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ABSTRACT. In this paper a new duality mapping is defined, and it is our object to show that there is a

similarity among these three types of characterizations of a strictly convex 2-normed space. This enables

us to obtain more new results along each of two types of characterizations. We shall also investigate a

strictly 2-convex 2-normed space in terms of the above two different types.

KEYWORDSAND PHRASES: Linear 2-normed space, strict convexity, strict 2-convexity, 2-semi-inner

product, bounded linear 2-functional, duality mapping.
1991 AMS SUBJECT CLASSIFICATION CODES. 46B05, 46B10, 46C05.

1. INTRODUCTION.
This article is a continuation of the paper by Lin [11] where we investigated characterizations of

strictly convex and strictly 2-convex 2-normed spaces which were initiated by Diminnie, Gihler and White

[5,6]. The concept of strictly convex 2-normed space is 2-dimensional analogue of that of strictly convex

normed linear space, an important space in functional analysis, and a strictly 2-convex 2-normed space is

its natural generalization. A strictly convex 2-normed space is strictly 2-convex (Theorem 8 [6] and Theorem
3 [11]). But the converse is not generally true (Example 2 [6]). Note, however, that strict 2-convexity

together with a certain condition is equivalent to strict convexity (Theorem 3 [11]). Most elementary

2-normed spaces originated by Giihler [7] are strictly convex. For example, a 2-normed space of dimension

2, and a 2-inner product space [6]. A strictly convex normed linear space may be characterized in terms

of norms by Giles [8], semi-inner products by Berkson [1], or duality mappings by Browder [2], Gudder
and Strawther [9] and many others. In this paper a new duality mapping is defined, and it is our object to

show that there is a similarity among these three types of characterizations of a strictly convex 2-normed

space. This enables us to obtain more new results along each of two types of characterizations. We shall

also investigate a strictly 2-convex 2-normed space in terms of the above two different types.

LetX denote a real linear space of dimension greater than one, the following standard definition was

introduced in [7]. If II., .ll is a real function onX X, thenXis called a 2-normed space with a 2-norm II., .11
if the following conditions are satisfied:

(i) x, y 0 if and only if x and y are linearly dependent;

(ii) x,y Y

(iii) Ilax,yll =lal tlx,Yll for any real a; and
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Let X be a 2-normed space throughout this paper. If x,y,zX are nonzero vectors, we denote by

V(x), V(x,y) and V(x, y,z) the linear manifolds ofXgenerated by x, x and y, x, y and z, respectively.

STRICTLY CONVEX 2-NORMED SPACES.

Recall from [5] thatXis said to be strictly convex if ]x + y,z -IIx,zll -II y,zll x for z V(x,y)

implies x y. In this section we shall give several characterizations of this space in terms of 2-semi-inner

products and duality mappings. But first we need the following lemma which is essential to our consequent

theorems, and which is a portion of Theorem 1 in 11] plus three new statements (8), (9), and (10).
LEMMA 1. The following ten statements are equivalent:

(1) X is strictly convex;

(2) llx + y,zll -IIx.zli -Ily,zll for z V(x,y)impliesx y;

(3) IIx + y,zll -IIx,zll +lly,zll forz V(x,y)impliesx -by for some b >0;

(4) llx + y,zll -Ilx,zll -II y,zll - 0 forx. y impliesz -d(x -y) for some d 0;

(5) x +ay,zll -2llx,zll forz V(x,y)anda -x,zll/l[y,z impliesx -ay;

(6) I1: + y,ll -Iix, + Ily,zll for z V(x,y) implies Ily,llx -IIx,zlly;

(7) llx + y,zll -ilx,ll -II y,zll - 0 for x y impli x,yll. o andz llx,zll (x y)lx,yll"

(8) I1" +x.zll -I1" + y,ll "0 for all wX implies x y;

(9) IIx-y,zll -illx,zll-Ily,zlll forz V(x,y)impliesx-sy for some s >0;

(10) IIx -y,zll --I IIx,z8 -Sy,zll for z V(x,y)implies Ily,zllx -(x -y.zll + Ily,zll )y-

PROOF’. The equivalence of (1) through (7) was proved in (Theorem 1 [liD, and that (10) , (9) is

obvious. That (9) : (3) is clear after we verify the implication (6) ,, (10).

