LINEAR FUNCTIONALS ON ORLICZ SEQUENCE SPACES WITHOUT LOCAL CONVEXITY

MARIAN NOWAK

Institute of Mathematics
A. Mickiewicz University
Matejki 48/49, 60-769 Poznań
Poland

(Received March 8, 1990)

ABSTRACT. The general form of continuous linear functionals on an Orlicz sequence space 1^{\bullet} (non-separable and non-locally convex in general) is obtained. It is proved that the space h^{\bullet} is an *M*-ideal in 1^{\bullet} .

KEY WORDS AND PHRASES. Orlicz sequence spaces, Köthe dual, Riesz spaces, Mackey topologies, modular spaces, and *M*-ideals.

1991 AMS SUBJECT CLASSIFICATION CODE. Primary 46 E 30.

INTRODUCTION. The general form of continuous linear functionals on an Orlicz space L^{ϕ} , defined by a convex Orlicz function ϕ has been found by Ando [2] (for ϕ being an N-function and for a finite measure space) and by Rao [21], Fernandez [7] (for ϕ being a Young function and for a general measure space).

In this paper we describe the dual space (1) of an Orlicz sequence space 1 defined by an arbitrary Orlicz function ϕ (not necessarily convex) such that $\phi(u)/u \to \infty$ as $u \to \infty$. For this purpose we shall first use the description of the Mackey topology τ_{Δ} of 1^{ϕ} , obtained by Kalton [8], when ϕ satisfies the Δ_2 -condition at 0, and by Drewnowski and Nawrocki [5], in general. The Mackey topology τ, is normable and we consider two natural norms on 1^{\bullet} which generate τ_{\bullet} . Thus we can define two corresponding norms in $(1^{\bullet})^{\bullet}$. Moreover, we consider 1[†] from the point of view of the theory of modular spaces (see [15], [16], [17]). We investigate the conjugate modular (in the sense of Nakano [17]) on (1*)* and consider two other norms on $(1^{\circ})^*$ defined in a natural way by the conjugate modular. It is well-known that $(1^{\bullet})^* = (1^{\bullet})^* + (1^{\bullet})^*$, where $(1^{\bullet})^*$ and $(1^{\bullet})^*$ denote the sets of all order continuous and singular linear functionals on 1^{\bullet} respectively. We first show that the Köthe dual $(1^{\bullet})^*$ of 1^{\bullet} coincides with the Orlicz sequence space 1^{\bullet} , where Φ denotes the complementary function of φ in the sense of Young. Thus we obtain the corresponding characterization of $(1^{\bullet})_{n}^{\infty}$. Next, we prove that the conjugate modular and all four norms defined on $(1^{\dagger})^*$ coincide on $(1^{\dagger})^*_s$. Following the idea of [2] we construct a Riesz isometric isomorphism of $(1^{\dagger})^*_s$ onto some Riesz subspace $B_{\phi}(N)$ (dependent on ϕ) of the Banach lattice ba(N) of all real-valued bounded finitely additive set functions on N. We prove that there exists an isometric isomorphism of the Banach space $((1^{\bullet})^*, \| \cdot \|_{\bullet}^*)$ (for the definition of the norm $\| \cdot \|_{\bullet}^*$ see section 2) onto the Banach space $(1^{\bullet^*} \times B_{\bullet}(N))$ given by the mapping $f \to (y, v)$ such that $f(x) = \sum_{i=1}^{\infty} x(i)y(i) + \int x \ dv$ for all $x \in 1^{+}$ and $||f||_{\bullet}^{\bullet} = ||y||_{\bullet}^{\bullet} + |v|$ (N). From this it follows that h^{\bullet} (the ideal of elements of absolutely continuous F-norm on 1^{\dagger}) is an M-ideal of 1^{\dagger} (see [3, definition 2.1]). As an application, we obtain that every continuous linear function on h^{ϕ} has the unique norm preserving extension to 1^{ϕ} .

1. Preliminaries. For terminology concerning locally solid Riesz spaces we refer to [1] and [14]. For a Riesz space (E, \ge) let $E^* = \{u \in E : u \ge 0\}$ (the positive cone of E). By N we will denote the set of all natural numbers. Denote by ω the space of all real-valued sequences. For the sequence x, x(i) means the

i-th coordinate of x, and we shall denote by $x^{(n)}$ the n-th section of x (that is $x^{(n)}(i) = x(i)$ for $i \le n$, $x^{(n)}(i) = 0$ for i > n). For a subset A of N we will denote by x_A the sequence such that $x_A(i) = x(i)$ for $i \in A$ and $x_A(i) = 0$ for $i \notin A$. If f is a linear functional on a subspace X of ω , we will denote by f_A the functional defined as: $f_A(x) = f(x_A)$ for $x \in X$. It is known that ω is a super Dedekind complete Riesz space under the ordering $x \le y$ whenever $x(i) \le y(i)$ for $i \in N$.

Now we recall some terminology concerning Orlicz sequence spaces (see [11], [12], [22], and [25]).

By an Orlicz function ϕ we mean a function ϕ : $[0, \infty) \to [0, \infty)$ which is non-decreasing, continuous for $u \ge 0$ and $\phi(u) = 0$ iff u = 0. Throughout this paper we shall assume that ϕ satisfies the following condition: $\phi(u)/u \to \infty$ as $u \to \infty$. Every Orlicz function ϕ determines the functional $\rho_{\phi}: \omega \to [0, \infty]$ defined by the formula:

$$\rho_{\phi}(x) = \sum_{i=1}^{\infty} \phi(|x(i)|).$$

Then $1^{\phi} = \{x \in \omega : \rho_{\phi}(\lambda x) < \infty \text{ for some } \lambda > 0\}$ is called <u>an Orlicz sequence space</u> defined by ϕ . The space 1^{ϕ} is an ideal of ω and the functional ρ_{ϕ} restricted to 1^{ϕ} is an orthogonal additive modular, i.e., ρ_{ϕ} satisfies the following conditions:

- (1) $\rho_{\bullet}(x) = 0 \text{ iff } x = 0.$
- (2) $\rho_{\bullet}(x_1) \le \rho_{\bullet}(x_2) \text{ if } |x_1| \le |x_2|.$
- (3) $\rho_{\bullet}(\lambda x) \to 0 \text{ if } \lambda \to 0.$
- (4) $\rho_{\phi}(x_1 + x_2) = \rho_{\phi}(x_1) + \rho_{\phi}(x_2)$ if $|x_1| \wedge |x_2| = 0$.

These conditions imply that $\rho_{\phi}(x_1 \vee x_2) \leq \rho_{\phi}(x_1) + \rho_{\phi}(x_2)$ for $x_1, x_2 \geq 0$. Moreover, ρ_{ϕ} satisfies the following axiom of completeness (see [15]):

(C) If $x_n \ge 0$ for n = 1, 2, ... and $\sum_{n=1}^{\infty} \rho_{\phi}(x_n) < \infty$, then there exists $y \in 1^{\phi}$ such that $y = \sup x_n$ and $\rho_{\phi}(y) \le \sum_{n=1}^{\infty} \rho_{\phi}(x_n)$.

If ϕ is a convex Orlicz function, then the modular ρ_{ϕ} is convex, i.e.,

$$\rho_{\bullet}(ax_1 + bx_2) \le a\rho_{\bullet}(x_1) + b\rho_{\bullet}(x_2)$$
 for $a, b \ge 0$ with $a + b = 1$.

In 1 the complete Riesz F-norm $\| \cdot \|_{\bullet}$ can be defined by

$$|x|_{\Delta} = \inf\{\lambda > 0 : \rho_{\Delta}(x/\lambda) \le \lambda\}$$
.

We shall denote by τ_{ϕ} the topology of the *F*-norm $|\cdot|_{\phi}$. Let $h^{\phi} = \{x \in 1^{\phi} : \rho_{\phi}(\lambda x) < \infty \text{ for all } \lambda > 0\}$. Then h^{ϕ} is the ideal of elements of absolutely continuous *F*-norm $|\cdot|_{\phi}$ on 1^{ϕ} .

We say that ϕ satisfies the Δ_2 -condition at 0, whenever $\limsup_{u \to 0} \phi(2u)/\phi(u) < \infty$. It is known that $1^{\phi} = h^{\phi}$ (i.e. 1^{ϕ} is separable) iff ϕ satisfies the Δ_2 -condition at 0.

We say that two Orlicz functions ϕ and ψ are equivalent at 0, in symbols $\phi \sim \psi$, if there exist positive numbers a,b,c,d and $u_0 > 0$ such that $a\phi(bu) \leq \psi(u) \leq c\phi(du)$ for $0 \leq u \leq u_0$. It is well-known that if $\phi \sim \psi$ then $1^{\phi} = 1^{\psi}$ and $\tau_{\phi} = \tau_{\psi}$. Moreover, the space $(1^{\phi}, \tau_{\phi})$ is locally convex iff there exists a convex Orlicz function ψ such that $\phi \sim \psi$ (see [25], Theorem 3.1.5]. Separable Orlicz sequence spaces without local convexity have been investigated in detail by Kalton [8]. For examples of non-separable and non-locally convex Orlicz sequence spaces see [5].

