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ABSTRACT. An ideal I of a ring A is essentially nilpotent if I contains a nilpotent ideal N of A
such that J 91N # 0 whenever J is a nonzero ideal of A contained in I. We show that each ring
A has a unique largest essentially nilpotent ideal EN(A). We study the properties of EN(A) and,
in particular, we investigate how this ideal behaves with respect to related rings.
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1. INTRODUCTION.
Throughout this paper all rings are associative and all ideals are two-sided. The notation I A

means that I is an ideal of A.
Let A be a ring and suppose I A. If K A and K

_
I then K is A-essential in I if 0 # B , A

and B C: I imply that B f3 K # 0. The ideal I is an essentially nilpotent ideal of A if there is a

nilpotent ideal N of A such that N C_ I and N is A-essential in I. We shall denote the prime
radical of A by N(A). Recall that N(A) is the intersection of the prime ideals of A and that if

I , A, then N(I) 1 91N(A).
Essential nilpotence was first studied by Fisher [2]. In this paper we show that each ring A

contains a unique largest essentially nilpotent ideal which we denote by EN(A). We establish

various results concerning this ideal and, in particular, we investigate how this ideal behaves with

respect to related rings. For example, we show that EN(R[x])= EN(R)[x] and that if G is a finite

group of automorphisms of R and R has no G I-torsion, then EN(R.G) EN(R).G.
Proposition 1. Let I A. The following are equivalent.

1. I is an essentially nilpotent ideal of A;
2. A has an ideal Z such that Z2 O, Z C I and Z is A-essential in I;
3. If 0 K A and K C I, then K contains a nonzero nilpotent ideal of A; and

4. N(I) is A-essential in I.
PROOF. 1 implies 2. This follows as in [2, Lemma 2.1], but we repeat the argument for the

convenience of the reader. Let {Z" , E A} be the collection of all ideals J of A such that j2= 0

and J _C 1. Let O= {F C_ A" E{Z," E F} is direct}. Using Zorn’s lemma we may choose M
maximal inO. Let Z=E{ZA’M}. ThenZC_IandZ2=0. LetB,A, BC_I. IfB0then
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B N K # 0 where K is a nilpotent ideal of A, K I. Thus B f3 K and hence B contains a nonzero

ideal J of A such that j2 0. The maximality of M ensures that Z f3 J # 0 and so Z is A-essential

in I.
2 implies 3. This is clear.

3 implies 4. If J is a nilpotent ideal of A and J _C I, then J C_ N(I) so this implication is also

clear.

4 implies 1. Since every nonzero ideal of A contained in N(I) contains an ideal J of A with
j2= 0, the argument in the proof that implies 2 shows that there is an ideal Z of A, Z2= 0,

Z C_ N(I) and Z is A-essential in N(I). Since m(I) A and m(I)is A-essential in I it follows that

Z is A-essential in I.

Let I and J be essentially nilpotent ideals of the ring A. If 0 # K A and K _C I + J, then

either 0 # KI C_ I or 0 # KJ C_ J or K2 0. In any case, K contains a nonzero nilpotent ideal of

A and so I + J is essentially nilpotent by 3 of the above Proposition. A similar argument shows

that the sum of all the essentially nilpotent ideals of A is essentially nilpotent. This unique largest
essentially nilpotent ideal of A will be denoted by EN(A).

Proposition 2.1. /f 0 is an automorphism o.f A, then O(EN(A))= EN(A).
2. For any ring A,A/EN(A) is semiprime. In particular, if A B, then EN(A),: B.
3. If I A, EN(I) I EN(A).
4. /f 0 e e2 E A, then EY(eAe) C_ eEY(A)e.
5. If A has an identity, 0 e e2 A and AeA A, then Eg(eAe) eEN(A)e.

PROOF. 1. is clear. For the proof of 2. suppose EN(A)C_ JnA and J2C EN(A). If

0 g ,: A,K C_ J then g2 0 implies g C_ N(A) C_ BY(A) and g2 # 0 implies

K2 K2gl EN(A) # O. Hence EN(A) is A-essential in J and so J is essentially nilpotent. Hence
J EN(A) and the proof of 2. is complete.

