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ABSTRACT. The general form of continuous linear functionals on an Orlicz sequence space 1* (non-
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INTRODUCTION. The general form of continuous linear functionals on an Orlicz space L*, defined by

a convex Orlicz function ¢ has been found by Ando [2] (for ¢ being an N-function and for a finite measure
space) and by Rao [21], Fernandez [7] (for ¢ being a Young function and for a general measure space).

In this paper we describe the dual space (1‘). of an Orlicz sequence space 1* defined by an arbitrary
Orlicz function ¢ (not necessarily convex) such that ¢(u )/u — o as u — oo, For this purpose we shall first

use the description of the Mackey topology T, of 1%, obtained by Kalton [8], when ¢ satisfies the A,-condition

at 0, and by Drewnowski and Nawrocki [5], in general. The Mackey topology T, is normable and we
consider two natural norms on 1* which generate T,- Thus we can define two corresponding norms in (l’)'.
Moreover, we consider 1* from the point of view of the theory of modular spaces (see [15], [16], [17]).
We investigate the conjugate modular (in the sense of Nakano [17]) on (1’)‘ and consider two other
norms on (1*) defined in a natural way by the conjugate modulat. It is well-known that

(1% = (1%) +(1%)", where (1*) "and (1*) "denote the sets of all order continuous and singular linear functionals
on1* respgctivel;. We first ;how tha: the Kothe dual (1*)° of 1* coincides with the Orlicz sequence space
1*", where ¢~ denotes the complementary function of @ in the sense of Young. Thus we obtain the corre-
sponding characterization of (1*), . Next, we prove that the conjugate modular and all four norms defined
on (1*)" coincide on (1*)]. Following the idea of [2] we construct a Riesz isometric isomorphism of (1%);
onto some Riesz subspace B,(N) (dependent on ¢) of the Banach lattice ba(N) of all real-valued bounded
finitely additive set functions on N. We prove that there exists an isometric isomorphism of the Banach
space (1%, |- 3) " xBy(N)
gwen by the mapping f—(y,v) such that fix) = 2 x(i)y(@) + fx dv for all x€1* and
= || ¥]l 4+ +|v| V). From this it follows that h* (the 1deal of elements of absolutely continuous F-norm

on 1*) is an M-ideal of 1* (see [3, definition 2.1]). As an application, we obtain that every continuous linear

function on A* has the unique norm preserving extension to 1°.

1. Preliminaries. For terminology concerning locally solid Riesz spaces we refer to [1] and [14]. Fora
Riesz space (E, 2) let E* = {u €EF : u = 0} (the positive cone of E). By N we will denote the set of all
natural numbers. Denote by w the space of all real-valued sequences. For the sequence x, x(i) means the



242 M. NOWAK

i-th coordinate of x, and we shall denote by x*) the n-th section of x (that is x*X(i) = x(i) fori s n, x*)(i) =0
fori > n). For asubsetA of N we will denote by x, the sequence such thatx, (i) = x(i) fori €A andx,(i) = 0
fori € A. If fis a linear functional on a subspace X of w, we will denote by f, the functional defined as:
fa(x) = f(x,) for x €X. It is known that w is a super Dedekind complete Riesz space under the ordering
x sy whenever x(i) < y(i) fori EN.

Now we recall some terminology concerning Orlicz sequence spaces (see [11], [12], [22], and [25]).

By an Orlicz function ¢ we mean a function ¢: [0, %) — [0, ®) which is non-decreasing, continuous
for u 20 and ¢(u) = 0 iff u =0. Throughout this paper we shall assume that @ satisfies the following
condition: ¢(u)/u — o as u —» . Every Orlicz function ¢ determines the functional p,: w — [0, ]
defined by the formula:

Py = 3 o(lx(@))

Then*={xEw : Py(Ax) < o for some A > 0} is called an Orlicz sequence space defined by ¢. The space
1*is an ideal of w and the functional P, restricted to 1* is an orthogonpal additive modular, i.e., p, satisfies

the following conditions:
) Py(x) =0 iff x = 0.

(D pfx) s pyxy) if x| s |x).
3) PyAx) =0 if A—0.
(@ pyxi+30) = pyxy) + pyy) if | x| A 2] = 0.
These conditions imply that p,(x, v x;) = p,(x,) + p,(x,) for x,,x, = 0. Moreover, p, satisfies the following

axiom of completeness (see [15]):

(© Ifx,20forn=1,2,..and 3 p,x,) <, then there exists y €1* such that y =supx, and
ne=l

P)= 3 pix)

If ¢ is a convex Orlicz function, then the modular p, is convex, i.e.,
pyax; + bxy) < apy(x;) + bpy(x,) for a,b =20 witha +b = 1.
In 1* the complete Riesz F-norm

|x]y=inf{A>0 : p(x/A\)<A}.