(6)=:,(10): We may write the relation in (10) as Ilx,z -x-y,zll +lly.z. so Ily.zll (x-y)-
x r,zll y by (6) a.d the result follows.

(2) =,, (8): Let w x and w y in (8), then]x + y,zll x,z y,z forz V(x,y) impliesx y

by (2).

(8) , (2): Suppose that ][x + y,zll- Ilx,z -Hy,z for z V(x,y) and x ,, y, then Ilw +x,zll-

+ y,zll ,’ 0 for some w EX (indeed, w x and w y) and x , y, i.e., (8) does not hold.

The concept of 2-semi-inner product defined by Siddiqui and Rizvi [14] is 2-dimensional analogue

of that of the usual semi-inner product in functional analysis. A 2-semi-inner product is a mapping [.,. .]
onXXX into real numbers such that

(i) [x +x’,y Iz]-[x,y Iz]+[x’,y Iz];,
(ii) [ax,y z] a[x,y ]z] for any real a;

(iii) [x,x z] 0; [x,x ]z] 0 if and only ifx and z arc linearly dependent; and

(iv) I[x,y



STRICTLY CONVEX AND STRICTLY 2-CONVEX 2-NORMED SPACES 419

Every 2-nor,med space can be made into a 2-semi-inner product space, and the norm is given by

Ilx,yll --[x,x [yf [14].
THEOREM 1. The following nine statements are equivalent:

(1) X is strictly convex (in the sense of Lemma 1);
(2) [x,y Iz]--IIx,zll Ily,zll foz V(x,y)impliesx-y;

(3) Ix, y z] x,zll y,zll for z q e(x,y) implies x y;

(4) [w,x Iz]--[w,y [z]forz V(x,y,w) andall wX impliesx -y;

(5) [o.x,y Iz3--IIx,zll eorz V(x,y)impliesx-ay for some a >0, anda l ifllx,zll Ily,zll;

(6) Ix, y [z x.zll y.zll for z V(x,y) implies x ay for some a . 0;

(7) [x,y Iz]-- IIx,zll=- Ily,zll =,,o eorx ,, y impliesz -d(x- y) for somed ,,0;

(63 [x,y Iz]--IIx,zll Ily,zll forz V(x,y)implies Ily,zllx- IIx,zlly;

(7’) [x,y Iz]-Ilx,zll - y,zll ,, 0 eorx ,, y implies IIx, yll ," 0 anz +/-llx,zll (x y)/llx, yll

PROOF. The following implications are routine: (2) = (5) = (6’) , (6) = (3) =,, (2)and (7’) = (7).

So let us prove that (3) = (4) =, (1) = (6’), (2) = (1) , (7’) and (7) , (1).

(1) = (6’): Let Ix, y [z] x,zll Y,Z[I for z V(x,y), then (11 x.z]l / y,zll )11 y,zl[ Ix / y,y [z]
x / y,zl[ y,zl[ (1[ x,zll + y,zll )11 y,zll, or x + y,zll -II x,zll / y,zl[ Hence y,zl[ x -[1 x,zll y by (6)

in Lemma 1.

(3) = (4): Let w x in (4), then IIx,zll - [x,y z]-: IIx,zll y,zll, or Ilx,zll " y,zll. f y, then

Ily,zll IIx,zll similarly. Hence Ilx,zll -IlY,zll andx -y by (3).

(4) =,, (1): Suppose thatXis not strictly convex, i.e., llx / y,zll -IIx,zll -II y,zll forz V(x,y)and

x y, we have to show that [w,x [z]-[w,y [z] for z V(x,y,w) and some z’s implies x y. Since

IIx,ll --Ily,zll by the proof (3)=,, (4) we have [x,y [z]-Ilx,zll Ily,zll. as in the proof (1) =,, (6’) we
conclude that llx + y,zll --Ilx,zll -II y,zll.