For the proof of 3. we begin by showing that EN(A)f’l I is an essentially nilpotent ideal of I.
Let 0 J I,J CC_ EN(A)f’l I. In view of 3 of Proposition it is enough to show that J contains a

nonzero nilpotent ideal of I. If J is itself nilpotent this is certainly the case. If J is not nilpotent,
j.3 # 0 where J* is the ideal of A which is generated by J. Since (j.)3 _C EN(A), (5*)3 contains

a nonzero nilpotent ideal of A and since (J*)3 C_ J by Andrunakievic’s Lemma this completes the

proof that EN(A) fl I CC_ EN(I).
From 2. we know that EN(I)A and it follows immediately from 4 in Proposition 1 that

EN(I) is an essentially nilpotent ideal of A.
To establish 4 we show that EN(eAe)* is an essentially nilpotent ideal of A where EN(eAe)*

denotes the ideal of A which is generated by EN(eAe). Let 0 # J A,J C_ EN(eAe)*. Then

eJe C_ eEY(eAe)*e C_ EN(eAe). If eJe # O, edeflY(eAe) # 0 and so J fl g(Eg(eAe)*) # 0 because

Y(eAe) eY(A)e C_ N(A). If eJe 0, then j3 0 and so J f’l N(EN(eAE)*) # O. Thus

Y(EY(eAe)*) is A-essential in EN(eAe)* and this establishes 4.

To prove 5 it suffices to show that eEN(A)e C_ EN(eAe), and to do this it is enough to show

that eEY(A)e is an essentially nilpotent ideal of eAe. Now Y(eEY(A)e)= eN(EN(A))e eg(A)e
and we will show that eg(A)e is eAe-essential in eEN(A)e. Let 0 # W eAe,W C eEN(A)e. Let
W* denote the ideal of A which is generated by W. Since W’C_ EN(A), K W* tDN(A)# O.

Also, eKe C W fl eN(A)e so the proof will be complete if we show that eKe # 0. If eKe 0, then

AKA AeAKAeA C_ AeKeA O. But since A has an identity and K # O, AKA # O.

If R and S are rings with the same identity and R C_ S, then S is a free normalizing extension

of R and S is a free right and left R-module with a basis X such that xR Rx for all x fi X. Note
that in this case each x X determines an automorphism 0x of R defined by xOx(r rx for all
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r E R. A free normalizing extension S of R satisfies the essential condition if whenever U C_ V are

ideals of S with U S-essential in V and I , R such that IV O, then 1V fl U O. If S is a free

centralizing eztension of R; that is, 0x is the identity automorphism for all z E X, then certainly S
satisfies the essential condition because in this case IV ,S. Also, if G is a finite group of

automorphisms of R and R has no G ]-torsion, then the crossed product R,G satisfies the essential

condition. This is because a minor modification of the proof of Lemma 1.2 (ii) in Passman [3]
shows that if U and V are ideals of R,G with U R,G-essential in V, then U is essential as an

R- R*G subbimodule of V.

THEOREM 3. If S is a free normalizing eztension of R which satisfies the essential condition

and is such that N(S)= N(R)S, then EN(S)= EN(R)S.
PROOF. We first show that EN(R)SC_EN(S). Since EN(R) is invariant under

automorphisms of R, EN(R)S is an ideal of S. We show that N(S) is S-essential in EN(R)S. Let
0 # T S,T C_ EN(R)S and denote the normalizing basis of S over R by X {zA" A fi A}. Choose

0 # v E{aAzA" A A} in T where aA EN(R) and so that v has a minimal number of coefficients

not in N(nR). Suppose ,5 A and a,5 . N(R). Since 0 # Ra,bR C_ EN(R) there are zj, yj R such

that 0 # zja,byj N(R). Then
j=l

w Z xjv#,5(yj)A#=’ akz$ + Z xja,bx,5#,5(yj)A=’E,5akzA + Z zja,byjx,5
j=l j=l j=l

where the a are elements of R with the property that aN(R)if aeN(R).
Sic jj # 0,

"----1
W J and since w has fewer coefficients not in N(R) than does v we have reached a contradiction.