* | 4 can be defined by

We shall denote by t, the topology of the F-norm | « | . Leth*={x €1*: p,(Ax) < o forall A > 0}. Then

h*is the ideal of elements of absolutely continuous F-norm |+]4on1*
We say that ¢ satisfies the A,-condition at O, whenever lim sup ¢(2u )/¢(u) < . It is known that
u—=0

1* = h* (i.e. 1* is separable) iff ¢ satisfies the A,-condition at 0.

We say that two Orlicz functions ¢ and 1 are equivalent at 0, in symbols ¢ ~ 1, if there exist positive
numbers a,b,c,d and u, > 0 such that a¢(bu) < W(u) s cd(du) for 0 < u < u,. Itis well-known that if ¢ ~
then 1* = 1¥ and 7, =T,. Moreover, the space (1%,t,) is locally convex iff there exists a convex Orlicz
function 1 such that ¢ ~ (see [25], Theorem 3.1.5]. Separable Orlicz sequence spaces without local
convexity have been investigated in detail by Kalton [8]. For examples of non-separable and non-locally
convex Orlicz sequence spaces see [5].

We denote by p, the Minkowski functional of the absolutely convex absorbing subset

k*={x Ew : p,(x) <} of 1*. Thus
pyx)=inf{A >0 : p(x/A) <o}

for all x € 1%, p,(x) s |x|, for x €1%, and h* =ker p,.
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2. Norms on the dual space (1%)* of 1*. In this section we define in two different ways some natural

norms on (1*)". For this purpose we shall first use the description of the Mackey topology of (1%,1,) given
in [5], and next, we apply the Nakano’s theory of conjugate modulars [17].
Let us put

¢ (v)=sup{uv—o¢(u) : u=0} for v=0.
Then ¢ will be called the function complementary to ¢ in the sense of Young. Itis seen that ¢’ is a convex

function, taking only finite values, and ¢"(0) = 0. This means that ¢" is a Young function (see [12], [13],
[26]). The additional properties of ¢" are included in the following

LEMMA2.1. (a) Ifli:n tinf ¢(u)/u = 0,then ¢’ vanishes only at0and vliﬂ o' (V)v =0, lim P (Vv =
(i.e. ¢" is an N-function in the sense of [11]). )

() If li‘{n _j(r)lf ¢(u)/u > 0, then ¢” vanishes near zero and vlli!l O (V) =oo (i.e. 1* = 17).

PROOF. (a) We can easily verify that ¢°(v) > 0 for v > 0. In the same way as in [4, §2] we can
show that ‘!1_1"% ¢'(v)v =0 and Jl_.nl O’ (V) =,

(b)  Weshall show that there exists v, > 0 such that ¢'(v)=0for0 < v =vyand¢’(v) >0 forv > v
indeed, since lim i(l)lf &(u)/u > 0 there exist numbers v' >0 and u’ > 0 such that uv' < ¢(u) for Osu s u’,
and since lim ¢(u)/u = o (by our assumption) there exists a number u" > 0 withu” > u’ such that u = ¢(u)
foru = u". Taking v"" > O such that 1~" = sup{u/¢(u): u’'su su"}, wehaveuv" < ¢(u)foru’su su".
Then for v, =min(1,v',v"") we get uv, suv' < §(u) for u zu", uv, suv" s ¢(u) for u’' su su”, and
uv,su s ¢(u)foru =u". Henceuv, — ¢(u) < 0 foru = 0, sothat¢'(v,) = 0. On the other hand, there exists
a number v, > 0 such that ¢°(v,) > 0. Since ¢" is convex, there exists a number v, > 0 such that ¢’(v) =0

for 0 s v s vy, and ¢'(v) > 0 for v > v,. Moreover, as in [4, §2] we can show that lim ¢'(v)/v = .

For an Orlicz function ¢ we shall denote by 43 the convex minorant of ¢ in a neighborhood of 0, i.e.,
§ is the largest Orlicz function such that &(u) = ¢(u) for u = 0, and ¢ is convex on the interval [0,1] (see
[8, p. 255]).

Moreover, let us put

) =) () for u=0.

It is seen that ¢ is a convex Orlicz function such that lim §(u)/u = . The relation between ¢ and ¢ is

u~—>®

described by
LEMMA 2.2. We have ¢ ~ ¢ and ¢(u) = ¢(x) for u = 0.

