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ABSTRACT. In this paper a new duality mapping is defined, and it is our object to show that there is a
similarity among these three types of characterizations of a strictly convex 2-normed space. This enables
us to obtain more new results along each of two types of characterizations. We shall also investigate a
strictly 2-convex 2-normed space in terms of the above two different types.
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1. INTRODUCTION.

This article is a continuation of the paper by Lin [11] where we investigated characterizations of
strictly convex and strictly 2-convex 2-normed spaces which were initiated by Diminnie, Gahler and White
[5,6]. The concept of strictly convex 2-normed space is 2-dimensional analogue of that of strictly convex
normed linear space, an important space in functional analysis, and a strictly 2-convex 2-normed space is
its natural generalization. Astrictly convex 2-normed space is strictly 2-convex (Theorem 8 [6] and Theorem
3 [11]). But the converse is not generally true (Example 2 [6]). Note, however, that strict 2-convexity
together with a certain condition is equivalent to strict convexity (Theorem 3 [11]). Most elementary
2-normed spaces originated by Gahler [7] are strictly convex. For example, a 2-normed space of dimension
2, and a 2-inner product space [6]. A strictly convex normed linear space may be characterized in terms
of norms by Giles 8], semi-inner products by Berkson [1}, or duality mappings by Browder [2], Gudder
and Strawther [9] and many others. In this paper a new duality mapping is defined, and it is our object to
show that there is a similarity among these three types of characterizations of a strictly convex 2-normed
space. This enables us to obtain more new results along each of two types of characterizations. We shall
also investigate a strictly 2-convex 2-normed space in terms of the above two different types.

Let X denote a real linear space of dimension greater than one, the following standard definition was
introducedin [7]. If| ., ] is a real function on X x X, then X is called a 2-normed space with a 2-norm | ., |
if the following conditions are satisfied:

@) |x,y| =0if and only if x and y are linearly dependent;

ONEST Il MR
(iii) |lax,y| =|a]|x,y| for any real a; and
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) x+y.z] s|=x2] +|y.2]-
Let X be a 2-normed space throughout this paper. If x,y,z € X are nonzero vectors, we denote by
V(x), V(x,y)and V(x,y,z) the linear manifolds of X generated by x, x and y, x, y and 2, respectively.

2. STRICTLY CONVEX 2-NORMED SPACES.

Recall from [5] that X is said to be strictly convex if ;Ix +y.z =||x,z) =] y,z| =1forz €V(x,y)
implies x = y. In this section we shall give several characterizations of this space in terms of 2-semi-inner
products and duality mappings. But first we need the following lemma which is essential to our consequent
theorems, and which is a portion of Theorem 1 in [11] plus three new statements (8), (9), and (10).

LEMMA 1. The following ten statements are equivalent:
(1) Xis strictly convex;

) %“x +y,z| =|x,z| =] y,z| forz & V(x,y) implies x = y;

3) |x+y.z| =|x.z| +]|y.z| forz & V(x,y) implies x = by for some b > 0;

(C)) %||x +y,z|| =||x,z] =||y,z|| =0forx =y implies z = d(x — y) for some d = 0;

(5) |x +ay,z| =2|x,z|| forz & V(x,y)anda = ||x,z|| /| y,z|| implies x = ay;
6) |x+y.z| =||x.z| +|y.z|| forz & V(x,y) implies | y,z| x = | x,2| y;
(M 3lx+y.z] =|x.z| =|y.z| =0forx =y implies |x,y| =0andz == x,z| (x - yYx,y:

8) |w+x,z]| =|w+y,z| =0forallw EX implies x = y;
9 |x-y.z| =||x.z] -|y,z|| for z & V(x, y) implies x = sy for some s > 0;
10) |lx-y,z| =||x.z| =] y.zl| forz & V(x,y) implies | y,z| x = (| x - y,z| +|y.z|)y.
PROOF. The equivalence of (1) through (7) was proved in (Theorem 1 [11]), and that (10) = (9) is
obvious. That (9) = (3) is clear after we verify the implication (6) = (10).
(6) = (10): We may write the relation in (10) as |x,z| =|x-y,z| +|y,z]. So|y.z| (x-y)=
|| x = y,z|| y by (6) and the result follows.
(2)=>(8): Letw =x andw =y in(8), then%ﬂx +y,z| =|x,z| =|y,z| forz & V(x,y) impliesx = y

by (2).
(8) = (2): Suppose that %Ix +y,z]| =|x,z] =] y,z]| forz@&V(x,y) and x = y, then |w +x,z|| =

[[w +y,z| =0 for somew EX (indeed, w =x and w = y) and x = y, i.e., (8) does not hold.

