,- Ill I/I III- I,I ().
Moreover, since p’-,(Zf)= ,(j)= ZI,( for k > 0 (see Lemma 4.1), we obtain that j[, p’-t(f) and

III III0- o,Cf), siu th norm vhih ou in or theorem are Riesz norms the proof is complete.

Since ((I*)’, fl.fl ) is an abstract L-space (see Corollary 4.2), by Theorems 4.6 and 4.7, we obtain that

B,(N) is also an abstract L-space.

$. The General Form of Continuous Linear Funetionals on 1’. We are now in position to give a

desired characterization of the dual space (1*)’.
THEOREM 5.1. Letfbe a linear functional on 1*.

(a) The following statements are equivalent:

(1) fis 1:,-continuous.

(2) fis order bounded.

(3) There exist unique y E 1 and v B,(N) such that

,f(x)-.x(i)y(i) + xdv for all x 1’.

(b) Iff is %-continuous, then the following equalities hold:

p-,O0 p,.y) + I1 (N),

(c) The space h* is an M-ideal of (l*,p, lll" Ill-,).
PROOF. (a) It follows from Theorem 2.4, Theorem 3.2 and Theorem 4.7.

Co) By Theorem 2.4, we have ]’-f, +A, and it is known that [f’lf,, [, IL-IA[, d

If. I^l L I- 0. Sin the conjugate modular, is orthogonal additive on (1*)’, by Theorem 3.2 and Theorem

4.7, we get p’-,(f) ,(f.) + p",), p,.(y) + Iv (N).

We shall now show that f, y[[ ** + v (N). Indeed, let 0 be given. Then there exists

0 x E 1* with p,(x) < 1, pW(x) < 1, such that

.fl0- It. II0-:IL c)+,.
Moreover, in view of Lemma 4.1 there exists 0 y Qwith p,(y) 1 pW(x) such that

Let z x v y. Then p(z) p(x) + p(y) 1. Moreover, since p,(x) < 1, we have p,(x) < o. Hence

p,(z) < , so p,(z l. Thus

II/.11, + UII, I,. (-,:)+ I/1, c.),) +,

I.rl,, c) + I/1, Cz) +,

I.fl c.) +, I.fll,+,.
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Hence II.ll0+llfll,-II10, and, according to Theorem 3.2 and Theorem 4.7, we obtain

II/ll ;-II yll ,. + v I(). Finally, since p-,(k./’,,) p(.y) and ,(Z.f) [ v I(N) for Z.> 0, we easily obtain

that II/1 ,-II yll,. + Iv CN).

(c) It isweknwn that (h*) *)- (see [2Therem 88. ]) where (h*) dentes the annihiatr

of h* in (1’)*. Therefore, from Co)it follows that (h*) is an L-summand of ((1’),[[ "11 ) (s [3, Definition

1.1]). According to [3, Definition 2.1] it means that h* is an M-ideal of

REMARK. For a convex Orlicz function the equality II/11,-II/1 0 has ben poved by W. A.

Luxemburg and A. C. Zaanen [12, Theorem 5].

As an application of Theorem 5.1 we obtain that continuous linear functionals on h* have the unique

norm preserving extension to 1’.
COROLLARY 5.3. (see [21, Proposition 3]). Let g be a x,l,,-continuous linear functional on h*.

Then there exists a unique %-continuous linear functional Con 1’ such that f(x)- g(x) for all xeh /, and

gl12, -II/11 ;, where
Ilgll,-sp{ g(x)l ,x h*, IIIx II1- 1},

PROOF. Since (h*,x,l,,)*- (h *)- (h*) (see [1, Theorem 16.9]), according to [20, Proposition 1.9]

and Theorem 3.1 there exists a unique y 1" such that g(x)- . x(i)y(i) for allx h*. Let us put

f(x)- , x(i)y(i) for all x 1’.

Then f(x) g(x) for x h*, and, according to Theorem 3.2, fis order continuous and II/11, -II yll ,.. No,
we shall show that gil 0 II/1,. Indeed, we have gll 0 fll,. Let x
Then

].x(i)y(i) , sup x(i)y(i)[

sup. .2lx)(i)l sign y(i).

Hence 1 gll ,, nn we are done.

Now assume that is another such extension of g, and let F -f. Then F is singular on 1’ and.- f+ F. Hence, by Theorem 2.4, we have y-.,, andF -.. Therefore, in view of Theorem 5.1, we have

]1, II/1, / Eli,- YlI,. / Eli,. Sin ill,- gll,0 YlI**, w obtain that F 0, so-f. Thus the

proof is completed.
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