PROOF. First, we shall show that ¢(u) < ¢(u) for u = 0. Indeed, since lim ¢’(v)/v = oo, for every

u >0 there exists v, >0 such that ¢(u)+¢’(v,)=uv,. But uv, =¢u)+¢’(v.); hence §(u) = ¢(u)
for u =0. In [18, Lemma 2.1] it is proved that ¢ ~¢ whenever liminf ¢(u)/u =0. Now assume that
=0
Iinligf &(u)/u >0. We can check that ¢ ~ x,, where x,(u) = u for u = 0 (see [18]). It suffices to show that
¢~ Inview of Lemma 2.1 there exists a number v, > 0 such that ¢'(v) = 0 for 0 s v < vy, and ¢"(v) = 0
for v>v,  Moreover, since lim ¢'(v)/v =, for every u >0 there exists v, >v, such that
uv-¢'(v)<0 for v>v,. Hence, for every u >0, §(u) = max(uvy,sup{uv-¢'(v):vosvsv,}). But
sup{uv - ¢’(v): vosvsv,} =uv' - ¢(v') for some v’ with vy s v’ s v,. Assuming that v, < v', we obtain

that §(u) = uv, for 0 s u < uy = ¢'(v')A(V' - vy), and thus § ~ ;.
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For a topological vector space (E, E) we shall denote by (E,E)” its topological dual. We shall denote
by (1*)’ the dual space of (1%,,).
Let usrecall that the Mackey topology of (E, E) is the finest locally convex topology t which produces

the same continuous linear functionals as the original topology E. If (E,E) is an F-space then T is the finest
locally convex topology on E which is weaker than E (see [24]).

Kalton [8] has showed that the Mackey topology T, of a separable Orlicz sequence space 1* coincides

with the topology 74 , induced from 1%. For an arbitrary 1%, the Mackey topology t, has been

described by Drewnowski and Nawrocki [5].

Denote by T, the Mackey topology of (1‘,t,), by t,, the Mackey topology of (h',t,l ,,.), and by m, the
topology defined by the Riesz seminorm p,.

Combining [5, Theorems 5.1 and 5.3] with Lemma 2.2 we get the following important descriptions
oft,andr,

THEOREM 2.3. The following equalities hold:

T = Tt t.'(t;“o)v Ty .

It is well-known (see [11], [12]) that the F-norm topology t; on 1* can be generated by two Riesz

norms:

Jl5= int {10500+ D]

- sup[ élx(i)z(i) :z€1%,p(z) s 1}

and
Il % |lls = inf{A >0 : p(x/\) s 1} .
Moreover, ||| x |lls s | X3 2 ||| x [[l; forallx €1*and [[|x s 1 iff pyx)s 1.
Therefore, in view of Theorem 2.3 the Mackey topology t, can be generated by two Riesz norms:

; and p,v

Py Vv s

which will be of importance in our discussion. Thus two corresponding Riesz norms on ( 1*) canbe given
by

If

s

Thus ( 1‘). is a Banach lattice under each of the norms | -

;-sup“f(x)l :x€1% px)=1 and IIIXIII;SI}

ly=sup{|fx)] :x€1%, px)s1 and |x|;=1}.

sand ||  |Il; . Moreover, since p,(x) s 1 implies

Py(x) s 1and py(x) s 1, we can put (see [19]):
1715, =sup{lfx)] :x €1, px)s1}).

We shall denote by (1*)” the collection of all order bounded linear functionals on 1*. It is well-known
that (1) = (1*)" (see [1, Theorem 16.9]). An order bounded linear functional f on 1* is said to be order
continuous (resp. singular) if x, 5 0in 1* implies f(x,) — 0 for anet (x) in 1* (resp. f(x) = 0 forallx € h*)
(see [9, Ch. X]). The set of all order continuous (resp. singular) functionals on 1* will be denoted by (1*);
(resp. (1%);).

The next theorem gives a characterization of the space (1‘)'.

THEOREM 2.4. (a) For a linear functional f on 1* the following statements are equivalent:
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(1) f is order bounded.