The concept of 2-semi-inner product defined by Siddiqui and Rizvi [14] is 2-dimensional analogue
of that of the usual semi-inner product in functional analysis. A 2-semi-inner product is a mapping [.,.| .]
on X xX xX into real numbers such that

(i) +x,ylz)=[x,y|2)+[xy |2}
(ii) [ax,y|z)=alx,y|z]for any real a;
(iii) [x,x|z])=0; [x,x|z] =0 if and only if x and z are linearly dependent; and

() |bxy|2)*slxx |2y, | 2)
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Every 2-normed space can be made into a 2-semi-inner product space, and the norm is given by

.yl =0ex | yF (14,
THEOREM 1. The following nine statements are equivalent:
(1) Xis strictly convex (in the sense of Lemma 1);

2 [x,y|zl=|x.z| =|y.z| =1forz & V(x,y) impliesx = y;

() [xy|z]=|x,z|*=|y,z|*forz & V(x,y) implies x = y;

@ [w,x|z]=[w,y|z]forz & V(x,y,w) and all w € X implies x = y;

(5) [ax,y|z]=|x,z|*forz & V(x,y) implies x = ay for somea >0, anda = 1 if | x,z| =|y,z|;

©) [x,y|z]=|x,z| || y,z| forz & V(x,y) implies x = ay for some a > 0;

(M) [x,y|z)=]x.2|*=|y,z|*=0forx = y implies z = d(x — y) for some d = 0;

6) [x,y|z]=|x.z| | y,z| forz & V(x,y) implies | y,z||x = | x,z| y;

(7) [x,y|z]=|x,z|? =] y,z|*=0 forx =y implies | x,y| =0andz = +|x,z|| (x -y} x,y| -

PROOF. The following implications are routine: (2) <= (5) <= (6') = (6) = (3) = (2)and (7') = (7).
So let us prove that (3) = (4) = (1) = (6'), (2)=(1)=(7") and (7) = (1).

(1)=>(6'): Let[x,y |z] = | x,z| | y.z| forz & V(x,y), then(||x,2| +|y.z|)|y,z]| =[x +y,y |z]=

lx+y.zl | y.z] s(lxz]l +]y,z])]y,z],or|x +y,2z| =] x,z| +| y,z|. Hence| y,z| x = | x,z| y by (6)
in Lemma 1.

(3)=>(4): Letw =x in (4), then | x,z|* =[x,y | z] s | x,2| | y.z||, or | x,z| s|y.z|. f w =y, then
| y,z|| s||x,z| similarly. Hence | x,z| =|y,z| andx =y by (3).

(4) = (1): Suppose that X is not strictly convex, i.e., §||x +y,z|| =|x,z|| =|y,z| forz & V(x,y)and

x =y, we have to show that [w,x | z]=[w,y | z] for z & V(x,y,w) and some 2’s implies x = y. Since
|x,z| =] y,z| by the proof (3) = (4) we have [x,y |z]=|x,z| | y,z||. As in the proof (1)=>(6') we
conclude that 3| x +y,z|| =||x,z| =|y,z|.

(2)=(1): Let3]|x +y,z| =|x,z| =] y,z| =1andx =y, then, with the aid of the proof (1) => (6"),

we can show easily that [x,y | z]=|x,z|| =| y,z|| =1 impliesx = y.

(1)=(7'): Letx = y and[x,y | z] = || x,z| > = | y,z|| % so[x,y | z] = ||x,z|| |ly,z|, then %"x +y,z| =

|x,z]| =|y.z| by the proof (1) = (6'). Hence | x,z|| =0 and z = =] x,z|| (x — y)/] x,y| by (7) in Lemma
1.

(7) = (1): Suppose by contrapositive that (4) in Lemma 1 does not hold, then by the proof (1) => (6')
it is easily seen that (7) does not hold, and the proof of the theorem is complete.

Motivated by the concepts of bounded linear functionals, and duality mappings on normed linear
spaces [2, 9], bounded linear 2-functionals on 2-normed spaces were introduced by White [15], and
associated duality mappings were defined in [3]. Let M and N be linear manifolds of X, a bounded linear
2-functional is a mapping fon M x N into real numbers such that

D) fx+x'y+y)=flx,y)+fx,y") + flx',y) + fx', '),
(ii) f(ax,by) = abf(x,y) for any real numbers a and b; and
(iii) |flx,y)| sk|x,z| for somek =0 and all (x,y) EM xN.
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In this case the norm of fis defined by
I =inf{k: |fx,y)| sk|x,y], (,y) EM xN}.

