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In 1948, Samuel [2] pointed out that the intersection of two group topologies need not be a group
topology. However, a number of properties that hold for a group topology still hold for a

topological space that is an intersection of group topologies. In order to study these properties, we

shall describe a class of topologies that can be placed on a group which we call semicontinuous

topologies. (We point out here that Fuchs [1] calls these spaces semitopological groups).
One important attribute of topological groups is separation. In particular, a topological group

is Hansdorff if and only if the identity is a closed subset. While this is not true for semicontinuous

groups, we shall see that an interesting "echo" of this property is true.

For each group G we have a bijection inv: G-,G defined by inv (x) x-1. Also for any fixed
a E G we have bijections la:G-,G defined by la(x) az and ra:G-G defined by

DEFINITION. A semicontinuous gLq. is a group G and a topology r on G making inv,
and ra continuous for a E G.

Clearly a semicontinuous group is a homogeneous space. Thus a great deal can be determined
by considering a basis for the topology at the identity. In a manner imalogous to that found in the

theory of topological groups, one can demonstrate the following:
PROPOSITION 1. tf (G, r) is a semicontinuous group and Y is a neighborhood base at the

identity, then Y satisfies

(i) If U,V f, then there exists W /Y such that W C U f U.
(ii) If a U and U Y, then there exists V E Y such that Va C U.
(iii) If U Y then there exists V (/Y such that V-1 C U.
(iv) If U Y and x (/G then there exists V (/Y such that zVz-1 C U.

Furthermore, if Y is any collection of subsets of G, each containing the identity, and Y satisfies

(i)-(iv) above, then there exists a unique semicontinuous topology on G for which Y is a

neighborhood base at the identity.
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Any collection of subsets 3. satisfying (i)-(iv) is called a semifundamental system. Let
V I, I) {z[x r + l and r E Q} c_ R and let W be the collection of all translation sets

a + l/" such that 0 E a + V. Finally let 3. be the collection of all finite intersections of elements of

W.
A moment’s reflection shows that 3* is a sernifundamental system that generates a topology r

which is finer than the usual topology on R. The set Q is closed in (R,r). Yet the quotient

topology generated on R/Q by projection from (R, r) is the finite complement topology. Therefore

the separation properties for semicontinuous groups are clearly different from those found in

topological groups.
Another interesting example of a semicontinuous topology can be described as follows; let Bn

be the open ball of radius 1In centered at the origin of the plane, and let

Vn Bn {(x, y) 10 < nl--z < y < nx}. The collection of sets {Vn}n= 2 forms a semifundamental

system for the group (R2, + ). The relative topology on (Q2, +) is an example of a second
countable metric space that cannot be a topological group since no square of an open set can be

placed inside Vn.
Let (G,t) be a semicontinuous group and rn:GxGG the multiplication map. We let q(t)

denote the quotient topology on G generated by rn when the product topology x is placed on

G x G. If N is a normal subgroup of G and (G,t) is a semicontinuous group, we shall denote the

quotient topology on GIN generated by the natural map x:G---}G/N, by r(t).
LEMMA 2. If (G,t) is a semicontinuous group, then both rn and r are open maps and both

GIN and (G,q(t)) are semicontinuous groups.

PROOF. Let U V be a basic open set in x t. Then m-l(m(U x V))--- U (Ugx g-Iv).
gG

Therefore m is an open map. Likewise r-l(r(u))--UN which is open in (G,t) whenever U t.

Thus r is an open map.

Since Ia x id: (G x G, x t)-,(G x G, x t) is continuous and q(t) is a quotient topology,
la:(G,q(t))-(G,q(t)) is continuous. Similar arguments show that the maps ra:(G,q(t))-*(G,q(t))
and inv: (G,q(t))--(G,q(t)) are continuous. The proof that the quotient topology on GIN is

semicontinuous is done in the same fashion.

LEMMA 3. IfScGthen- VS.

PROOF. x VS iff there exists W Y with z WS iff w-lx F S .
THEOREM 4. GIN is Hausdorff iff N V2N.
PROOF. We consider the following commutative diagram:

GxG/NxG/N

We have that {V2JV q3*} is a semifundamental system for q(t) whenever Y is a

semifundamental system for t. The identity element in (G/N,r(q(t))) will be closed if and only if
N V2N. The identity element in (G/N,q(r(t))) will be closed if and only if the diagonal is

closed in GIN x GIN. However (q(t)) q((t)) since the maps are open.

COROLLARY 5. (G, t)is Hausdorff if and only if V2 {e}.
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COROLLARY 6. If (G,t) is a minimal Hausdorff semicontinuous group then (G,t) is

topological group if and only if

We can define an equivalence relation on (G,t) by defining x y if and only if there does not

exist V E Y such that xV fl yV . Let K denote the equivalence class of e under this equivalence
relation. We call K the Hausdorff Ke.rnel of (G, t).

THEOREM 7. K 1 V2 and K is the minimum normal subgroup with the property that

G/K is Hausdorff. V E :t

PROOF. We note by Lemma 3 that ’] V2 is the closure of (} in (G,q(t)). Therefore by an
v6y

argument similar to that for topological groups, 1" V2 is a normal subgroup of G. Since we can

without loss of generality assume that V is symmetric, it is clear the K 1 V2. The proof of

Theorem 4 shows that G/K is Hausdorff if and only if K is closed in (G,q(t)). But K is the

smallest closed normal subgroup in (G,q(t)).

In a like manner we can define an equivalence relation on (G,t) by declaring x y if and only

if there does not exists a continuous function k:G--R with

under this relation will also be a closed normal subgroup that we call the .olnpletely Hausdorff

kernel of (G, t).
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