(2) [ isT,-continuous.
(3)  There exist unique f, € (1*); and f, €(1*); such that
Jx)=f(x)+f(x) for x€E 1%
) (1%; - ((1‘);)‘ (= the disjoint complement of (1*); in (1*)), and moreover, (1*); and (1*); are

0= 1lls-

) =(1%) =(1*), by [9, Ch. VL, §1, Theorem 5], we obtain that (1*),

Banach lattices under each of the norms || +||, ,

PROOF. (a) Since (1%, p, v

.

separates the points of 1%, and to get our result it suffices to use Theorem 6 of [9, Ch. X, §3].
(b) Since (1*), is a band of (1*)" (see [1, Theorem 3.7]) (1*), is a [l

subspace of (1*) (see [1, Theorem 5.6]). Thus (1*); is a Banach lattice, because (1*) is a Banach lattice.

,-closed)

+-closed (resp. |

Moreover, since (1*); = ((1‘):)d, (1%; is a band of (1*)" (see [1, p. 27]), and by the above argument (1*);
is a Banach lattice.
In view of [17] the conjugate p, of the modular p, can be defined on the algebraic dual 1* of 1* as
follows:
() = sup{| flx)] - py(x) :x €1%.
Note that if f = 0, then
() = sup{f(x) - p,(x): 0 s x Ew, p,(x) < }.
Indeed, since | f(x)| = f(|x|) (see [1, p. 21]) and p,(x) = p,(| x| ) we have
PN =supf(|x])-py(|x]): Py x]) < o}
ssup{flx)-p,x):0sx Ew, Py(x) < o}
We shall need the following definition.
A linear functional fon 1* is said to be bounded for p ., (see [16], [17]) if there exists y > O such that
| fx)] s¥(px)+1) for x€1*.
The collection of all bounded for p, linear functionals on 1* will be denoted by 1%
The basic properties of 5, are included in the following
THEOREM 2.5. The conjugate 5, of the modular p, is a convex orthogonal additive modular on
1*. Moreover, the following equality holds: (1% =1%
Proof. Using[17, §4] and arguing as in the proof of [16, Theorem 38.2] we obtain thatf)-, is a convex

orthogonal additive modular on 1*. Toend the proof it suffices to show that (1’)' -1%. Indeed, let f € (1‘)'
and py(x) < . Then py(x) = 1 and there exists y > 0 such that | f{x)| =y (max (py(x), | x||3)) = ¥(py(x) + 1)

= y(p,(x) + 1), because (1) < ¢(u) foru = 0. Thus f ET; hence (1’). c1*. Next, let f €1*andlet |x]y<1.

Then p,(x) s 1, and hence | f(x)| = 2y for some y > 0. This means that f € (1*)’, and thus 1*C (1*)". The

proof is completed.

Thus by means of ;_), two modular norms can be defined on (1‘)‘ in a usual way (see [16], [17]):

I1;,= {'Lf,{ %(5‘()»)')4- l)} (the first modular norm)
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l £1l, = inf{A >0 pf/A)s1} (the second modular norm).

3. Order Continuous Linear Functionals on 1*. We shall start this section with a description of the

Kothe dual (1*)° of 1* that will be useful in obtaining a corresponding characterization of order continu-
ous linear functional on 1* (see [20, Proposition 1.9]).

Let us recall that the Kéthe dual S* of a sequence space S is the sequence space defined by (see [10,
§30.1]):

S = [y Ew: .Ellx(i)y(i)l <o for all x ES}.
THEOREM 3.1. The following equalities hold:
Y =Y =¥ =1,

In particular, if liminf ¢(u)/u >0, then (1%) = 1°.
=0

PROOF. First, we shall show that (1*)° = (h*)* = (h*". Since (1*)° C (h*)" and (h%* C (h*’, it suffices
toshow that (h*)° C (1*)" and (h*)" C (h%". Indeed, lety € (h*)’,i.e., ‘$l|z(i)y(i)| <ooforallz €h*. Putting
g@)= 3 26)0) for ze€h!,

by [20, Proposition 1.9] and Theorem 2.3 we get

g €Y, = (%) = (W7, = (4% 5,)"

Therefore, we can put

Il =suef | 5, z0v)

Let now x € 1* (resp. x € k%), x = 0. We shall show that ¥ |x(i)y(i)| <. Since x € 1* and x* € h* we
i=1

:zERY, |||z|||;sl}.

get

TR TN T S
TxTh PALOIO] —|||XI|I;sEpi§1'x (i) - sign y(i) * y(i)

s sup{

Hence y € (1% (resp. y € (#%"), so that (1%)" = (h*)" = (h%)".

jlz(i)y(i) :2€RY, ||z|= 1}-|| gl <=

We have (h*), = (h%) = (h;’til ,,;).. It is well-known that by the mapping (y — g,) the space ¥
can be identified with k%, (see [20, Proposition 1.9]), and the space 1¥ with (A%, ,3) (see [12, Ch. T,
§3, Theorem 2]). Thus (A% = 1%, and since § "= ¢ = ¢, the proof is complete.

