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ABSTRACT. The initial value problem of generation of surface water waves by a harmonically
oscillating plane vertical wavemaker in an infinite incompressible fluid under the action of gravity
and surface tension is investigated. In the asymptotic evaluation of the free surface depression for
large time and distance, the contribution to the integral by stationary phase method gives rise to
transient component of the free surface depression while the contribution from the poles give rise to
steady state component. It is observed that the presence of surface tension sometimes changes the
qualitative nature of the transient component of free surface depression.
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1. INTRODUCTION. The forced waves produced by a time harmonic plane vertical wavemaker
was treated by Havelock [1] long back within the framework of linearized theory of water waves
assuming the irrotational motion of the liquid. Later Rhodes-Robinson [2] extended the same
problem to include the effect of surface tension and obtained the solution of the boundary value
problem using a method based on the application of Green’s integral theorem. Recently Faltas [3]
solved the initial value problem of generation of surface waves by harmonically oscillating vertical
wavemaker using the generalized function method and also presented the asymptotic behavior of
free surface depression for large time and distance.

The present paper is an extension of the problem considered in [3] to include the effect of
surface tension at the free surface. An asymptotic analysis of the free surface depression for large
time and distance is presented.

2. FORMULATION OF THE PROBLEM.

We are concerned with the transient development of the two dimensional surface water waves
generated by a harmonically oscillating plane vertical wavemaker in the presence of surface tension
at the free surface. We use a rectangular Cartesian coordinate system in which the origin is taken

at the ’edge’ where the wavemaker meets the free surface and y-axis is taken vertically downwards
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so that y = 0, £ > 0 is the undisturbed free surface and ¢ = 0 is the wavemaker. In the undisturbed
state the fluid occupies the region z >0 and 0 <y < h, h being the depth of the fluid which is
assumed to inviscid and incompressible. The motion in the fluid is generated by forced harmonic
oscillation of the wavemaker along the horizontal direction which is switched on at ¢t = 0 so that the

horizontal velocity of the wavemaker is given by
Uly,t) = Uy(y)e " H(2)

where u;(y) is an arbitrary function of y,o is the frequency and H(t) is the Heaviside function.
Since the motion starts from rest, it is irrotational and can be described by a potential function
o(z,y,t) which satisfies the following initial value problem described by
V2%=0 in0<z<oo, 0<y<ht>0, (2.1)
with the bottom condition
%5:0 ony=h,t>0, (22)

The linearized dynamic and kinematic conditions are

9p _0n
dy ot }on y=0,t>0 (2.3)

pgn — ppy—Tngr =0

where 1 = 1(z,t) is the free surface depression, g is the gravity and T'is the co-efficient of surface

tension, the wavemaker condition
%‘zﬂ = U@y t)=Uy(y)e ™ H(t) onz=0,t>0, (24)
the initial conditions
p=n=0att=0, (2.5)
and also, the edge condition prescribing the free surface slope at the wavemaker as
oy = A1) = M H(t) (26)
where A, is a known constant. Note that ¢, is discontinuous at the edge since
Pey(0,0+,8) = Ul(0)e ™" H{(t)

so that ¢(z,y,t) is weakly singular at the edge (cf. Rhodes-Robinson [2]).

Here we assume that ¢ and 7 are generalized functions of z in the sense of Lighthill [5] so that
their Fourier cosine transforms exist with respect to z.
3. SOLUTION OF THE PROBLEM.

Introducing the Fourier cosine transform with respect to z and Laplace transform with respect

totas

o o]
F(k,y,s) = \Jg J coskx {T e 5 F(z,y, t)dt}dz

o o
where the subscript ¢ and bar refer to the Fourier cosine transform respectively, (2.1) to (2.6) give

2 -
(g_y2¢c_k2¢c=\J%U’ (3'1)
Q-¢c=00ny=h,s>0, (3:2)

Oy
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aiﬂ_oc:sﬁc’ } 33)
- ony=0,s>0 33
Pc= s(l +Mk)7lc+7f M/\g

where M = T'/pg. Solutions for 7, and @, are glven by

h
1___ s s coshk (h —¢)
\J_ 1+Mk2( a2+32) 21 l bk V(& 9)dE, (34)