It follows that vN(R)S=N(S) and hence N(S)is S-essential in EN(R)S. Hence

EN(R)S C_ EN(S).
Suppose that 0 v EN(S), v . EN(R)S. Let v y{ax" A} and assume ,5 A is such

that a

_
EN(R). Then N(a)is not R-essential in (a)+ N(a)where (a) denotes the ideal of R

which is generated by a. Hence there is an ideal I of R, 0 I C_ (a) + N(R) and I n N(R) 0. It
follows that IEN(S)fl N(R)S 0 because if {r,x," , . A,r,

_
R} is in IEN(S) then r, E I for

all . Since I is not nilpotent and IN(R) C I flN(R)=O, Ia$ O. Hence Iv # 0 and so

IEN(S) 7/:O. Since N(S) is S-essential in EN(S) and S satisfies the essential condition,

IEN(S) Cl N(S) 7/: O. This contradicts our previous conclusion that IEN(S) Cl N(R)S 0 because

N(S) N(R)S. Hence EN(S) C_ EN(R)S.

It is well-known that if S is a finite normalizing extension of R, then N(S)::) N(R) and so it

follows from the proof of the theorem that if S is a finite free normalizing extension of R, then

EN(S) D_ EN(R).

COROLLARY 4. If Mn(A) denotes the ring of nn matrices with entries from A, then

EN(Mn(A)) Mn(EN(A)).
PROOF. First assume that A has an identity. Since Mn(A) is a free centralizing extension of

A and N(Mn(A)) Mn(N(A)) it follows from the theorem that

EN(Mn(A)) EN(A)Mn(A)= Mn(EN(A)).
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If A does not have an identity, let A’ be the usual (Dorroh) unital extension of A. Then from

3 of Proposition 2,

EN(Mn(A)) Mn(A) fl EN(Mn(A’))

Mn(A f3 Mn(EN(A’))

Mn(A f3 EN(A’))

=Mn(EN(A)).

COROLLARY 5. If G is a finite group of automorphisms of A and A has no G[-torsion,
then EN(A,G)= EN(A).G where A.G is the crossed product.

PROOF. As in Corollary 4 we may assume that A has an identity, and it follows from [3,
Theorem 2.2] that N(A.G)= N(A).G so the theorem applies.

COROLLARY 6. EN(A[x])= EN(A)[x].
PROOF. As above we may assume that A has an identity and [1, Lemma 2L] shows that

N(A[x]) N(A)[x]. So, since A[x] is a free centralizing extension of A, the theorem applies.

COROLLARY 7. If R and S are rings with identity which are Morita equivalent, then R is

essentially nilpotent if and only if S is essentially nilpotent.

PROOF. This follows immediately from 5 of Proposition 2 and Corollary 4.

COROLLARY 8. Let R be a ring with identity and let G be a finite group of automorphisms of
R such that GI/s invertible in R. Then EN(RG) C_ EN(R).

PROOF. Let e GI-I’ g. Then e is idempotent in the skew group ring R,G and

e(R,G)e=RGe-RG. Fqrod 4 of Proposition 2, EN(RGe) C_EN(R*G) and

EN(R,G)=EN(R),G by Corollary 5. Since EN(RGe)=EN(RG)e it follows that

EN(RG) c_ EN(R).

We note that EN(R) R does not in general imply that EN(RG) # O. For example, let

where Q is the rational field. The cyclic group G {e, ct} of order 2 acts as automorphisms of R via

and

c 0 c 0 c

ACKNOWLEDGEMENT. The first named author is grateful for the hospitality shown by

Dalhousie University where he was on sabbatical leave when this paper was written. The research

of the second named author was partially supported by NSERC grant #8789.

REFERENCES

1. AMITSUR, S.A., Radicals of polynomial rings, Canad. J. Math:, 8(1956), 355-361.

2. FISHER, J.W., On the nilpotency of nil subrings, Canad. J. Math.,.22 (1970), 1211-1216.

3. PASSMAN, D.S., It’s essentially Maschke’s theorem, Rocky Mountain J. Math., 13 (1983),
37-54.