REMARK. The equality (1*)° = 1% has been obtained by the author in [18] in a different way, using
the so-called modular topology on 1*.

REMARK. Assume now that ¢ is an Orlicz function, not necessarily satisfying the condition:
&(u)u - as u -, Let ¢ be any Orlicz function such that Y(u)=¢(u) for Osu <1, and
Y(u)/u — o as u — . Then in view of Theorem 3.1 we get (1*)" = (1¥)" = 1¥ . Thus, by Lemma 3.1 we
get (1Y =1"forO<p s 1.

We are now able to give a characterization of order continuous linear functionals on 1*.

THEOREM 3.2. Let fbe a linear functional on 1*.

(a) The following statements are equivalent:
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(1)  fis order continuous.

(2)  There exists a unique y € 1* such
o) =fx)= .Elx(i)y(i) for all x €1%.

(b)  If fis order continuous, then the following equalities hold:

E’(f) = P.-()') ’

Is=0A5=1x1,»

M =10 W, =y e -

(c)  Moreover, the map 1* Dy — f, €(1*), is a Riesz isomorphism.
PROOF. (a) It follows from [20, Proposition 1.9] and Theorem 3.1.

(b) By (a) we have f(x) = i}x(i)y(i) for some y € 1% and all x € 1°,

First, we shall show that B,(f) - p..(y ). From the definition of ¢ we easily obtain that 5,([) =p, ()

To prove that B,(f) Z pye(y) let us note that there exists 0 <z € w such that
(@) +0'(y@)]) =|z@)y(@E)| for i=1,2,....
Putting x(i) = (sign y(i)) « z(i) for i=1,2,...,weget

P, )= 3 ¢°y@))
- sup| $ 120 - 5, 00

= sup{ | 5, #00) - 3, 602200} <70

In turn, we shall show that || f] ;= || ¥ ¢ Wehave | y] .= sup[ 3 z(iy@)| :x €18, py2)s 1}, and
i=1

hence || fl4=|y], . On the other hand, let z € 1* with pz)s 1. Putting x(i) = (sign y()) * | ()|
(i =1,2,...), we have p,(x®)) = 0 and p(x™) = pi(z) = 1. Thus

3 20| = sup 3|20 0)

PEROCINT ¢

= sup

Thus |y - <[ fl 4 and hence [ fl 4= ¥ - -
Moreover, since p(Af) = p,-(Ay) for A > 0, we get IA = Iyl Ry
Next, we shall show that ||| f|ll< ||l ¥ |||. . To prove that ||| f|lly s |l ¥ |||. , let us assume that

x €1, px)=1 and |x|3s1. Then x €1 and by the Hoélder’s inequality (see [11,§9]) we get
) =l = My il vl » because @ = 9. Thus | £l <l ¥ [l - To prove that || y |, = f

 let

us note that (see [11, p. 135]):
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iélz(i)y(i) zed, Izl;= 1}.

I 1= suef
Let now z€1* and lz]3s1. Putting x(i) = (sign y(i)) * |zG)| (I =1,2,...) we have pxt) =0,

(s < el < 1, and s above we get |y I, < 11
Finally, since py(f/\) = p,(y/\) for A > 0, we get || S, =1y My -

(c) See [9, Ch. VI, §1, Theorem 1] and [14, Theorem 18.5].

REMARK. The general form of ¢-continuous (continuous with respect to the modular p,) linear

functionals on an Orlicz space L¥(a, b) defined by an Orlicz function satisfying conditions ¢(u)/u — 0 as
u — 0 and ¢(u)/u — x as u — =, has been found by W. Orlicz [19)].

4. Singular Linear Functionals on 1*. In this section we assume that ¢ does not satisfy the A,-condition
at 0, because otherwise (1*); = {0}.

The following lemma describes positive singular linear functionals on 1¢.
LEMMA 4.1. Let fbe a positive singular linear functional on 1°*.
(a) Forany & > 0 there exists 0 s y € @ with p,(y) <€ such that | f] ; s f(y).
(b) The following equalities hold:
N =15, = 1A= 71k

=sup{flx):0sx Ew, pyx)<x}.

(c) There exists 0 = y € w with p,(y) <% such that
§£ill; = f(ya) for any subset A of N
and
Py(y4) = 1 for any subset A of N with | ], = 0.
PROOF. (a) Let € > 0 be given. Since (see [26, Lemma 102.1])
I =sup{fix):0sx €14, px)=1, pyx)s1},

for every k € N there exists 0 s z, € 1* such that p(z,) <1 and | f] 4 s f(z,) + ; Then p,(z,) < = and there

exists a strictly increasing sequence of natural numbers (n,) such that
() v . _E
pla-2")= 3 da) <5
: -l.