We denote by p_{ϕ} the Minkowski functional of the absolutely convex absorbing subset $k^{\phi} = \{x \in \omega : \rho_{\phi}(x) < \infty\}$ of 1^{ϕ} . Thus

$$p_{\bullet}(x) = \inf\{\lambda > 0 : \rho_{\bullet}(x/\lambda) < \infty\}$$

for all $x \in 1^{\diamond}$, $p_{\diamond}(x) \le |x|_{\diamond}$ for $x \in 1^{\diamond}$, and $h^{\diamond} = \ker p_{\diamond}$.

2. Norms on the dual space $(1^{\bullet})^*$ of 1^{\bullet} . In this section we define in two different ways some natural norms on $(1^{\bullet})^*$. For this purpose we shall first use the description of the Mackey topology of $(1^{\bullet}, \tau_{\bullet})$ given in [5], and next, we apply the Nakano's theory of conjugate modulars [17].

Let us put

$$\phi^{\bullet}(v) = \sup\{uv - \phi(u) : u \ge 0\} \text{ for } v \ge 0.$$

Then ϕ^* will be called the function complementary to ϕ in the sense of Young. It is seen that ϕ^* is a convex function, taking only finite values, and $\phi^*(0) = 0$. This means that ϕ^* is a Young function (see [12], [13], [26]). The additional properties of ϕ^* are included in the following

LEMMA 2.1. (a) If $\liminf_{u \to 0} \phi(u)/u = 0$, then ϕ^* vanishes only at 0 and $\lim_{v \to 0} \phi^*(v)/v = 0$, $\lim_{v \to \infty} \phi^*(v)/v = \infty$ (i.e. ϕ^* is an N-function in the sense of [11]).

(b) If $\liminf_{u\to 0} \phi(u)/u > 0$, then ϕ^* vanishes near zero and $\lim_{v\to\infty} \phi^*(v)/v = \infty$ (i.e. $1^{\phi^*} - 1^{\infty}$).

PROOF. (a) We can easily verify that $\phi^*(v) > 0$ for v > 0. In the same way as in [4, §2] we can show that $\lim_{v \to 0} \phi^*(v)/v = 0$ and $\lim_{v \to 0} \phi^*(v)/v = \infty$.

(b) We shall show that there exists $v_0 > 0$ such that $\phi^*(v) = 0$ for $0 \le v \le v_0$, and $\phi^*(v) > 0$ for $v > v_0$. indeed, since $\liminf_{u \to 0} \phi(u)/u > 0$ there exist numbers v' > 0 and u' > 0 such that $uv' \le \phi(u)$ for $0 \le u \le u'$, and since $\lim_{u \to \infty} \phi(u)/u = \infty$ (by our assumption) there exists a number u'' > 0 with u'' > u' such that $u \le \phi(u)$ for $u \ge u''$. Taking v'' > 0 such that $1/v'' = \sup\{u/\phi(u): u' \le u \le u''\}$, we have $uv'' \le \phi(u)$ for $u' \le u \le u''$. Then for $v_1 = \min(1, v', v'')$ we get $uv_1 \le uv' \le \phi(u)$ for $u \ge u''$, $uv_1 \le uv'' \le \phi(u)$ for $u' \le u \le u''$, and $uv_1 \le u \le \phi(u)$ for $u \ge u''$. Hence $uv_1 - \phi(u) \le 0$ for $u \ge 0$, so that $\phi^*(v_1) = 0$. On the other hand, there exists a number $v_2 > 0$ such that $\phi^*(v_2) > 0$. Since ϕ^* is convex, there exists a number $v_0 > 0$ such that $\phi^*(v) = 0$ for $0 \le v \le v_0$, and $\phi^*(v) > 0$ for $v > v_0$. Moreover, as in [4, §2] we can show that $\lim_{u \to u} \phi^*(v)/v = \infty$.

For an Orlicz function ϕ we shall denote by $\hat{\phi}$ the <u>convex minorant</u> of ϕ in a neighborhood of 0, i.e., $\hat{\phi}$ is the largest Orlicz function such that $\hat{\phi}(u) \le \phi(u)$ for $u \ge 0$, and $\hat{\phi}$ is convex on the interval [0,1] (see [8, p. 255]).

Moreover, let us put

$$\overline{\phi}(u) = (\phi^*)^*(u)$$
 for $u \ge 0$.

It is seen that $\overline{\phi}$ is a convex Orlicz function such that $\lim_{u \to \infty} \overline{\phi}(u)/u = \infty$. The relation between $\hat{\phi}$ and $\overline{\phi}$ is described by

LEMMA 2.2. We have $\hat{\phi} \sim \overline{\phi}$ and $\overline{\phi}(u) \le \phi(u)$ for $u \ge 0$.

PROOF. First, we shall show that $\overline{\phi}(u) \le \phi(u)$ for $u \ge 0$. Indeed, since $\lim_{v \to \infty} \phi^*(v)/v = \infty$, for every u > 0 there exists $v_u > 0$ such that $\overline{\phi}(u) + \phi^*(v_u) = uv_u$. But $uv_u \le \phi(u) + \phi^*(v_u)$; hence $\overline{\phi}(u) \le \phi(u)$ for $u \ge 0$. In [18, Lemma 2.1] it is proved that $\hat{\phi} \sim \overline{\phi}$ whenever $\liminf_{u \to 0} \phi(u)/u = 0$. Now assume that $\liminf_{u \to 0} \phi(u)/u > 0$. We can check that $\hat{\phi} \sim \chi_1$, where $\chi_1(u) = u$ for $u \ge 0$ (see [18]). It suffices to show that $\overline{\phi} \sim \chi_1$. In view of Lemma 2.1 there exists a number $v_0 > 0$ such that $\phi^*(v) = 0$ for $0 \le v \le v_0$, and $\phi^*(v) \ge 0$ for $v > v_0$. Moreover, since $\lim_{v \to \infty} \phi^*(v)/v = \infty$, for every u > 0 there exists $v_u > v_0$ such that $uv - \phi^*(v) < 0$ for $v > v_u$. Hence, for every u > 0, $\overline{\phi}(u) = \max(uv_0, \sup\{uv - \phi^*(v) : v_0 \le v \le v_u\}$). But $\sup\{uv - \phi^*(v) : v_0 \le v \le v_u\} = uv' - \phi^*(v')$ for some v' with $v_0 \le v' \le v_u$. Assuming that $v_0 < v'$, we obtain that $\overline{\phi}(u) = uv_0$ for $0 \le u \le u_0 = \phi^*(v')/(v' - v_0)$, and thus $\overline{\phi} \sim \chi_1$.

For a topological vector space (E, ξ) we shall denote by $(E, \xi)^{\bullet}$ its topological dual. We shall denote by $(1^{\bullet})^{\bullet}$ the dual space of $(1^{\bullet}, \tau_{\bullet})$.

Let us recall that the <u>Mackey topology</u> of (E, ξ) is the finest locally convex topology τ which produces the same continuous linear functionals as the original topology ξ . If (E, ξ) is an F-space then τ is the finest locally convex topology on E which is weaker than ξ (see [24]).

Kalton [8] has showed that the Mackey topology τ_{ϕ} of a separable Orlicz sequence space 1^{ϕ} coincides with the topology $\tau_{\phi|_{1^{\phi}}}$ induced from 1^{ϕ} . For an arbitrary 1^{ϕ} , the Mackey topology τ_{ϕ} has been described by Drewnowski and Nawrocki [5].

Denote by τ_{ϕ} the Mackey topology of $(1^{\bullet}, \tau_{\phi})$, by $\tau_{h^{\bullet}}$ the Mackey topology of $(h^{\bullet}, \tau_{\phi|h^{\bullet}})$, and by π_{ϕ} the topology defined by the Riesz seminorm p_{ϕ} .

Combining [5, Theorems 5.1 and 5.3] with Lemma 2.2 we get the following important descriptions of τ_{\downarrow} , and τ_{\downarrow} .

THEOREM 2.3. The following equalities hold:

$$\tau_{h^{+}} = \tau_{\overline{+} \mid h^{+}} \; , \quad \tau_{\phi} = (\tau_{\overline{+} \mid 1^{+}}) \vee \pi_{\phi} \; .$$

It is well-known (see [11], [12]) that the F-norm topology $\tau_{\bar{\phi}}$ on $1^{\bar{\phi}}$ can be generated by two Riesz norms:

$$||x||_{\overline{\phi}} = \inf_{\lambda > 0} \left\{ \frac{1}{\lambda} (\rho_{\overline{\phi}}(\lambda x) + 1) \right\}$$
$$= \sup \left\{ \left| \sum_{i=1}^{\infty} x(i)z(i) \right| : z \in 1^{\phi^*}, \rho_{\phi^*}(z) \le 1 \right\}$$

and

$$|||x|||_{\overline{\phi}}=\inf\{\lambda>0:\rho_{\overline{\phi}}(x/\lambda)\leq 1\}\;.$$

Moreover, $||x||_{\bar{\phi}} \le ||x||_{\bar{\phi}} \le 2 ||x||_{\bar{\phi}}$ for all $x \in 1^{\bar{\phi}}$ and $||x||_{\bar{\phi}} \le 1$ iff $\rho_{\bar{\phi}}(x) \le 1$.