It can be shown that | f(x,y)| <] f] | x,y| and flx,y) =0 if x € V(y) [15]. We need also a result
which is similar to the Hahn-Banach theorem of functional analysis: If x,z € X and x & V(z), then there
exists a bounded linear 2-functional fon X x V(z) such that f{x,z) = | x,z|| and | f] =1 [6, 13, 15].

The following duality mappings defined in [3] are 2-dimensional analogues of usual duality mappings
on a normed linear space [2, 9]:

I(x,z)={fEX: fix,z)=|f] |*.z|} and
Jx,2)={fEX: f,2) = A x.2), IS =] x.2] }
with duality mappings I,J: X xV(z) —» 2x‘, where X, is the space of all bounded linear 2-functionals on

X xV(z).
Evidently the following assertions are true: (a) J (x,z) C I(x,z); (b) I(x,z) = X, ifand only if x € V(z);
(c) 1(x,2) = I(cx,dz) = cdl(x,z) for c,d > 0; (d) 0= f EI(x,z) for x & V(z) implies f EJ(cx,z) for some
¢ >0; and (e) If x & V(2), then there exists an f €J(x,z) with f = 0 (by the Hahn-Banach theorem stated
in above).
Let us define another type of duality mapping as follows:
DEFINITION. Let /'(x,z) be the same as I(x,z) which has the following additional properties:
@) |x.z| | y.z| ifand only if | f| = g forz & V(x,y), fEI(x,z) and g €I(y,z); and
(i) |x.z[| =)x,w| if and only if | f] =||h| forx & V(z,w), fEI(x,z) and h EI(x,w).
It follows easily from (i) that fE€I'(x,z)NI'(y,z) for z € V(x,y) if and only if f(x,z)=
1A x.z]l, f&r,2)=|fl|y,2| and | x,z] =] y,2||. A similar result from (ii) is obtainable.
LEMMA2. If0=f€EI'(x,z), 0= g EI'(y,z) forx = y and z & V(x, y), then
1 (-g)x-y,2)z0;
(2 (f-g)x-y,z)=0ifandonly if f{y,z) = fl | y.zl|, gx.2) =] g| | x.z]| and | x,z|| =] y,z|;
(3) (f-g)x-y,z)=0ifandonlyif f, g EI'(x,z)NI'(y,z).
PROOF. (1) and (2) are straightforward computations and can be found in ([10] p. 379). Indeed,
F-8)x-y2) =N -l gD =zl -1y.zD) +UA N>zl - .21+ [l gl |x.2| -g(x,2)]=0. 3) is

consequences of (2) and a previous remark.
In a similar manner we can prove the following analogous result.

LEMMAZ3. If 0= fE€I'(x,z), 0= g EI'(x,w) forz » w and x & V(z,w), then

1 F-g)x,z-w)=20;

@ (f-8)x,z-w)=0 if and only if flx,w)=|f]lx,w|, gx,2)=|g]|*.2z] and
2] = Ixwl;

() (f-g)x,z-w)=0if and only if f, g EI'(x,z)NI"'(x,w).

Obviously, I' in Lemma 2 and 3 may be replaced by J. Let # denote the inclusion relation C, 2 or

THEOREM 2. Ifx,y = 0, then the following thirteen statements are equivalent:
(1) Xis strictly convex (in the sense of Lemma 1);
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() Ix,z2)NI(y,z) =S forz & V(x,y) implies x = ay for some a > 0;

() I(x,z)#I(y,z) for z & V(x,y) implies x = ay for some a > 0;

@) Jx,z)NJ(y,z) =D forz € V(x,y) impliesx = y;

5) Jx,z)J(y,z)forz & V(x,y) impliesx = y;

©6) I'(x,z)NI'(y,z) = forz & V(x,y) implies x = y;

(7 I'x,z)I'(y,z)forz & V(x,y) implies x = y;

8) If0=fEI'(x,z)and0=g EI'(y,z)forx =y andz & V(x,y), then (f-g)(x - y,z) > 0;

9) Jx,2)NJ(y,z) =D for x = y implies z = d(x — y) for some d = 0;

2) I(x,z)N1 (y,z) = S forz & V(x,y) implies || y,z|| x = | x,z] y;

3) I(x,z)#1(y,z) forz & V(x,y) implies | y,z| x = || x,z]| y;

(8) If0=fEJ(x,z)and 0= g EJ(y,z) forx =y andz & V(x,y), then (f-g)(x - y,z) > 0;

(9) J(x,2)NJ (y,z) = D for x = y implies | x,y| =0and z = +| x,z|| (x - y)|x,y| -

PROOF. The proof of (2') => (2) = (3), (2') => (3') = (3) and (9') = (9) are trivial. Equivalences
of (1), (4), (5), (6) and (7) are clear after we verify the implications (3) = (1) => (2'). (8') is, of course, a
special case of (8).