Letx, =2z, -zf' Y fork =1,2,... . Then in view of the axion (C) of completeness of the modular p, there
exists 0 s y € w such thatx, s y, for allk €N, and p,(y) skzlp,(x,) <& But zf"’)e h*for allk EN, so

that

;< =) + () 41

-j'(x,)+%sf(y)+kl.

Since € > 0 and k are arbitrary, we conclude that | f] ; < f(y).
(b) Wehave
fllyslAlyssup{ftx):0=x €1, pyx)<1, pyx) <.
To prove that sup{f(x):0sx €1%, p,x)s1, pyx)<»s||f||, assume that 0<x €1* and
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px)s 1, pyx) <. Givenann >0, there exists 7 € N such that py(x —x*) <m. Then

Jx-x®;s14px-x") s 14m

and
fx) = flx = x) + fe®) = flx - x*)
= I/ 1k
Hence f(x) < ||| ]|l » and thus we obtain

A=A ;-sup{f(x) :x €14, Px)s 1, pyx) <°<>} .
Moreover, by (a) there exists 0 s y € w, with p,(y) s 1, such that || f] ; s f(y). Hence

115, =sup{fx): 0<x Ew, p,x)=1}
ssup{f(x):0sx Ew, p,(x)<}
< sup{ fix):x €14, Px)s1, pyx)< oo]

=|flysfy)ssup{fix): 0sx Ew, px)s1}.
Thus we proved that

=113 =sup{f(x): 05 x €, p(x) < }.

15, =1l f

Finally, we shall show that p,(f) = || f];. Indeed, by (a), for every n € N, there exists 0 < y, € w,

with py(y,) < 3, and such that | ] ; < f(,). Hence
Po(f) = sup{f(x) - Px):0sx Ew, py(x)<x}

. 1
2 ) - 00 =Ml
Hence p,(f) = | fl; , and since
PN ssup{f(x): 0sx Ew, pyx) <} =| £l
we get p,(f) = || fl 4 Thus the proof of (b) is completed.

(c) Let A be a subset of N, and let 0 s x € w with p,(x) < « be given. Arguing as in (a) we obtain
that there exists 0 <z, € ® with py(z) < ®(k=1,2,...) such that ||f], s f(z,) + } Since
1714 =sup{f(z) : 0 sz E w,p,(z) < =} (see (b)), we have

1
fe v z) < @)+
for all k EN, because py(x v ;) = py(x) + py(z;) <. But(x v z, -2), =x vz, -z, so we get

fx) s flkevz),) sf((z,)A)+% (k=1,2,...).

(my)

("")) <$, and letx, =z, -2z,

Choose an increasing sequence of natural numbers (m,) such that p,(z, -z
Then in view of the axiom (C) of completeness of p,, there exists 0 = y E wsuch thatx, <y forallk EN,

and p,(y) = 1. Hence

fo) = ]((z,, -3 ‘))4) *’f((z'fm‘))A) * %

- fG)) + = S0+
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Thus we obtain that | £, |, = f(y4), because by (b),
LAl =sup{fix)): 0sx Ew, pyx)<w}.
Assume now that || f‘ﬂ; =0. Given 1 >0 we have p(y4Ap,(y4) +1)) <, and hence, by (b),
LAl 2 ROuPoa) +) - Thus | filly = f0a) < (Ry0a) + MU full » 50 Py(y4) = 1, because
Pyy4) = p{(y) = 1. Thus the proof of (¢) is completed.
COROLLARY 4.2. The space ((1*);, | -] ;) is an abstract L-space.

PROOF. By Theorem 2.4, ((1*),,] +|| ;) is a Banach lattice. Arguing as in the proof of Lemma 2 of
[2] we can show that | f, + il = | £l + | £ ; for any £,, /, €((1%);)", and this means that (1*); is an abstract

L-space (see [23, Ch. II, §9]).

By ba(N) we denote the family of all bounded real valued finitely additive set functions on N. Itis
known that ba(N) is a vector lattice with the usual ordering: v, = v, iff v{(A) 2 v(A) for allA CN. Then
v=v'—v~ and |v| =v*+v", where v* and v denote the positive and the negative part of v € ba(N).
Moreover ba(N) is a Banach space under the norm | v|| =|v| (N) (see [6, Ch. IIL, 1.4, 1.7]).