Therefore, in view of Theorem 2.3 the Mackey topology τ_{\bullet} can be generated by two Riesz norms:

$$p_{\bullet} \vee \| \cdot \|_{\overline{\bullet}}$$
 and $p_{\bullet} \vee \| \cdot \|_{\overline{\bullet}}$

which will be of importance in our discussion. Thus two corresponding Riesz norms on $(1^{\bullet})^{\bullet}$ can be given by

$$||f||_{\phi}^{\bullet} = \sup\{|f(x)| : x \in 1^{\phi}, \quad p_{\phi}(x) \le 1 \quad \text{and} \quad |||x|||_{\overline{\phi}} \le 1\}$$

$$|||f|||_{\phi}^{\bullet} = \sup\{|f(x)| : x \in 1^{\phi}, \quad p_{\phi}(x) \le 1 \quad \text{and} \quad ||x||_{\overline{\phi}} \le 1\}.$$

Thus $(1^{\bullet})^{\bullet}$ is a Banach lattice under each of the norms $\|\cdot\|^{\bullet}_{\bullet}$ and $\|\cdot\|^{\bullet}_{\bullet}$. Moreover, since $\rho_{\bullet}(x) \le 1$ implies $p_{\bullet}(x) \le 1$ and $\rho_{\overline{\bullet}}(x) \le 1$, we can put (see [19]):

$$\|f\|_{\rho_{\phi}}^{\bullet}=\sup\{|f(x)|:x\in 1^{\phi},\quad \rho_{\phi}(x)\leq 1\}.$$

We shall denote by $(1^{\bullet})^{\sim}$ the collection of all order bounded linear functionals on 1^{\bullet} . It is well-known that $(1^{\bullet})^{\sim} = (1^{\bullet})^{\bullet}$ (see [1, Theorem 16.9]). An order bounded linear functional f on 1^{\bullet} is said to be <u>order continuous</u> (resp. <u>singular</u>) if $x_{\alpha} \stackrel{0}{\to} 0$ in 1^{\bullet} implies $f(x_{\alpha}) \to 0$ for a net (x_{α}) in 1^{\bullet} (resp. f(x) = 0 for all $x \in h^{\bullet}$) (see [9, Ch. X]). The set of all order continuous (resp. singular) functionals on 1^{\bullet} will be denoted by $(1^{\bullet})^{\sim}_n$ (resp. $(1^{\bullet})^{\sim}_n$).

The next theorem gives a characterization of the space (1).

THEOREM 2.4. (a) For a linear functional f on 1[†] the following statements are equivalent:

- (1) f is order bounded.
- (2) f is τ_{\bullet} -continuous.
- (3) There exist unique $f_n \in (1^{\bullet})_n^{\sim}$ and $f_s \in (1^{\bullet})_s^{\sim}$ such that

$$f(x) = f_n(x) + f_n(x)$$
 for $x \in 1^{\diamond}$.

(b) $(1^{\bullet})_{s}^{-} = ((1^{\bullet})_{n}^{-})^{d}$ (= the disjoint complement of $(1^{\bullet})_{n}^{-}$ in $(1^{\bullet})^{\bullet}$), and moreover, $(1^{\bullet})_{n}^{-}$ and $(1^{\bullet})_{s}^{-}$ are Banach lattices under each of the norms $\|\cdot\|_{\bullet}^{\bullet}$, $\|\cdot\|_{\bullet}^{\bullet}$.

PROOF. (a) Since $(1^{\diamond}, p_{\diamond} \vee \| \cdot \|_{\overline{\diamond}})^{\diamond} = (1^{\diamond})^{\bullet} - (1^{\diamond})^{\overline{\diamond}}$, by [9, Ch. VI, §1, Theorem 5], we obtain that $(1^{\diamond})_{n}^{\overline{\diamond}}$ separates the points of 1^{\diamond} , and to get our result it suffices to use Theorem 6 of [9, Ch. X, §3].

(b) Since $(1^{\bullet})_{n}^{-}$ is a band of $(1^{\bullet})^{-}$ (see [1, Theorem 3.7]) $(1^{\bullet})_{n}^{-}$ is a $\|\cdot\|_{\bullet}^{\bullet}$ -closed (resp. $\|\|\cdot\|\|_{\bullet}^{\bullet}$ -closed) subspace of $(1^{\bullet})^{\bullet}$ (see [1, Theorem 5.6]). Thus $(1^{\bullet})_{n}^{-}$ is a Banach lattice, because $(1^{\bullet})^{\bullet}$ is a Banach lattice. Moreover, since $(1^{\bullet})_{n}^{-} = ((1^{\bullet})_{n}^{-})^{d}$, $(1^{\bullet})_{n}^{-}$ is a band of $(1^{\bullet})^{-}$ (see [1, p. 27]), and by the above argument $(1^{\bullet})_{n}^{-}$ is a Banach lattice.

In view of [17] the <u>conjugate</u> $\overline{\rho_{\phi}}$ of the modular ρ_{ϕ} can be defined on the algebraic dual $\tilde{1}^{\phi}$ of 1^{ϕ} as follows:

$$\overline{\rho}_{A}(f) = \sup\{|f(x)| - \rho_{A}(x) : x \in \mathbb{1}^{+}\}.$$

Note that if $f \ge 0$, then

$$\overline{\rho}_{\bullet}(f) = \sup\{f(x) - \rho_{\bullet}(x) : 0 \le x \in \omega, \rho_{\bullet}(x) < \infty\}.$$

Indeed, since $|f(x)| \le f(|x|)$ (see [1, p. 21]) and $\rho_{\phi}(x) = \rho_{\phi}(|x|)$ we have

$$\overline{\rho}_{\phi}(f) \leq \sup f(|x|) - \rho_{\phi}(|x|) : \rho_{\phi}(|x|) < \infty\}$$

$$\leq \sup\{f(x) - \rho_{\bullet}(x) : 0 \leq x \in \omega, \rho_{\bullet}(x) < \infty\}.$$

We shall need the following definition.

A linear functional f on 1° is said to be bounded for Q_{ω} (see [16], [17]) if there exists $\gamma > 0$ such that

$$|f(x)| \le \gamma(\rho_{\bullet}(x) + 1)$$
 for $x \in 1^{\circ}$.

The collection of all bounded for ρ_{ϕ} linear functionals on 1^{ϕ} will be denoted by $\overline{1^{\phi}}$.

The basic properties of $\overline{\rho}_{\phi}$ are included in the following

THEOREM 2.5. The conjugate $\overline{\rho_{\phi}}$ of the modular ρ_{ϕ} is a convex orthogonal additive modular on $\overline{1^{\phi}}$. Moreover, the following equality holds: $(1^{\phi})^{\circ} = \overline{1^{\phi}}$.

Proof. Using [17, §4] and arguing as in the proof of [16, Theorem 38.2] we obtain that $\overline{\rho_{\phi}}$ is a convex orthogonal additive modular on $\overline{1^{\phi}}$. To end the proof it suffices to show that $(1^{\phi})^{\bullet} = \overline{1^{\phi}}$. Indeed, let $f \in (1^{\phi})^{\bullet}$ and $\rho_{\phi}(x) < \infty$. Then $p_{\phi}(x) \le 1$ and there exists $\gamma > 0$ such that $|f(x)| \le \gamma (\max_{\phi}(x), ||x||_{\overline{\phi}}) \le \gamma(\rho_{\overline{\phi}}(x) + 1)$ $\le \gamma(\rho_{\phi}(x) + 1)$, because $\overline{\phi}(u) \le \phi(u)$ for $u \ge 0$. Thus $f \in \overline{1^{\phi}}$; hence $(1^{\phi})^{\bullet} \subset \overline{1^{\phi}}$. Next, let $f \in \overline{1^{\phi}}$ and let $|x|_{\phi} < 1$.

Then $\rho_{\phi}(x) \le 1$, and hence $|f(x)| \le 2\gamma$ for some $\gamma > 0$. This means that $f \in (1^{\phi})^{\bullet}$, and thus $\overline{1^{\phi}} \subset (1^{\phi})^{\bullet}$. The proof is completed.