Mg coshk (h —y)
(a? + s%) coshkh

k~1 sinhk (y — £)U (€, 2)dé +

[FE
Sl
S
I
Q2

9(1 +M k2) coshky [ coshk (h—¢§)
U(¢,s)d
(o + s2) coshkh I coshkh (&,8)d¢

_sinhky T coshk (k=€) o

k coshkh (€ s)d¢ (3.5)

where
a? = gk(1 + Mk?) tanhkh . (3.6)
The inverse Laplace and Fourier cosine transforms together with convolution theorem for
Laplace transform employed to (3.4), (3.5) after using the form of U(y,t) and A(t) from (2.4) and
(2.6) respectively, give rise to

o0

M\ .
. 1 2 —iot
Zn(z,t) = | coskx 5 (1—e*7")dk
< l 1+ Mk

o o] .

M in ot +i0 cos at — ige” 't
+ k L _ B(k) (&322 a dk , 37
[ cosr (A= B0 o ¢ ) (1)

T MM\ g coshk (h—y it
%g:(:c, yt) = J coskx la coshkl(l ) (a cos at — ae 10 sin at) B(k)dk

° 02 — 0
_ J coskx _S“‘%Y_ =it (k) + j coskx y(k,y)e~ "t dk (38)
where ? °
Uy(€) cosbk (h—§)
Blk) = j Sl e
and

y
10k,y) = [k~ sinkk (y — U ()d¢

4. ASYMPTOTIC EVALUATION OF %’REE SURFACE DEPRESSION.
We are interested to find the form of the free surface depression 7(z,t) for large values of x and
t. We note

n=I+J

where

[o¢] o0
_2[i_ M\ 2 —iot; | _MX a2 __aB(k)
I—”I”1+Mk2 coskxdk —F [ ¢ z[1+Mk‘2 g Sl g 1 L

o

—0

o0
_2 MAI a sin at +w cos at
J=2 l coskx [m B(k)]( e L (4.2)
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Now (4.1) and (4.2) can be rewritten as follows

'] .
I=%eiot b)) In+%1;,

n
9 4
J=TZ Jn
n=1
where

T B8k ;
Il2=i%[a a(e'kz-{»e_'kz)dk,

Lo = 1°° M,\l eikz_l_c—ikz
3'4__z11+Mk2 ato ’

P M i(at + kz)
Jia=—% I[ : —B(k):le - dk ,

a+o

. P M i(at + kz)
J34=% J[ . —ﬂ(k)]e a=o— dk
o

The main contribution to the asymptotic values of the above integrals for large z and ¢ comes from
the poles and stationary points of the integrands. The contributions to the integrals from poles
represent steady state component while those from stationary points represent transient component.

Now the integrals, I1,1,,J3,J4 contain a pole at k = k, where k, is the unique positive real roof of

the equation
{gk(l + M#k?) tanhkh }1/2 =0 (4.3)
Again the integrals J,,J4 contain the stationary points which are real positive zeros of the equation
o'(k) =% . (44)

Now o'(0) = (gh)l/2 while a’(k) — + oo as k — oo, also a'(k) is positive for large k. Hence o/(k) has
a finite number of local maxima and minima in the range [0,00). In particular, for M Jh% = 075 it
is observed that o/(k) has one maximum and one minimum in [0,00). Now if the value of z/t is less
than the global minimum of a'(k) then there is no root of a'(k) = % in the range [0,00) so that there
does not exist any transient part of free surface depression whereas for z/t greater than the global
minimum of a’(k) there exists a finite number of stationary points. It may be noted that in the
absence of surface tension, a’(O):(gh)l/ 2 a'(k) = 0 as k — oo and a”(k)>0 for k>0, so that
o/(k) = z/t has a unique positive root if z/t < (gh)l/2.

Now I can be evaluated as i

Iy=Z M2\ M

so that

Iz—0 as T — 00 .

The contributions due to the poles of the integrals I1,1,,J3,J4 can be evaluated as given in [3,4] for

large z and ¢ as,
—ikyz

I ME - Bk, €5 —e —iot 45
polar ~ = B(k,) ST (A (4.5)
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eilco: + e—ikoz

T polar ™ {ME - ﬂ(ko)} BT (A e~iot (4.6)

A
1+ Mk2
Employing the stationary phase method we calculate the transient part of J as

where E = and o’(k,) is the derivative of a at k = k,.