For given f€((1%);)" let us put v{A) =] il for any subset A of N. Then by Corollary 4.2,

v, E (ba(N))' and | v] =vAN) =},

The following definition is justified by Lemma 4.1.

A v € ba(N) is said to be in class B,(N) if there exists 0 < y € w, with p(y) < «, such that p(y,) = 1
for any subset A of N with |v| (A) = 0.

One can show that B,(N) is a Riesz subspace of ba(N). In view of Lemma 4.1 we have the following

LEMMA 43. If f €((1%;)’, then v, € (B,N))".
Thus we can define a mapping T : ((1‘);)' — (B,(N))* given by
T(f)=v, for any f€ ((1'):)0 .

In view of Corollary 4.2 the mapping T is additive.
For any v € (ba(N))* we define a positive functional I, on (1*)’ by

Ix) - inf{ 3 p,(x,,)v(A,)}
where the infimum is taken over all finite disjoint partitions (4,)] of N.

By the same argument as in the proof of Lemma 5 of [2] we can prove that the functional , is additive

on (1*)". Thus I, has a unique positive extension to a linear functional on 1* (see [1, Lemma 3.1]). This
extension (denoted again by 1,) is given by I(x) = I(x*) - I(x") for allx € 1°.

LEMMA 4.4. Ifv € (ba(N))', then I, € ((14))" and | L] | < v(N).
PROOF. Since I, is positive on I*, I, is order bounded. It is seen that I(x) = 0 for all x € 4*, so
ILe (( 1’):)’. Moreover, | I(x)| s I(x*) +I(x") = I(|x|) s p,(x)V(N) for all x € 1%, s0 || L,| ; s v(N).
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Thus we can define a mapping G : (By(N))" — ((1%;)" by
G(v)=I, for any v€E(B(N)) .
THEOREM 4.5. The following statements hold:
(1) (GeT)NH=f forany fe(%;),ie.,
flx)=1,(x) forall x€ 1%
(2) (T°G)(v)=v forany v€E(B(N)),ie.,
v(A)=|, A||; for any subset A of N.

PROOF. (1) Using Corollary 4.2 and Lemma 4.4, it suffices to repeat the arguments of the proof
of Theorem 2 of [2].

(2) We first prove the case A = N. Since v € (B,(N))’, there exists 0 < y €  such that p(y) <
and py(yg) = 1 for any subset E of N with v(E) > 0. Then for any finite disjoint partition (E,); of N we have

»ix PV, VE,) =v(N),s0l(y) = v(N). According to Lemma 4.1, we have || I} ; 2 I(y) = v(N). Moreover,

we have ,(x) < py(x)V(N) for all 0 < x € 1*. Hence |1,], = v(N), so | L], = v(N). Assume now thatA is a
fixed subset of N, and let v,(B) = v(A NB) for any B CN. One can easily show that I, = (I,),. Hence, by
the above, we get | (1), [, = | ||, = vi(N) = v(A), and the proof is completed.

By Theorem 4.5 the mapping G is additive, because T'is additive. Thus T'and G have unique positive
extensions to linear mappings T : (1*); — B,(N) and G : B,(N) — (1*); (see [1, Lemma 3.1]) given by
T = V.-V, and Gw)=1,-1,

Let us put: v, =v =V and [, =1 .-I_. Foranyv € B,(N) we shall write

dev =I(x) forall xE€1*.
THEOREM 4.6. (see [2, Theorem 4]). The mapping T : (1*); — B,(N) is a Riesz isomorphism.

PROOF. In view of Theorem 4.5, we get (G ° T)(f) = f, for any f &€ (1*);, and (T ° G)(v) = v, for
any v € B(N). Thus T is a Riesz isomorphism, because T is positive (see [14, Theorem 18.5]).
The final result of this section gives a characterization of singular linear functionals on 1*.

THEOREM 4.7. Let fbe a linear functional on 1*.

(a) The following statements are equivalent:
(1) fis singular.
(2) There exists a unique v € B,(N) such that
flx)= J‘xdv for all xel®.
(b) Iffis singular, then the following equalities hold:
e =1, = 1A= M= A, = £ = 1V YD -
PROOF. (a) See the proof of Theorem 4.6.
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(b)  According to Theorem 4.6, we get v;4(N) = | v/ (N). Thus, in view of Lemma 4.1, we get

P =p M =LA Lo =LA L=N1A l=1vi ).
Moreover, since pyAf) = py(A| f]) = Ap,(f) for A >0 (seec Lemma 4.1), we obtain that | jﬂ;. = py(f) and

I £ 1lis,= py(f). Since the norms which occur in our theorem are Riesz norms the proof is complete.