Thus by means of $\overline{\rho_{\phi}}$ two modular norms can be defined on (1°) in a usual way (see [16], [17]):

$$||f||_{\overline{\rho_{\bullet}}} = \inf_{\lambda > 0} \left\{ \frac{1}{\lambda} (\overline{\rho_{\bullet}}(\lambda f) + 1) \right\}$$
 (the first modular norm)

$$\| f \|_{\overline{\rho}_{\lambda}} = \inf \{ \lambda > 0 : \overline{\rho}_{\phi}(f/\lambda) \le 1 \}$$
 (the second modular norm).

3. Order Continuous Linear Functionals on $1^{\frac{4}{3}}$. We shall start this section with a description of the Köthe dual $(1^{\frac{4}{3}})^x$ of $1^{\frac{4}{3}}$ that will be useful in obtaining a corresponding characterization of order continuous linear functional on $1^{\frac{4}{3}}$ (see [20, Proposition 1.9]).

Let us recall that the Köthe dual S^x of a sequence space S is the sequence space defined by (see [10, §30.1]):

$$S^{x} = \left\{ y \in \omega : \sum_{i=1}^{\infty} |x(i)y(i)| < \infty \text{ for all } x \in S \right\}.$$

THEOREM 3.1. The following equalities hold:

$$(1^{\bullet})^{x} = (h^{\bullet})^{x} = (h^{\bar{\bullet}})^{x} = 1^{\bullet}.$$

In particular, if $\liminf_{u\to 0} \phi(u)/u > 0$, then $(1^{\phi})^{\circ} = 1^{\infty}$.

PROOF. First, we shall show that $(1^{\phi})^x = (h^{\phi})^x = (h^{\phi})^x$. Since $(1^{\phi})^x \subset (h^{\phi})^x$ and $(h^{\phi})^x \subset (h^{\phi})^x$, it suffices to show that $(h^{\phi})^x \subset (1^{\phi})^x$ and $(h^{\phi})^x \subset (h^{\phi})^x$. Indeed, let $y \in (h^{\phi})^x$, i.e., $\sum_{i=1}^{\infty} |z(i)y(i)| < \infty$ for all $z \in h^{\phi}$. Putting $g_y(z) = \sum_{i=1}^{\infty} z(i)y(i)$ for $z \in h^{\phi}$,

by [20, Proposition 1.9] and Theorem 2.3 we get

$$g_y \in (h^{\dagger})^{\widetilde{}}_{n} - (h^{\dagger})^{\widetilde{}} - (h^{\dagger}, \tau_{{}_{\overline{\bullet}}|h^{\dagger}})^{\bullet} - (h^{\dagger}, \tau_{{}_{\overline{\bullet}}|h^{\dagger}})^{\bullet}.$$

Therefore, we can put

$$\|g_y\|_{\overline{\phi}} = \sup \left\{ \left| \sum_{i=1}^{\infty} z(i)y(i) \right| : z \in h^{\phi}, \quad \|\|z\|_{\overline{\phi}} \le 1 \right\}.$$

Let now $x \in 1^{\frac{1}{4}}$ (resp. $x \in h^{\frac{1}{4}}$), $x \neq 0$. We shall show that $\sum_{i=1}^{\infty} |x(i)y(i)| < \infty$. Since $x \in 1^{\frac{1}{4}}$ and $x^{(n)} \in h^{\frac{1}{4}}$ we get

$$\frac{1}{\||x|\|_{\bar{q}}} \sum_{i=1}^{\infty} |x(i)y(i)| = \frac{1}{\||x|\|_{\bar{q}}} \sup_{n} \sum_{i=1}^{\infty} |x^{(n)}(i)| \cdot \operatorname{sign} y(i) \cdot y(i)$$

$$\leq \sup \left\{ \left| \sum_{i=1}^{\infty} z(i)y(i) \right| : z \in h^{+}, \quad \|||z|\|_{\bar{q}} \leq 1 \right\} = \|g_{y}\|_{\bar{q}} < \infty.$$

Hence $y \in (1^{\bullet})^x$ (resp. $y \in (h^{\overline{\bullet}})^x$), so that $(1^{\bullet})^x = (h^{\bullet})^x = (h^{\overline{\bullet}})^x$.

We have $(h^{\overline{\bullet}})_{n}^{-} = (h^{\overline{\bullet}})^{-} = (h^{\overline{\bullet}}, \tau_{\overline{\bullet}|\lambda^{\overline{\bullet}}})^{*}$. It is well-known that by the mapping $(y \to g_{y})$ the space $(h^{\overline{\bullet}})^{x}$ can be identified with $(h^{\overline{\bullet}})_{n}^{\overline{\bullet}}$ (see [20, Proposition 1.9]), and the space $1^{\overline{\bullet}}$ with $(h^{\overline{\bullet}}, \tau_{\overline{\bullet}|\lambda^{\overline{\bullet}}})$ (see [12, Ch. II, §3, Theorem 2]). Thus $(h^{\overline{\bullet}})^{x} = 1^{\overline{\bullet}}$, and since $\overline{\bullet} = \Phi^{***} = \Phi^{*}$, the proof is complete.

REMARK. The equality $(1^{\bullet})^x - 1^{\bullet}$ has been obtained by the author in [18] in a different way, using the so-called modular topology on 1^{\bullet} .

REMARK. Assume now that ϕ is an Orlicz function, not necessarily satisfying the condition: $\phi(u)/u \to \infty$ as $u \to \infty$. Let ψ be any Orlicz function such that $\psi(u) = \phi(u)$ for $0 \le u \le 1$, and $\psi(u)/u \to \infty$ as $u \to \infty$. Then in view of Theorem 3.1 we get $(1^{\phi})^x = (1^{\psi})^x = 1^{\psi}$. Thus, by Lemma 3.1 we get $(1^p)^x = 1^{\infty}$ for 0 .

We are now able to give a characterization of order continuous linear functionals on 1.

THEOREM 3.2. Let f be a linear functional on 1^{\bullet} .

(a) The following statements are equivalent:

- (1) f is order continuous.
- (2) There exists a unique $y \in 1^{\bullet}$ such

$$f(x) = f_y(x) = \sum_{i=1}^{\infty} x(i)y(i)$$
 for all $x \in 1^{\circ}$.

(b) If f is order continuous, then the following equalities hold:

$$\overline{\rho}_{\bullet}(f) = \rho_{\bullet}(y),$$

$$||f||_{\bullet}^{\bullet} = ||f||_{\overline{\rho}_{\bullet}} = ||y||_{\bullet}^{\bullet},$$

$$||f||_{\bullet}^{\bullet} = ||f||_{\overline{\rho}_{\bullet}} = ||y||_{\bullet}.$$

(c) Moreover, the map $1^{\bullet^*} \supset y \to f_v \in (1^{\bullet})_n^{\sim}$ is a Riesz isomorphism.

PROOF. (a) It follows from [20, Proposition 1.9] and Theorem 3.1.

(b) By (a) we have $f(x) = \sum_{i=1}^{\infty} x(i)y(i)$ for some $y \in 1^{\bullet}$ and all $x \in 1^{\bullet}$.

First, we shall show that $\overline{\rho}_{\phi}(f) = \rho_{\phi^{\bullet}}(y)$. From the definition of ϕ^{\bullet} we easily obtain that $\overline{\rho}_{\phi}(f) \le \rho_{\phi^{\bullet}}(y)$. To prove that $\overline{\rho}_{\phi}(f) \ge \rho_{\phi^{\bullet}}(y)$ let us note that there exists $0 \le z \in \omega$ such that

$$\phi(z(i)) + \phi^*(|y(i)|) = |z(i)y(i)|$$
 for $i = 1, 2, ...$

Putting $x(i) = (\text{sign } y(i)) \cdot z(i)$ for i = 1, 2, ..., we get

$$\begin{split} \rho_{\phi}(y) &= \sum_{i=1}^{\infty} \phi^{*}(|y(i)|) \\ &= \sup_{n} \left\{ \sum_{i=1}^{n} |z(i)y(i)| - \sum_{i=1}^{n} \phi(z(i)) \right\} \\ &\leq \sup_{n} \left\{ \left| \sum_{i=1}^{\infty} x^{(n)}(i)y(i) \right| - \sum_{i=1}^{\infty} \phi(|x^{(n)}(i)|) \right\} \leq \overline{\rho}_{\phi}(f). \end{split}$$

In turn, we shall show that $||f||_{\bullet}^{\bullet} - ||y||_{\bullet}^{\bullet}$. We have $||y||_{\bullet}^{\bullet} - \sup \left\{ \left| \sum_{i=1}^{n} z(i)y(i) \right| : x \in \mathbb{I}^{\overline{\bullet}}, \quad \rho_{\overline{\bullet}}(z) \le 1 \right\}$, and hence $||f||_{\bullet}^{\bullet} \le ||y||_{\bullet}^{\bullet}$. On the other hand, let $z \in \mathbb{I}^{\overline{\bullet}}$ with $\rho_{\overline{\bullet}}(z) \le 1$. Putting $x(i) - (\operatorname{sign} y(i)) \cdot |z(i)|$ $(i-1,2,\ldots)$, we have $p_{\bullet}(x^{(n)}) = 0$ and $p_{\overline{\bullet}}(x^{(n)}) \le p_{\overline{\bullet}}(z) \le 1$. Thus

$$\left| \sum_{i=1}^{\infty} z(i)y(i) \right| \le \sup_{n} \sum_{i=1}^{\infty} \left| z^{(n)}(i)y(i) \right|$$

$$= \sup_{n} \left| \sum_{i=1}^{\infty} x^{(n)}(i)y(i) \right| \le ||f||_{\phi}^{*}.$$

Thus $||y||_{\bullet} \le ||f||_{\bullet}$, and hence $||f||_{\bullet} = ||y||_{\bullet}$.