(2) = (1): Let llx / y.zll -IIx.zll -II y.zll 1 anOx ,, y. then. with the aid of the proof (1) = (6’),

we can show easily that [x,y z]- IIx.zll -II y.zll 1 implies x. y.

(1) = (7’): Letx .,y and [x,y Iz]-IIx.zll-Ily.zll.o[x.y Iz]-IIx,zll Ily,zll, t1/211x /y,zll-

x, --II y,zll by the prooe () (6’). Hence x,zll ,, 0 an z +/-ll x,zll (x y)l x,y by (7) in Lemma
1.

(7) = (1): Suppose by contrapositive that (4) in Lemma 1 does not hold, then by the proof (1) = (6’)

it is easily seen that (7) does not hold, and the proof of the theorem is complete.
Motivated by the concepts of bounded linear functionals, and duality mappings on normed linear

spaces [2, 9], bounded linear 2-functionals on 2-normed spaces were introduced by White [15], and

associated duality mappings were defined in [3]. LetM and Nbe linear manifolds ofX, a bounded linear

2-functional is a mapping/’onM N into real numbers such that

(i) f(x +x’,y +y’)-f(x,y)+f(x,y’)+[(x’,y)+[(x’,y’);

(ii) f(ax, by) abf(x, y) for any real numbers a and b; and

(iii) I/(x,y)[ :llx,zll forsomek.Oandall(x,y)M N.
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In this case the norm of]’is defined by

IIl -f{: I’(/,y)l kllx,Yll, (,,,y)M,,N}.

It can be shown that [f(x,y)l II/ll II,yll nd fx,y)-0 ifx tE V(y)[15]. We need also a result

which is similar to the Hahn-Banach theorem of functional analysis: If x,z _X and x q V(z), then there

exists a bounded linear 2-functional fonX x V(z) such that f(x,z)-II,ll and II/11 [6, ,
The following duality mappings defined in [3] arc 2-dimensional analogues of usual duality mappings

on a normcd linear space [2, 9]:

<,)- {fx::/,z)- /11 II,zll } and

J(x,z)- {fxf: .x,z). II/11 II,zll, I11 -IIx,zll }

with duality mappings l,J" X V(z) 2x, whereX is the space of all bounded linear 2-funetionals on

X x V(z).

Evidently the following assertions are true: (a) J(x,z) C_ l(x,z); (b) l(x,z) X: ifand only ifx IE V(z );

(c) !(x,z) l(cx, dz) cdl(x,z) for c,d > 0; (d) 0 , fE l(x,z) for x q V(z) impliesf J(cx,z) for some

c > 0; and (e) Ifx V(z), then there exists an f J(x,z) with f ,, 0 (by the Hahn-Banach theorem stated

in above).
Let us define another type of duality mapping as follows:

DEFINITION. Let l’(x,z) be the same as l(x,z) which has the following additional properties:

(i) IIx,zll y,zll if and only if II/11 I111 for z q V(x,y),/" .l(x,z) and g lO,,z); and

(ii) IIx,zll llx,,ll if and only if ll/l llhll forxqV(z,w), J’.l(x,z)andh l(x,w).

It follows easily from (i) that f l’(x,z) fl’(y,z) for z V(x,y) if and only if .f(x,z)

II/]1 II,zII, ,)-II/1 Ily,zII and IIx,zll -Ily,zll. A similar result from (ii) is obtainable.