Since ((1’):,! L ;) is an abstract L-space (see Corollary 4.2), by Theorems 4.6 and 4.7, we obtain that

B,(N) is also an abstract L-space.
5.  The General Form of Continuous Linear Functionals on 1*. We are now in position to give a
desired characterization of the dual space (1*).
THEOREM 5.1. Let fbe a linear functional on 1*.
(a) The following statements are equivalent:
(1) fisv,~continuous.
(2) fis order bounded.
(3) There exist unique y € 1% and v € B(N) such that

fo) = ‘glx(i)y(i) + J' xdv for all x€E€1°.
(b) If fis t,-continuous, then the following equalities hold:
PN =pe() +|¥| (N),
A =15 =L+ M 0.
(c)  The space h* is an M-ideal of (1%, p, v||| * [llp)-

PROOF. (a) It follows from Theorem 2.4, Theorem 3.2 and Theorem 4.7.
(b) By Theorem 2.4, we have f=f, +f,, and it is known that |f|, =|f |, |fl.=|/| and

| £. |Al £, | = 0. Since the conjugate modular p, is orthogonal additive on (1%, by Theorem 3.2 and Theorem
4.7, we get py(f) = py(.) + (£ = ppe(y) + | v | (N).
We shall now show that | f]4 =]y +|v|(N). Indeed, let € >0 be given. Then there exists

0sx €1*with p(x) < 1, p3(x) < 1, such that
Ll =1L slfL ) +e.
Moreover, in view of Lemma 4.1 there exists 0 < y € w with p,(y) s 1 - p3(x) such that
=1L 0D

Let z=x v y. Then p3(z) s pz(x) +ps(y) s 1. Moreover, since py(x) <1, we have Py(x) <. Hence

py(z) <=, 50 py(z) = 1. Thus
AL+ 1A s FL @) +1fL () +e

s|fl.@+]|fl, @) +e
=|fl@)+es|f,+¢.
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Hence |f|,+I£l,=Ifl3, and, according to Theorem 3.2 and Theorem 4.7, we pbtain

1A=y
that | -

(©) Itiswellknownthat(k*)’ = (1%); (see [26, Theorem 88.10]), where (h*)” denotes the annihilator

++| V| (N). Finally, since p,(\f,) = pye(Ay) and py(Af;) = A | v | (N) for A > 0, we easily obtain
Yl +[vI(N).

of i*in (1%)". Therefore, from (b) it follows that (h*)’ is an L-summand of ((1%)’, ] +||3) (see [3, Definition
1.1]). According to [3, Definition 2.1] it means that h* is an M-ideal of (1%, p, v||| * ||l})-

REMARK. For a convex Orlicz function ¢ the equality || f] ;= || f] 7, has been proved by W. A.
Luxemburg and A. C. Zaanen [12, Theorem 5].

As an application of Theorem 5.1 we obtain that continuous linear functionals on k* have the unique
norm preserving extension to 1%,

COROLLARY 5.3. (see [21, Proposition 3]). Let gbe a Tyl
Then there exists a unique t,-continuous linear functional f on 1* such that f(x) = g(x) for all xeh*, and

I&lse= 1714 where

1~continuous linear functional on A*.

Igl;e=sup{|gtx) :x €A, || x =1} .

PROOF. Since (1%, ;)" = (#*)" = (h*); (see [1, Theorem 16.9]), according to [20, Proposition 1.9]

+
and Theorem 3.1 there exists a unique y € 1*" such that g(x) = 3 x(i)y(i) for all x Eh®. Let us put
i=l

f(x)-ilx(i)y(i) for all x€1°.

Then f(x) = g(x) for x € h*, and, according to Theorem 3.2, fis order continuous and || f| 4 = | y| - Now

we shall show that || g||,4=| f],. Indeed, we have | g||;s=|fl4. Letx €1* with p(x) =1, ||| x [[lss 1.
Then

3 x| = sup $1xy0)

= sup 3 [x)] - signy() - y@) =gl
Hence || f]4 = 8] ;+» and we are done.

Now assume that f is another such extension of g, and let F =f—f. Then F is singular on 1* and

f=f+F. Hence, by Theorem 2.4, we have f = f, and F = f,. Therefore, in view of Theorem 5.1, we have
1A= 1A+1FIs =1yl + I FI Since |74 =] &l =1l we obtain that F =0, s0 f = f. Thus the

proof is completed.
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