Moreover, since $\overline{\rho}_{\bullet}(\lambda f) = \rho_{\bullet}(\lambda y)$ for $\lambda > 0$, we get $||f||_{\overline{\rho}_{\bullet}} = ||y||_{\bullet}$.

Next, we shall show that $|||f|||_{\phi}^{\bullet} \le |||y|||_{\phi}^{\bullet}$. To prove that $|||f|||_{\phi}^{\bullet} \le |||y|||_{\phi}^{\bullet}$, let us assume that $x \in 1^{\phi}$, $p_{\phi}(x) \le 1$ and $||x||_{\overline{\phi}} \le 1$. Then $x \in 1^{\overline{\phi}}$, and by the Hölder's inequality (see [11,§9]) we get $||f(x)|| \le ||x||_{\overline{\phi}}^{\bullet} \cdot |||y|||_{\phi}^{\bullet} \le |||y|||_{\phi}^{\bullet} \cdot |||y|||_{\phi}^{\bullet} \le |||y|||_{\phi}^{\bullet} \cdot |||y|||_{\phi}^{\bullet} \le |||y|||_{\phi}^{\bullet} \cdot |||y|||_{\phi}^{\bullet} \le |||y|||_{\phi}^{\bullet} \cdot ||y|||_{\phi}^{\bullet} \cdot ||y|||_{\phi$

$$\left\|\left\|y\right\|\right\|_{\bullet} = \sup\left\{\left|\sum_{i=1}^{\infty} z(i)y(i)\right| : z \in \mathbb{I}^{\overline{\bullet}}, \quad \left\|z\right\|_{\overline{\bullet}} \le 1\right\}.$$

Let now $z \in 1^{\frac{1}{4}}$ and $||z||_{\frac{1}{4}} \le 1$. Putting $x(i) = (\text{sign } y(i)) \cdot |z(i)|$ (I = 1, 2, ...) we have $p_{\phi}(x^{(n)}) = 0$, $||x(n)||_{\frac{1}{4}} \le ||z||_{\frac{1}{4}} \le 1$, and as above we get $|||y|||_{\frac{1}{4}} \le |||f|||_{\frac{1}{4}}$.

Finally, since $\overline{\rho}_{\bullet}(f/\lambda) = \rho_{\bullet}(y/\lambda)$ for $\lambda > 0$, we get $|||f|||_{\overline{\rho}_{\bullet}} = |||y|||_{\bullet}$

(c) See [9, Ch. VI, §1, Theorem 1] and [14, Theorem 18.5].

REMARK. The general form of ϕ -continuous (continuous with respect to the modular ρ_{ϕ}) linear functionals on an Orlicz space $L^{\phi}(a,b)$ defined by an Orlicz function satisfying conditions $\phi(u)/u \to 0$ as $u \to 0$ and $\phi(u)/u \to \infty$ as $u \to \infty$, has been found by W. Orlicz [19].

4. Singular Linear Functionals on 1^{ϕ} . In this section we assume that ϕ does not satisfy the Δ_2 -condition at 0, because otherwise $(1^{\phi})_{x}^{x} = \{0\}$.

The following lemma describes positive singular linear functionals on 1.

LEMMA 4.1. Let f be a positive singular linear functional on 1^{\bullet} .

- (a) For any $\varepsilon > 0$ there exists $0 \le y \in \omega$ with $\rho_{\bullet}(y) < \varepsilon$ such that $||f||_{\bullet} \le f(y)$.
- (b) The following equalities hold:

$$\begin{split} \rho_{\overline{\psi}}(f) &= \|f\|_{\rho_{\psi}}^{\bullet} - \|f\|_{\psi}^{\bullet} - \|\|f\|_{\psi}^{\bullet} \\ &= \sup\{f(x) : 0 \le x \in \omega, \quad \rho_{\phi}(x) < \infty\}. \end{split}$$

(c) There exists $0 \le y \in \omega$ with $\rho_{\bullet}(y) < \infty$ such that

$$||f_A||_{\bullet}^* = f(y_A)$$
 for any subset A of N

and

$$p_{\bullet}(y_A) = 1$$
 for any subset A of N with $||f_A||_{\bullet}^{\bullet} \neq 0$.

PROOF. (a) Let $\varepsilon > 0$ be given. Since (see [26, Lemma 102.1])

$$||f||_{A}^{\bullet} = \sup\{f(x): 0 \le x \in \mathbb{I}^{\bullet}, \quad p_{A}(x) \le 1, \quad \rho_{A}(x) \le 1\},$$

for every $k \in N$ there exists $0 \le z_k \in 1^{\bullet}$ such that $p_{\phi}(z_k) < 1$ and $||f||_{\phi}^{\bullet} \le f(z_k) + \frac{1}{k}$. Then $\rho_{\phi}(z_k) < \infty$ and there exists a strictly increasing sequence of natural numbers (n_k) such that

$$\rho_{\phi}(z_k - z_k^{(n_k)}) = \sum_{i=n_k}^{\infty} \phi(z_k(i)) < \frac{\varepsilon}{2^k}.$$

Let $x_k = z_k - z_k^{(n_k)}$ for k = 1, 2, ... Then in view of the axion (C) of completeness of the modular ρ_{ϕ} there exists $0 \le y \in \omega$ such that $x_k \le y$, for all $k \in \mathbb{N}$, and $\rho_{\phi}(y) \le \sum_{k=1}^{\infty} \rho_{\phi}(x_k) < \varepsilon$. But $z_k^{(n_k)} \in h^{\phi}$ for all $k \in \mathbb{N}$, so that

$$||f||_{\bullet}^{*} \le f(z_{k} - z_{k}^{(\alpha_{k})}) + f(z_{k}^{(\alpha_{k})}) + \frac{1}{k}$$
$$- f(x_{k}) + \frac{1}{k} \le f(y) + \frac{1}{k}.$$

Since $\varepsilon > 0$ and k are arbitrary, we conclude that $||f||_{\bullet} \le f(y)$.

(b) We have

$$\left|\left|\left|f\right|\right|\right|_{\phi}^{\bullet} \leq \left|\left|f\right|\right|_{\phi}^{\bullet} \leq \sup\left\{f(x): 0 \leq x \in \mathbb{I}^{\phi}, \quad p_{\phi}(x) \leq 1, \quad \rho_{\overline{\phi}}(x) < \infty\right\}.$$

To prove that $\sup\{f(x): 0 \le x \in 1^{\diamond}, p_{\diamond}(x) \le 1, \rho_{\overline{\bullet}}(x) < \infty \le \|\|f\|\|_{\bullet}^{\bullet}$ assume that $0 \le x \in 1^{\diamond}$ and

 $p_{\phi}(x) \le 1$, $p_{\overline{\phi}}(x) < \infty$. Given an $\eta > 0$, there exists $n \in \mathbb{N}$ such that $p_{\overline{\phi}}(x - x^{(n)}) < \eta$. Then

$$||x-x^{(n)}||_{\frac{1}{4}} \le 1 + \rho_{\bullet}(x-x^{(n)}) \le 1 + \eta$$

and

$$f(x) = f(x - x^{(n)}) + f(x^{(n)}) = f(x - x^{(n)})$$

$$\leq (1 + \eta) \| \| f \|_{\bullet}^{\bullet}.$$

Hence $f(x) \le \| \| f \|_{\phi}^{\bullet}$, and thus we obtain

$$|||f||| = ||f||_{\bullet}^{\bullet} = \sup \{f(x) : x \in 1^{\bullet}, \quad p_{\bullet}(x) \le 1, \quad \rho_{\bullet}(x) < \infty \}.$$

Moreover, by (a) there exists $0 \le y \in \omega$, with $\rho_{\bullet}(y) \le 1$, such that $||f||_{\bullet} \le f(y)$. Hence

$$\begin{split} \|f\|_{\rho_{\phi}}^{\bullet} &= \sup\{f(x): 0 \le x \in \omega, \quad \rho_{\phi}(x) \le 1\} \\ &\leq \sup\{f(x): 0 \le x \in \omega, \quad \rho_{\phi}(x) < \infty\} \\ &\leq \sup\{f(x): x \in 1^{\phi}, \quad p_{\phi}(x) \le 1, \quad \rho_{\overline{\phi}}(x) < \infty\} \\ &= \|f\|_{\phi}^{\bullet} \le f(y) \le \sup\{f(x): 0 \le x \in \omega, \quad \rho_{\phi}(x) \le 1\}. \end{split}$$