LEMMA 2. If O f l’(x,z), O g l’(y,z) for x , y andz V(x,y), then

(1) -g)(x- y,z)aO;

(2) ([-g)(x y,z) 0 if and only iff(y,z) ]fll Ily,zll, g(x,z)- IIg x,z and x,zll -Ily,zll;

(3) (]’-g)(x- y,z)=O if and only if f, g t’(x,z)Ot’O,,z).
PROOF. (1) and (2) are straightforward computations and can be found in ([10] p. 379). Indeed,

q’- g) (x y,z) (11/l gll )(ll x,z y,zll + [11/II y,z9 1’(y,z)] + [11 gl x,zll g(x,z)]
consequences of (2) and a previous remark.

In a similar manner we can prove the following analogous result.

LEMMA 3. If O,, f l’(x,z), O,, g l’(x,w) for z ,w andx V(z,w), then

(1) ff’-e,)(x,z-w)o;

(2) (f-g)(x,z-w)-O if and only if /,,,)-II/ll II,,ll, g(,)-IIgll II,z and

(3) (f-g)(x,z-w)-O if and only if f, g _l’(x,z)f’ll’(x,w).

Obviously, I’ in Lemma 2 and 3 may be replaced by J. Let # denote the inclusion relation _C, 23 or

THEOREM 2. Ifx,y ,, 0, then the following thirteen statements are equivalent:

(1) X is strictly convex (in the sense of Lemma 1);



STRICTLY CONVEX AND STRICTLY 2-CONVEX 2-NORMED SPACES 421

(2) l(x,z)f’ll(y,z)O forz V(x,y) impliesx -ay forsome a >0;

(3) l(x,z)#1(y,z) for z q V(x,y) impliesx -ay for some a > O;

(4) J(x,z)fqJ(y,z) 0 for z q V(x,y) impliesx y;

(5) J(x,z)J(y,z) forz V(x,y)impliesx -y;

(6) l’(x,z)fql’(y,z) for z q V(x,y) impliesx y;

(7) l’(x,z)l’(y,z)forz V(x,y)impliesx -y;

(8) If O ,, f . l’(x,z and O ,, g l’(y,z for x ,, y andz V(x,y ), then (f g (x y,z > O;

(9) J(x,z)NJ(y,z) for x ,, y implies z -d(x -y) for some d ,, O;

(2’) l(x,z)Nl (y,z) , 0 for z V(x,y) implies y,zl[x -Ilx,zlly;

(3’) l(x,z)#lO,,z) for z q g(x,y) implies y,zllx -IIx,zlly;

(8’) If 0 , f _J(x,z) and 0 g J(y,z) for x y andz V(x,y), then (f-g)(x -y,z) > O;

(9’) J(x,z)f3J(y,z) for x , y implies IIx,yll ,’ 0 andz -_+llx,zll (x -y)dlx,yll.
PROOF. The proof of (2’) = (2) = (3), (2’) = (3’) = (3) and (9’) = (9) are trivial. Equivalences

of (1), (4), (5), (6) and (7) are clear after we verify the implications (3) = (1) = (2’). (8’) is, of course, a

special case of (8).
(1) = (2’): Let0 , f .l(x,z)fql(y,z)- l(x,z)Cl(llx,zllydly,zll ,z),then jql IIx / (llx,zllydly,zll),

11 f(x +(llx,zllydly,zll ),z)- 211/111x,zll II/l IIx +(llx,zllyly,zll ),zll, or IIx +(llx,zllydly,zll ),zll
211x,zll and hence IlY,zllx -IIx,zllr by (5)in Lemma 1.

(3) = (1): Without loss of generality we may assume that 0 , f
_

l(x,z)C, l(y,z) in (3). Suppose
that IIx + y,zll -Ilx,z[[ + Ily,zll anx ,, by for a b > 0, i.e., the negation of 0) in Lemma 1, we have to

show that f l(x,z) C_ l(y,z) implies x by for all b > 0. This follows from the relation

I11 IIx + y,zll /(x + y,) -II/1 (llx,zll + y,zll) I]/11 IIx / y,zll, o IIx + r,zll -IIx,zll + r,zll
(6) = (8): Let 0 , f l’(x,z), 0 ,, g . l’(y,z), x ,, y, z q V(x,y) and (1"- g) (x y,z) 0, then

f _l’(x,z)tql’(y,z) by Lemma 2, andx , y. Thus (6) does not hold.