(1)=>(2'): Let0 = f €I(x,z)NI(y,z) = I(x,z2)NI(| x,z]| y/| y,z|| ,2), then| f] | x + (| x,z]| v/ y,2]| ).
z| = fx + (2l y N y,21).2) =2 fl | %.2) 2| A % + (%2 y A ys202] s or | + (2] y A ys 2] 2| =
2| x,z|| and hence || y,z||x = ||x,z| y by (5) in Lemma 1.

(3) = (1): Without loss of generality we may assume that 0 = f € I(x,z) CI(y,z) in (3). Suppose
that |x +y,z| =|x,z| +| y,z| andx = by for all b > 0, i.e., the negation of (3) in Lemma 1, we have to
show that fE€I(x,z)CI(y,z) implies x =by for all b>0. This follows from the relation
1M 1x +y.2l = fx +y,2) = | fl (lx.2) +1y,2D) 2 [ A | +y,2], or | x + y,2] = | x,2] +]y.2].-

6)=(8): Let 0=fEI'(x,z), 0g El'(y,z), x =y, z ¢ V(x,y) and (f-g)(x - y,2) =0, then
fEI'(x,z)NI'(y,z) by Lemma 2, and x = y. Thus (6) does not hold.

@®)=(6): If fel'(x,z)NI'(y,z) and if x =y, then 0=(f-f)(x —y,z)>0 by (8) yielding a
contradiction.

(1)=>(9): Forx = y let0 = f EJ(x,z)NJ (y,2), then | x,z|| =| y,z|| =| f]| = 0. It follows easily that
%ﬂx +y,z| =||x,z|| =| y,z| =0. Hence | x,y| =0andz = +|x,z| (x - y)j}x,y| by (7) in Lemma 1.

(9) => (1): Consider the negation of (4) in Lemma 1, i.e., %llx +y,z| =|x,z|| =|y,z| =0, x =y and

z #d(x - y)for alld = 0, then as in the proof (1) = (9') we can easily conclude that (9) does not hold.
REMARKS. (a) ThatJ(x,z)NJ(y,z) =D in (9) and (9') above may be replaced, of course, by
J(x,z}#J(y,z) without any other change in the statements; (b) J in (9) and (9') may be replaced by I' if
| x,2|| or| y,z|| =0 in addition to the conditions; (c) Though (2) appeared in ({3] Theorem 1), our proof is
direct and much simpler. (4) is in ([3] Corollary 3). (8) was discussed in ([10] Theorem 2.5) with a different
type of duality mapping; (d) Note that a duality mapping which satisfies the statement (8) is said to be
strictly monotone [10] (cf. [2, 9]). In other words, X is strictly convex if and only if I' or J is strictly

monotone.
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3. STRICTLY 2-CONVEX 2-NORMED SPACES.
According to [6] X is said to be strictly 2-convex if |x +z,y +z||3 =|x,y|| =|y,z] =]z.x|| =1
implies z =x +y. We now turn to the investigation of this space in terms of 2-semi-inner products and
duality mappings. To this end we require first the next result which is a portion of Theorem 2 in [11].
LEMMA 4. The following four statements are equivalent:
(1) Xis strictly 2-convex;
@ lx+zy+zl =lxyl +1y.zl +|z.x] for|x,y] 1y.z] |z,x] = Oimpliesz = bx +cy forsome
b,c >0;

(3) |bx +z,cy +z| =3|bx,z|| for |x,y| | y.z|| | 2,x|| =0 implies z = bx +cy, where b = | y,z]|/
lx,yll and ¢ = | x,z| ] x,y]-

@ |x+z,y+z| =|xy| +|y.z| +|z,x|| for |x,y| ||y.z| | z,x| =0 implies z = bx + cy, where
b and c are as in (3).

In order to be able to prove the next theorem we shall use one of the basic properties of a 2-norm that
| ax +by,y| =|a|||x,y| for any real numbers a and b [7].