—1— [ M)
J, o~ i L 2 k«}
tr ;’\%ta ;) {1+Mk§ Ak;)

%)

—i{a(k )t —k.z—x/4) —i{a(k;)t —k .z +n/4}
e FIa e Fiol
a(k;)—o a(k;)+o

where k j’s are finite and are real positive roots of (4.4), if they exist. We write

N="1s+ M
where 7, is the steady state component while 7, is the transient component of 7. The steady state

component 7, comes from the contributions from the poles of the integrands I and J and is given

by
(ilkoz — )

Tt~ oy (ME =Bk} - (48)

This coincides with the steady state result of Rhodes Robinson [2] as £ — oo obtained by employing
Green’s integral theorem in the fluid region to the velocity potential and a suitable chosen Green’s
function assuming the time dependence to be harmonic throughout. The transient component 7, is
given by (4.7).

In the absence of surface tension these results coincide with those given by Faltas [3] with

suitable modifications.
5. ASYMPTOTIC SOLUTION IN THE CASE OF INFINITE DEPTH.
In the case of infinitely deep water, i.e., when A — oo, the functions (k) and a(k) reduce to

Bolk) = [ Uy(©)e™Hde ,ag(k) = {gk(1 + MR2)}/? (51)

Thus the pole is the positive zero of

k(1 + Mk?) -9 =0 (5.2)
and stationary points are the zeros of
da
d—ko' = % . (5-3)

Now aj(k) becomes positive infinity at k =0 and decreases sharply in the right neighbourhood of
the origin. As k becomes large it becomes positive infinity again. However aj(k) remains positive
for k> 0. Hence there exists a global minimum of a(k) which is positive. If z/t is less than this
minimum value, then there is no real positive root of (5.3). However, if z/t is greater than this
value, then there exists almost four real positive roots.

Again we note that if M is small so that its square and higher order can be neglected, then

(5.2) has the real positive root given by

2 2
ko:%{1—M(07)2},
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and (5.3) has the real positive root given by
t2 t2
ky = L5 41+ 5M (2552
1742 { (41'2)

In this case the asymptotic form of n(z,t) can be obtained as

N =g+ Mgy
where
2% ei(lco:c —ot)
~& L IME -8,k 54
Nst™ g 1+ 3Mk§) Bolko) (54)
and

i 1 M), _
Tr ™t \ortall(ky) {1+Mk'f’ g "(kl)}

(5.5)

{e—i{ao(lcl)t —kjz—x/4) ~ e—i{ao(lcl)t ~kjz+ 7r/4}}
ao(ky) —o aoky) +o

As before, in the absence of surface tension, these coincide with the results obtained by Faltas [3].
6. CONCLUSION.

In the presence of surface tension the steady state component 7y, of the free surface depression
for fluid of both finite and infinite depth given by (4.8) and (5.4) respectively, represents outgoing
waves at large distances from the wavemaker and coincides with the result given by Rhodes-
Robinson [2], while the transient component 5, exists if the global minimum of the functions o'(k)
or aj(k) for deep fluid are less than z/t. However, the transient component if exists, will consist of
a finite number of terms (at most four in the case of fluid of infinite depth). It may be noted that
in the absence of surface tension, there exists only one positive real root of o'(k) = z/t( < (gh)ll 2) or
aj(k) = z/t for deep fluid) and hence only one term exists for the transient component of the free
surface depression in each case. However, in the presence of surface tension there may may not be
any transient component of 7.

Thus due to the presence of surface tension the qualitative nature of the transient component
of the free surface depression changes considerably in comparison to the no surface tension case.
ACKNOWLEDGEMENT. This work is partially supported by the Third World Academy of
Sciences, ICTP, Trieste, through a research scheme TWAS RG NO 274.

REFERENCES
HAVELOCK, T.H., Phil. Mag. 8 (1929) 569.
RHODES-ROBINSON, P.F., Proc. Camb. Phil. Soc. 70 (1971) 323-337.
FALTAS, M.S., Quart. Appl. Math. 3 (1988) 489.
DEBNATH, L. and ROSENBLAT, S., Quart. J. Mech. Appl. Math. 22 (1969) 221.
LIGHTHILL, M.J., Fourier Analysis and Generalised Functions (Camb. Univ. Press, 1962).

GUk W N