(8)=(6): If f.l’(x,z)tql’(y,z) and if x ,y, then O-(]’-f)(x-y,z)>O by (8) yielding a

contradiction.

(1) = (9’): Forx , y let 0 f
_
J(x,z) fqJ(y,z), then x,zll y,zll II/1 " 0. It follows easily that

llx + y,zll -IIx,zll -Ily,zll ’ 0. Hence IIx, Yll 0 nz -+llx,zll (x -y)/l[x,yll by (7) in Lemma 1.

(9) = (1): Consider the negation of(4)in Lemma 1, i.e., llx + y,zll -IIx,zll -II y,zll ,’ 0, x ,, y and

z , d(x y) for all d , 0, then as in the proof (1) = (9’) we can easily conclude that (9) does not hold.

REMARKS. (a) That J(x,z)tqJ(y,z), in (9) and (9’) above may be replaced, of course, by

J(x,z)#J(y,z) without any other change in the statements; (b)J in (9) and (9’) may be replaced by I’ if

x,zll or y,zll ,’ 0 in addition to the conditions; (c) Though (2) appeared in ([3] Theorem X), or proof is

direct and much simpler. (4) is in ([3] Corollary 3). (8) was discussed in ([ 10] Theorem 2.5) with a different

type of duality mapping; (d) Note that a duality mapping which satisfies the statement (8) is said to be

strictly monotone [10] (el. [2, 9]). In other words, X is strictly convex if and only if I’ or J is strictly

monotone.
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3. STRICTLY 2-CONVEX 2-NORMED SPACES.

According to [6] x is said to be strictly 2-convex if IIx /,y /llr3 -II,yll -Ily,zll -I1,11
implies z x + y. We now turn to the investigation of this space in terms of 2-semi-inner products and

duality mappings. To this end we require first the next result which is a portion of Theorem 2 in [11 ].
LEMMA 4. The following four statements are equivalent:

(1) X is strictly 2-convex;

(2) x /,y + zll x,yll + y,zll + ,xll for x, yl[ Y,Zl] z,xll ," o impliesz bx + cy forsome

b,c > 0;

(3) Ilbx +z,cy +zll -311bx,zll for IIx,Yll IlY,zll IIz,xll ,,0 implies z-bx +cy, where b "llY,zll/
IIx,Yll and c -IIx,zlldlx,Yll.

(4) IIx +z,y +zll IIx,yll +lly,zll +llz,xll for IIx,yll Ily,zll IIz,xll ,,0 implies z-bx +cy, where

b and c are as in (3).
In order to be able to prove the next theorem we shall use one of the basic properties of a 2-norm that

,,x + by,ell [a x,yll for any real numbers a and b [7].
THEOREM 3. The following five statements are equivalent:

(1) X is strictly 2-convex (in the sense of Lemma 4);

(2) [-x,y lY +]-(llx,Yll +llx,zll)llY,zll follx,Yll IlY,zll IIz,xll ,0impliesz-bx +cy forsome

b,c > 0;

(3) [-x,y ly +z]’llx,yll Ily,zll Ilz,x[12"Oimpliesz-x +Y;

(4) [-x,y lY +] IIx,Yll IlY,zll IIz,xll l impliesz x+y;

(2’) [-x,y ly +z]-(llx,yll /llz,xll)lly,zll for IIx, yll Ily,zll IIz,xll 0 implies z-bx +cy, where

b -IlY,zlIdix,yll -IIx,zlldlx,Yll.
PROOF. The following implications are trivial: (2’) = (2) =,, (3) = (4).