Thus we proved that

$$||f||_{\rho_{\bullet}}^{\bullet} = |||f|||_{\bullet}^{\bullet} = ||f||_{\bullet}^{\bullet} = \sup\{f(x) : 0 \le x \in \omega, \rho_{\bullet}(x) < \infty\}.$$

Finally, we shall show that $\overline{\rho}_{\phi}(f) = \|f\|_{\phi}^{*}$. Indeed, by (a), for every $n \in \mathbb{N}$, there exists $0 \le y_n \in \omega$, with $\rho_{\phi}(y_n) \le \frac{1}{n}$, and such that $\|f\|_{\phi}^{*} \le f(y_n)$. Hence

$$\overline{\rho}_{\phi}(f) = \sup\{f(x) - \rho_{\phi}(x) : 0 \le x \in \omega, \quad \rho_{\phi}(x) < \infty\}$$

$$\ge f(y_n) - \rho_{\phi}(y_n) \ge \|f\|_{\phi}^* - \frac{1}{n}.$$

Hence $\overline{\rho}_{\bullet}(f) \ge ||f||_{\bullet}^{\bullet}$, and since

$$\overline{\rho}_{\bullet}(f) \le \sup\{f(x) : 0 \le x \in \omega, \quad \rho_{\bullet}(x) < \infty\} = \|f\|_{\bullet}^{\bullet}$$

we get $\overline{\rho}_{\bullet}(f) = ||f||_{\bullet}^{\bullet}$. Thus the proof of (b) is completed.

(c) Let A be a subset of N, and let $0 \le x \in \omega$ with $\rho_{\phi}(x) < \infty$ be given. Arguing as in (a) we obtain that there exists $0 \le z_k \in \omega$ with $\rho_{\phi}(z_k) < \infty (k = 1, 2, ...)$ such that $\|f\|_{\phi}^* \le f(z_k) + \frac{1}{k}$. Since $\|f\|_{\phi}^* = \sup\{f(z): 0 \le z \in \omega, \rho_{\phi}(z) < \infty\}$ (see (b)), we have

$$f(x \vee z_k) \le f(z_k) + \frac{1}{k}.$$

for all $k \in N$, because $\rho_{\phi}(x \vee z_k) \le \rho_{\phi}(x) + \rho_{\phi}(z_k) < \infty$. But $(x \vee z_k - z_k)_A \le x \vee z_k - z_k$, so we get

$$f(x_A) \le f((x \lor z_k)_A) \le f((z_k)_A) + \frac{1}{k} \quad (k = 1, 2, ...)$$

Choose an increasing sequence of natural numbers (m_k) such that $\rho_{\phi}(z_k - z^{(m_k)}) < \frac{1}{z^k}$, and let $x_k = z_k - z_k^{(m_k)}$. Then in view of the axiom (C) of completeness of ρ_{ϕ} , there exists $0 \le y \in \omega$ such that $x_k \le y$ for all $k \in \mathbb{N}$, and $\rho_{\phi}(y) \le 1$. Hence

$$\begin{split} f(x_A) &\leq f\Big(\Big(z_k - z_k^{(m_k)}\Big)_A\Big) + f\Big(\Big(z_k^{(m_k)}\Big)_A\Big) + \frac{1}{k} \\ &= f((x_k)_A) + \frac{1}{k} \leq f(y_A) + \frac{1}{k}. \end{split}$$

Thus we obtain that $||f_A||_{\bullet}^{\bullet} = f(y_A)$, because by (b),

$$||f_A||_A^* = \sup\{f(x_A) : 0 \le x \in \omega, \quad \rho_{\bullet}(x) < \infty\}.$$

Assume now that $||f_A||_{\bullet}^* \neq 0$. Given $\eta > 0$ we have $\rho_{\phi}(y_A/(p_{\phi}(y_A) + \eta)) < \infty$, and hence, by (b), $||f_A||_{\bullet}^* \geq f((y_A/(p_{\phi}(y_A) + \eta)))$. Thus $||f_A||_{\bullet}^* = f(y_A) \leq (p_{\phi}(y_A) + \eta) ||f_A||_{\bullet}^*$, so $p_{\phi}(y_A) = 1$, because $p_{\phi}(y_A) \leq p_{\phi}(y_A) \leq 1$. Thus the proof of (c) is completed.

COROLLARY 4.2. The space $((1^{\bullet})_{i,j}^{*}, \|\cdot\|_{\bullet}^{*})$ is an abstract L-space.

PROOF. By Theorem 2.4, $((1^{\bullet})_{s}, \|\cdot\|_{\phi}^{\bullet})$ is a Banach lattice. Arguing as in the proof of Lemma 2 of [2] we can show that $\|f_1 + f_2\|_{\phi}^{\bullet} = \|f_1\|_{\phi}^{\bullet} + \|f_2\|_{\phi}^{\bullet}$ for any $f_1, f_2 \in ((1^{\bullet})_s)^{\bullet}$, and this means that $(1^{\bullet})_s^{\bullet}$ is an abstract L-space (see [23, Ch. II, §9]).

By ba(N) we denote the family of all bounded real valued finitely additive set functions on N. It is known that ba(N) is a vector lattice with the usual ordering: $v_1 \ge v_2$ iff $v_1(A) \ge v_2(A)$ for all $A \subset N$. Then $v = v^+ - v^-$ and $|v| = v^+ + v^-$, where v^+ and v^- denote the positive and the negative part of $v \in ba(N)$. Moreover ba(N) is a Banach space under the norm ||v|| = |v| (N) (see [6, Ch. III, 1.4, 1.7]).

For given $f \in ((1^{\bullet})_{s}^{-})^{+}$ let us put $v_{s}(A) = ||f_{A}||_{\bullet}^{+}$ for any subset A of N. Then by Corollary 4.2, $v_{s} \in (ba(N))^{+}$ and $||v_{s}|| = v_{s}(N) = ||f||_{\bullet}^{+}$.

The following definition is justified by Lemma 4.1.

A $v \in ba(N)$ is said to be in class $B_{\phi}(N)$ if there exists $0 \le y \in \omega$, with $\rho_{\phi}(y) < \infty$, such that $p_{\phi}(y_A) = 1$ for any subset A of N with $|v|(A) \ne 0$.

One can show that $B_a(N)$ is a Riesz subspace of ba(N). In view of Lemma 4.1 we have the following

LEMMA 4.3. If $f \in ((1^{\bullet})_{s})^{+}$, then $v_{f} \in (B_{\phi}(N))^{+}$.

Thus we can define a mapping $T: ((1^{\bullet})_{s})^{+} \rightarrow (B_{\bullet}(N))^{+}$ given by

$$T(f) = v_f$$
 for any $f \in ((1^{\circ})_s^{-})^{\circ}$.

In view of Corollary 4.2 the mapping T is additive.

For any $v \in (ba(N))^+$ we define a positive functional I_v on $(1^{\circ})^+$ by

$$I_{\nu}(x) = \inf \left\{ \sum_{k=1}^{n} p_{\phi}(x_{A_k}) v(A_k) \right\}$$

where the infimum is taken over all finite disjoint partitions $(A_k)_1^n$ of N.

By the same argument as in the proof of Lemma 5 of [2] we can prove that the functional I_v is additive on $(1^{\bullet})^{+}$. Thus I_v has a unique positive extension to a linear functional on 1^{\bullet} (see [1, Lemma 3.1]). This extension (denoted again by I_v) is given by $I_v(x) = I_v(x^{\bullet}) - I_v(x^{\bullet})$ for all $x \in 1^{\bullet}$.

LEMMA 4.4. If
$$v \in (ba(N))^+$$
, then $I_v \in ((1^{\bullet})^-_s)^+$ and $||I_v||^*_s \le v(N)$.

PROOF. Since I_{ν} is positive on I^{\bullet} , I_{ν} is order bounded. It is seen that $I_{\nu}(x) = 0$ for all $x \in h^{\bullet}$, so $I_{\nu} \in ((1^{\bullet})_{\varepsilon}^{-})^{\bullet}$. Moreover, $|I_{\nu}(x)| \le I_{\nu}(x^{*}) + I_{\nu}(x^{-}) = I_{\nu}(|x|) \le p_{\bullet}(x)\nu(N)$ for all $x \in I^{\bullet}$, so $||I_{\nu}||_{\bullet}^{\bullet} \le \nu(N)$.

Thus we can define a mapping $G: (B_{\bullet}(N))^* \rightarrow ((1^{\bullet})^*)^*$ by

$$G(v) = I_v$$
 for any $v \in (B_{\bullet}(N))^+$.

THEOREM 4.5. The following statements hold:

(1) $(G \circ T)(f) = f$ for any $f \in ((1^{\bullet})_{s})^{+}$, i.e.,

$$f(x) = I_{v_f}(x)$$
 for all $x \in 1^{\bullet}$.