THEOREM 3. The following five statements are equivalent:

(1) Xis strictly 2-convex (in the sense of Lemma 4);

@ [xy |y +z1=(xyl +IxzDly.2] forl .yl |y.2] |zx] = 0impliesz = bx +cy for some

b,c >0;

3) %[-—x,y |y +z]=|x,y|*=|y.z|* =] 2z,x|* =0 impliesz = x + y;

@ sl-xyly+zl=|xyl =|y.z] =|z.x] =1 impliesz =x +y;

@) [y |y +2]1=(xy] +|z.x|)|y.z| for |x,y| |y.z| || z,x| =O implies z = bx + cy, where

b=1y.zlx.y] ande =[x,z fx.y].

PROOF. The following implications are trivial: (2') = (2) = (3) = (4).

WM=Q@)%: I [=y|y+z]=(xy] +IxzD]y.z|, then (x,y] +|y.z| +|z.xD)]y.z| -
y-xyly+zlsly-xy+zlly.zl =y +2) -G +2)y +2] | y,2| =|x+z.y +z| | y.2l s(|x,y] +
ly.z] +lz.x|)|y.z|,or|x +z,y +z|| =|x,y| +]*,2| +| y,2| and the result follows by (4) in Lemma
4.

@=Q): I|x+z,y+z|B=|x,y| =|y.z] =]|z,x| =1 and z =x +y, we have to show that
%[—x,y |y +z]1=|x,y|| =||y.z| =||z,x|| =1implies z = x +y. But this is clear from the proof in above.

THEOREM 4. In the following let I(u,v), J(u,v) and I'(u,v) be defined as in the previous section,
and let u & V(v), then the following seven statements are equivalent:

(1) Xis strictly 2-convex (in the sense of Lemma 4);

() Ix,y)NI(x,z)NI(z,y) = & implies z = bx + cy for some b,c > 0;

3) Jx,y)NJ(x,z)NJ(z,y) = D impliesz =x +y;

@) I'x,y)NI'(x,2)NI'(z,y) = D impliesz =x +y;

(5) HO0=f€EIl'(x,y), 0=gEI'(x,z)and 0 =h EI'(z,y) for z »x +y, then (f-h)(x —2,y) and

(F-8)x,y-2)>0;
2) I(x,y)NI(x,z)NI(z,y) = & implies z = bx +cy for b = || y,z| A x,y| and ¢ = || x,z| | x,y|;
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(5) f0=fei(x,y), 02g€EJ(x,z) and 0=k €EJ(z,y) for z =x +y, then (f-h)(x -z,y) and

f-g)x,y-2z)>0.

PROOF. That (2') = (2) is trivial. (5') is a special case of (5), and it is clear that we need to verify
that (2) = (1) = (2') and (4) <> (5) only.

(1)=>(2'): Let 0= f€E€I(x,y)NI(x,z)NI(z,y)=I(bx,cy)NI(bx,z)NI(z,cy), where b =| y,z|/
Ix.y| and ¢ =|x,z|/Ax,y|, then |f] | bx +z,cy +z| <|f] (bx,cy| +|bx,z| +|z,cy]) = fbx +2,
cy +z),s||f] | bx +z,cy +z||, or |bx +z,cy +z|| =| bx,cy| +| bx,z| +|z,cy| =3|bx,z|, and |x,y|
|l y,z| | z,x| = 0by assumption. Soz =bx +cy by (3) in Lemma 4.

(2)=>(1): Consider the negation of (2) in Lemma 4, i.e,, |x +z,y +z|| =|x,y| +|x.z| +|zy],
|yl |y.zll |z,x] =0 and z =bx +cy for all b,c >0, we have to show that 0= f€EI(x,y)N
I(x,2)NI(z,y) implies z = bx +cy for all b,c >0. This follows from the relation || f] |x +z,y +z| =
fe+z,y +2)=|fl (xx] +1x2] +lz.yD) 2| |2 +2,y +2], or |x+z,y +z| =|xy] +]x.2] +
Izl

4)=>(5): Let 0=f€EI'(x,y), 0g€EIl'(x,2), 0=h EI'(2z,y), (f-h)(x-2,y)=0=(f-8)
(x,y —z)andz = x +y, i.e., the negation of (5), then fEI'(x,y)NI'(z,y)NI'(x,z) by Lemma 2 and 3, and
z #x +y. Thus (4) does not hold.

S)=@): Iffel'(x,y)NI'(x,z)NI'(z,y) and suppose thatz = x + y, then 0 = (f - f)(x —2,y) >0
by (5) yielding a contradiction, and the proof of the theorem is complete.

REMARK. (2) in Theorem 4 appeared in ([4] Theorem 1.2) except that the domain of the duality
mapping I has been changed. The change is unnecessary.
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