<1)<2’): f [-x,y Ir +z]-(llx,yll +llx,ll)lly,zll, then (llx,Yll +llY,zll +llz,xll)llY,zll-
[y -x,y lY +z]- IlY -x,y +zll IlY,zll -II(Y +z)-(x +z),y +zll IlY,zll -IIx +z,y +zll y,zll - (llx,y +

Y,zll + z,xll )11 y,zll, r IIx / z,y / zll -IIx,rll + IIx,zll / y,zll and the result follows by (4)in Lemma
4.

(4)(1): f IIx +z,y +zll/3-11x,yll- Ily,zll-IIz,xll- and z ,,x,+y, we nave to sow that

[-x.y Y + z] -II x,yli y.zll -II z,xll implies z , x + y. But this is clear from the proof in above.

THEOREM 4. In the following let l(u, v), J(u, v) and r(u, v)be defined as in the previous section,

and let u V(v), then the following seven statements are equivalent:

(1) X is strictly 2-convex (in the sense of Lemma 4);
(2) l(x, y) f"ll(x,z) t"ll(z, y) ,, 0 implies z bx + cy for some b, c > 0;

(3) J(x,y)f"lJ(x,z)NJ(z,y),,O impliesz -x +y;

(4) l’(x,y)fql’(x,z)l’(z,y),, impliesz -x +y;

(5) If 0 , ]" _.l’(x,y), 0 ,, g ..l’(x,z) and 0 ,, h _l’(z,y) for z ,, x + y, then (]’-h)(x -z,y) and

(f-g)(x,y -z) > 0;

(2’) l(x,y tql(x,z tql(z,y ,, implies z bx + cy for b -II y.zll/llx.yll ,,nt c -IIx.zlldlx.yll;
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(5’) IfOfJ(x,y), OgJ(x,z) and Oh J(z,y) for z ,x +y, then (f-h)(x-z,y) and

(f -g)(x,y-z)>O.
PROOF. That (2’) =,, (2) is trivial. (5’) is a special ease of (5), and it is clear that we need to verify

that (2) = (1) = (2’) and (4) , (5) only.

(1)=,,(2’): Let O,,.ft(x,y)t(x,z)rt(z,y)-l(bx, cy)Ol(bx,z)t(z, cy), where b-Ily,zll/
IIx,yll and c -IIx,zlllx,yll, thn II/1111bx +z,y +zll 11/11 (llbx,Yll +llbx,zll +llz,cyll)-/t,x +z,

cy +z)," II/111bx +z, cy +zll, or Ilbx +z, cy +zll "llbx, cyll +llbx,zll +llz,cYll -31lbx,zll, and IIx, Yll
y,zll z,xil ,, 0 by assumption. So z bx + cy by (3) in I_emma 4.

(2) = (1): Consider the negation of (2)in Lemma 4, i.e., IIx +z,y +zll IIx,yll + IIx,zll +llz,yll,
IIx,y[I Ily,zllllz,xll o and z ,bx+cy for all b,c>O, we have to show that

l(x,z)nl(z,y) implies z ,,bx +cy for all b,c >0. This follows from the relation II/111x /z,y /zll
f(x +z,y +z)-IIl (llx,yll +llx,zll +llz,yll)ll/l IIx +z,y +zll, or IIx +z,y +zll IIx, yll +llx,zll +

IIz,yll.
(4)=,,(5): Let O,,.fl’(x,y), O,,gl’(x,z), O,,h l’(z,y), (l’-h)(x-z,y)-O-ff-g)

(x, y z) and z x + y, i.e., the negation of (5), thenf l’(x, y CIl’(z, y Nl’(x,z) by Lemma 2 and 3, and

z , x + y. Thus (4) does not hold.

(5) = (4): Iffl’(x,y)f’ll’(x,z)CII’(z,y) and suppose thatz ,,x + y, then 0 (]’-f)(x -z,y) > 0

by (5) yielding a contradiction, and the proof of the theorem is complete.
REMARK. (2) in Theorem 4 appeared in ([4] Theorem 1.2) except that the domain of the duality

mapping I has been changed. The change is unnecessary.

10.

11.

12.

13.

14.

15.
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