(2) $(T \circ G)(v) = v$ for any $v \in (B(N))^+$, i.e.,

$$v(A) = ||(I_v)_A||_{\bullet}^{\bullet}$$
 for any subset A of N.

PROOF. (1) Using Corollary 4.2 and Lemma 4.4, it suffices to repeat the arguments of the proof of Theorem 2 of [2].

(2) We first prove the case $A = \mathbb{N}$. Since $\mathbf{v} \in (B_{\phi}(\mathbb{N}))^*$, there exists $0 \le y \in \omega$ such that $\rho_{\phi}(y) < \infty$ and $p_{\phi}(y_E) = 1$ for any subset E of N with $\mathbf{v}(E) > 0$. Then for any finite disjoint partition $(E_k)_1^*$ of \mathbb{N} we have $\sum_{k=1}^n p_{\phi}(y_{E_k})\mathbf{v}(E_k) = \mathbf{v}(\mathbb{N})$, so $I_{\mathbf{v}}(y) = \mathbf{v}(\mathbb{N})$. According to Lemma 4.1, we have $\|I_{\mathbf{v}}\|_{\phi}^* \ge I_{\mathbf{v}}(y) = \mathbf{v}(\mathbb{N})$. Moreover, we have $I_{\mathbf{v}}(x) \le p_{\phi}(x)\mathbf{v}(\mathbb{N})$ for all $0 \le x \in \mathbb{N}^*$. Hence $\|I_{\mathbf{v}}\|_{\phi}^* \le \mathbf{v}(\mathbb{N})$, so $\|I_{\mathbf{v}}\|_{\phi}^* = \mathbf{v}(\mathbb{N})$. Assume now that A is a fixed subset of \mathbb{N} , and let $\mathbf{v}_1(B) = \mathbf{v}(A \cap B)$ for any $B \subset \mathbb{N}$. One can easily show that $I_{\mathbf{v}_1} = (I_{\mathbf{v}})_A$. Hence, by the above, we get $\|(I_{\mathbf{v}})_A\|_{\phi}^* = \|I_{\mathbf{v}_1}\|_{\phi}^* = \mathbf{v}_1(\mathbb{N}) = \mathbf{v}(\Lambda)$, and the proof is completed.

By Theorem 4.5 the mapping G is additive, because T is additive. Thus T and G have unique positive extensions to linear mappings $\tilde{T}: (1^{\bullet})_{s}^{\sim} \to B_{\phi}(N)$ and $\tilde{G}: B_{\phi}(N) \to (1^{\bullet})_{s}^{\sim}$ (see [1, Lemma 3.1]) given by

$$\tilde{T}(f) = \mathbf{v}_f - \mathbf{v}_f$$
 and $\tilde{G}(\mathbf{v}) = I_{\mathbf{v}} - I_{\mathbf{v}}$

Let us put: $v_f = v_f - v_f$ and $I_v = I_v - I_v$. For any $v \in B_{\phi}(N)$ we shall write

$$\int x dv = I_v(x) \quad \text{for all} \quad x \in 1^{\circ}.$$

THEOREM 4.6. (see [2, Theorem 4]). The mapping $\tilde{T}:(1^{\bullet})_{\bullet}^{*} \to B_{\bullet}(N)$ is a Riesz isomorphism.

PROOF. In view of Theorem 4.5, we get $(\tilde{G} \circ \tilde{T})(f) = f$, for any $f \in (1^{\bullet})^{\sim}_{*}$, and $(\tilde{T} \circ \tilde{G})(v) = v$, for any $v \in B_{\bullet}(N)$. Thus \tilde{T} is a Riesz isomorphism, because \tilde{T} is positive (see [14, Theorem 18.5]).

The final result of this section gives a characterization of singular linear functionals on 1.

THEOREM 4.7. Let f be a linear functional on 1^{\bullet} .

- (a) The following statements are equivalent:
 - (1) f is singular.
 - (2) There exists a unique $v \in B_{\bullet}(N)$ such that

$$f(x) = \int x dv$$
 for all $x \in 1^{\circ}$.

(b) If f is singular, then the following equalities hold:

$$\overline{\rho}_{\bullet}(f) = \|f\|_{\rho_{\bullet}}^{\bullet} - \|f\|_{\bullet}^{\bullet} - \|f\|_{\bullet}^{\bullet} - \|f\|_{\overline{\rho}_{\bullet}} - \|f\|_{\overline{\rho}_{\bullet}} - \|\gamma\| (N).$$

PROOF. (a) See the proof of Theorem 4.6.

(b) According to Theorem 4.6, we get $v_{|f|}(N) = |v_f|(N)$. Thus, in view of Lemma 4.1, we get

$$\overline{\rho}_{\bullet}(f) = \overline{\rho}_{\bullet}(|f|) = ||f||_{\rho_{\bullet}}^{\bullet} = ||f||_{\bullet}^{\bullet} = ||f||_{\bullet}^{\bullet} = |v_{f}|(N)$$
.

Moreover, since $\overline{\rho}_{\phi}(\lambda f) = \overline{\rho}_{\phi}(\lambda |f|) = \lambda \overline{\rho}_{\phi}(f)$ for $\lambda > 0$ (see Lemma 4.1), we obtain that $||f||_{\overline{\rho}_{\phi}} = \overline{\rho}_{\phi}(f)$ and $|||f||_{\overline{\rho}_{\phi}} = \overline{\rho}_{\phi}(f)$. Since the norms which occur in our theorem are Riesz norms the proof is complete.

Since $((1^{\bullet})_{\bullet}^{-}, \|\cdot\|_{\bullet}^{\bullet})$ is an abstract L-space (see Corollary 4.2), by Theorems 4.6 and 4.7, we obtain that $B_{\bullet}(N)$ is also an abstract L-space.

5. The General Form of Continuous Linear Functionals on 1^{\bullet} . We are now in position to give a desired characterization of the dual space $(1^{\bullet})^{\bullet}$.

THEOREM 5.1. Let f be a linear functional on 1° .

- (a) The following statements are equivalent:
 - (1) f is τ_{\bullet} -continuous.
 - (2) f is order bounded.
 - (3) There exist unique $y \in 1^{\bullet}$ and $v \in B_{\bullet}(N)$ such that

$$f(x) = \sum_{i=1}^{\infty} x(i)y(i) + \int xdv$$
 for all $x \in 1^{\circ}$.

(b) If f is τ_{\bullet} -continuous, then the following equalities hold:

$$\overline{\rho}_{\phi}(f) = \rho_{\phi^{*}}(y) + |v| (N),$$

$$||f||_{\phi}^{*} = ||f||_{\overline{\rho}_{0}} = ||y||_{\phi^{*}} + |v| (N).$$

(c) The space h^{\bullet} is an M-ideal of $(1^{\bullet}, p_{\bullet} \vee || \cdot ||_{\overline{\bullet}})$.

PROOF. (a) It follows from Theorem 2.4, Theorem 3.2 and Theorem 4.7.

(b) By Theorem 2.4, we have $f = f_n + f_n$, and it is known that $|f|_n = |f_n|$, $|f|_n = |f_n|$, and $|f_n| \wedge |f_n| = 0$. Since the conjugate modular $\overline{\rho_0}$ is orthogonal additive on $(1^{\bullet})^{\bullet}$, by Theorem 3.2 and Theorem 4.7, we get $\overline{\rho_0}(f) = \overline{\rho_0}(f_n) + \overline{\rho_0}(f_n) = \rho_0 \cdot (y) + |v| (N)$.

We shall now show that $||f||_{\phi}^* = ||y||_{\phi^*} + |v|(N)$. Indeed, let $\varepsilon > 0$ be given. Then there exists $0 \le x \in 1^{\phi}$ with $p_{\phi}(x) < 1$, $\rho_{\overline{\lambda}}(x) < 1$, such that

$$||f_n||_{\bullet}^{\bullet} = |||f||_{\bullet}||_{\bullet}^{\bullet} \le |f||_{\bullet}(x) + \varepsilon.$$

Moreover, in view of Lemma 4.1 there exists $0 \le y \in \omega$ with $\rho_{\bullet}(y) \le 1 - \rho_{\overline{\bullet}}(x)$ such that

$$||f_s|| = ||f|| \le |f|, (y).$$

Let $z = x \vee y$. Then $\rho_{\bar{\phi}}(z) \leq \rho_{\bar{\phi}}(x) + \rho_{\bar{\phi}}(y) \leq 1$. Moreover, since $p_{\phi}(x) < 1$, we have $\rho_{\phi}(x) < \infty$. Hence $\rho_{\phi}(z) < \infty$, so $p_{\phi}(z) \leq 1$. Thus

$$\begin{aligned} \|f_n\|_{\phi}^* + \|f_n\|_{\phi}^* &\leq |f|_n(x) + |f|_n(y) + \varepsilon \\ &\leq |f|_n(z) + |f|_n(z) + \varepsilon \\ &= |f|(z) + \varepsilon \leq \|f\|_{\phi}^* + \varepsilon. \end{aligned}$$

Hence $||f_n||_{\phi}^{+} + ||f_s||_{\phi}^{+} - ||f||_{\phi}^{+}$, and, according to Theorem 3.2 and Theorem 4.7, we obtain $||f||_{\phi}^{+} - ||y||_{\phi}^{+} + |v|$ (N). Finally, since $\overline{\rho}_{\phi}(\lambda f_n) - \rho_{\phi}(\lambda y)$ and $\overline{\rho}_{\phi}(\lambda f_s) - \lambda |v|$ (N) for $\lambda > 0$, we easily obtain that $||f||_{\overline{\rho}_{\alpha}} - ||y||_{\phi}^{+} + |v|$ (N).

(c) It is well known that $(h^{\bullet})^0 = (1^{\bullet})_{\bullet}^{\infty}$ (see [26, Theorem 88.10]), where $(h^{\bullet})^0$ denotes the annihilator of h^{\bullet} in $(1^{\bullet})^{\bullet}$. Therefore, from (b) it follows that $(h^{\bullet})^0$ is an L-summand of $((1^{\bullet})^{\bullet}, \| \cdot \|_{\bullet}^{\bullet})$ (see [3, Definition 1.1]). According to [3, Definition 2.1] it means that h^{\bullet} is an M-ideal of $(1^{\bullet}, p_{\bullet} \vee \| \| \cdot \| \|_{\bullet}^{\bullet})$.

REMARK. For a convex Orlicz function ϕ the equality $||f||_{\phi}^* = ||f||_{\bar{\rho}_{\phi}}$ has been proved by W. A. Luxemburg and A. C. Zaanen [12, Theorem 5].

As an application of Theorem 5.1 we obtain that continuous linear functionals on h^{ϕ} have the unique norm preserving extension to 1^{ϕ} .

COROLLARY 5.3. (see [21, Proposition 3]). Let g be a $\tau_{\phi|h}$ -continuous linear functional on h^{ϕ} . Then there exists a unique τ_{ϕ} -continuous linear functional f on 1^{ϕ} such that f(x) = g(x) for all $x \in h^{\phi}$, and $\|g\|_{L^{\phi}}^{\bullet} = \|f\|_{\Phi}^{\bullet}$, where

$$||g||_{h^{+}}^{*} = \sup\{|g(x)| : x \in h^{+}, |||x|||_{\overline{+}} \le 1\}.$$

PROOF. Since $(h^{\phi}, \tau_{\phi|h^{\phi}})^{\bullet} = (h^{\phi})^{\sim} = (h^{\phi})^{\sim}$ (see [1, Theorem 16.9]), according to [20, Proposition 1.9] and Theorem 3.1 there exists a unique $y \in 1^{\phi^{\bullet}}$ such that $g(x) = \sum_{i=1}^{\infty} x(i)y(i)$ for all $x \in h^{\phi}$. Let us put

$$f(x) = \sum_{i=1}^{\infty} x(i)y(i)$$
 for all $x \in 1^{\circ}$.

Then f(x) = g(x) for $x \in h^{\bullet}$, and, according to Theorem 3.2, f is order continuous and $||f||_{\bullet}^{\bullet} = ||y||_{\bullet^{\bullet}}$. Now we shall show that $||g||_{h^{\bullet}}^{\bullet} = ||f||_{\bullet}^{\bullet}$. Indeed, we have $||g||_{h^{\bullet}}^{\bullet} \le ||f||_{\bullet}^{\bullet}$. Let $x \in 1^{\bullet}$ with $p_{\bullet}(x) \le 1$, $|||x|||_{\bullet} \le 1$. Then

$$\left| \sum_{i=1}^{\infty} x(i)y(i) \right| \le \sup_{n} \sum_{i=1}^{n} |x(i)y(i)|$$

$$= \sup_{n} \sum_{i=1}^{\infty} |x^{(n)}(i)| \cdot \operatorname{sign} y(i) \cdot y(i) \le ||g||_{h^{\frac{1}{4}}}^{*}.$$

Hence $||f||_{\bullet}^* \le ||g||_{\bullet}^*$, and we are done.

Now assume that \bar{f} is another such extension of g, and let $F = \bar{f} - f$. Then F is singular on 1^{\bullet} and $\bar{f} = f + F$. Hence, by Theorem 2.4, we have $f = \bar{f}_n$ and $F = \bar{f}_s$. Therefore, in view of Theorem 5.1, we have $\|\bar{f}\|_{\bullet}^{\bullet} = \|f\|_{\bullet}^{\bullet} + \|F\|_{\bullet}^{\bullet} = \|g\|_{\bullet}^{\bullet} + \|g\|_{\bullet}^{\bullet} = \|g\|_{\bullet}^{\bullet} = \|g\|_{\bullet}^{\bullet}$, we obtain that F = 0, so $\bar{f} = f$. Thus the proof is completed.

REFERENCES

- [1] ALIPRANTIS, C. D. and BURKINSHAW, O. <u>Locally Solid Riesz Spaces</u>, Academic Press, New York (1978).
- [2] ANDO, T. Linear Functionals on Orlicz Spaces, Niew Arch. Wisk. 8 (1960), 1-16.
- [3] BEHRENDS, E. M-Strukture and the Banach-Stone Theorem, Springer-Verlag, Lecture Notes in Math. 736, Berlin, Heidelberg, New York, 1979.
- [4] BIRNBAUM, Z. and ORLICZ, W. Über die verallgemeinerung des begriffes der zueinander potenzen, <u>Studia Math.</u> 3 (1931), 1-67.

- [5] DREWNOWSKI, L. and NAWROCKI, M. On the Mackey Topology of Orlicz Sequence Spaces, Arch. Math. 37 (1981), 256-266.
- [6] DUNFORD, N. and SCHWARTZ, J. T. <u>Linear Operators</u>, Part I: General Theory, Interscience, New York, 1958.
- [7] FERNANDEZ, R. Characterization of the Dual of an Orlicz Space, Comment. Math. (to appear).
- [8] KALTON, N. J. Orlicz Sequence Spaces Without Local Convexity, <u>Math. Proc. Camb. Phil. Soc.</u> 81 (1977), 253-277.
- [9] KANTOROVICH, L. V. and AKILOV, G. P. Functional Analysis, Moscow, 1984 (Russian).
- [10] KÖTHE, G. Topological Vector Spaces I, Springer, Berlin, Heidelberg, New York, 1983.
- [11] KRASNOSELSKII, M. and RUTICHII, YA. B. Convex Functions and Orlicz Spaces, P. Nordhoff Ltd., Groningen, 1961.
- [12] LUXEMBURG, W. A. Banach Function Spaces, Delft, 1955.
- [13] LUXEMBURG, W. A. and ZAANEN, A. C. Conjugate Spaces of Orlicz Spaces, Indagat. Math. 59 (1956), 217-228.
- [14] LUXEMBURG, W. A. and ZAANEN, A. C. <u>Riesz Spaces I.</u> North-Holland Publ. Comp., Amsterdam-London, 1971.
- [15] MATUSZEWSKA, W. and ORLICZ, W. A Note on Modular Spaces. IX., ibidem, <u>16</u> (1968), 801-808.
- [16] NAKANO, H. Modular Semi-ordered Spaces, Maruzen Co. Ltd., Tokyo, 1950.
- [17] NAKANO, H. On Generalized Modular Spaces, Studia Math., 31 (1968), 439-449.
- [18] NOWAK, M. The Köthe Dual of Orlicz Spaces Without Local Convexity, <u>Mathematica Japonica</u> (to appear).
- [19] ORLICZ, W. On Integral Representability of Linear Functions Over the Space of φ-Integrable Functions, <u>Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8</u> (1960), 567-569.
- [20] PERESSINI, A. and SHERBERT, D. R. Order Properties of Liner Mappings of Sequence Spaces, Math. Annalen, 165 (1966), 318-332.
- [21] RAO, M. M. Linear Functionals on Orlicz Spaces: General Theory, <u>Pacific J. Math.</u> 25 (1968), 553-585.
- [22] ROLEWICZ, S. Metric Linear Spaces, Polish Scientific Publishers, Warszawa, D. Reidel Publ. Comp., 1984.
- [23] SCHWARZ, H. U. Banach Lattices and Operators, <u>Tuebner-Texte zur Mathematik</u> <u>71</u>, Leipzig, 1984.
- [24] SHAPIRO, J. H. Extension of Linear Functionals on F-spaces, <u>Duke Math. J. 37</u> (1970), 639-645.
- [25] TURPIN, PH. Convexities dans les Espaces Vectoriels Topologiques Generaux, <u>Dissertationes Math. 131</u> (1976).
- [26] ZAANEN, A. C. Riesz Spaces II, North-Holland Publ. Comp., Amsterdam, New York, 1983.