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ABSTRACT. In this paper we investigate the oscillatory and nonoscillatory behavior of solutions of

certain mixed third and fourth order difference equations. Specific results are also obtained for the constant
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1. INTRODUCTION.
In this paper we study the oscillatory and nonoscillatory behavior of the solutions of certain third and

fourth order difference equations. Until recently, excepting the studies by Cheng [1], Hooker and Patula

[2], and [4, 5, 6, 7], there has not beenmuch research devoted to the oscillation theory ofdifference equations
of order greater than two.

For a sequence U,,, and a fixed real constant a, we define A.U. U. 1-aU.. When a 1 we shall

write AU, instead of AtU,. We can define inductively AU,, A,,(A,-1U,) for k 1. The operator Ao was
introduced by J. Popenda [3] in his study of certain nonlinear second order difference equations.

The objects of this study will be the mixed difference equations

A2(AoU.)+(-lyP.U.-O i- 1,2, (1.1)

and

A3(AoU,)+(-1)P,U,-0 i- 1,2, (1.2)

where P, is a sequence of positive numbers having a positive limit inferior, that is, there is a positive
constant c 0 such thatP, c for all n sufficiently large. We consider only nontrivial solutions. Asolution

is called nonoscillatory if it is eventually Of constant sign (positive or negative) otherwise it is called

oscillatory. The equations (1.1) and (1.2) are called mixed because of the two difference operators A and

A,, appearing in the equations.
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ASYMPTOTIC BEHAVIOR OF NONOSCILLATORY SOLUTIONS.
In this section we study the asymptotic behavior of the nonoscillatory solutions of (1.1) and (1.2).
THEOREM 1. Suppose U,, is a nonoscillatory solution of

x(,%,) +.v. -o

where 0 < a I. Then for a{{ n sufflcicnt{y {argc wc have

sgn U,, sgn A:’U, , sgn AU, sgn A3U,,
and

PROOF.

(2.1)

(2.2)

lira U,, 0. (2.3)

For a 1, Popenda and Schmeidel [4] have recently shown that (2.1) has a solution

satisfying (2.2). A nonoscillatory solution may not exist if 0 < a < 1, but if it does exist we show that it

must satisfy (2.2) and (2.3). As the negative of a solution of equation (1.1) is also a solution of the same

equation, it suffices to prove that an eventually positive solution of (2.1) satisfies (2.2). In this paper, we

will assume that all inequalities about sequences hold for all n sufficiently large. Let U,, > 0 be a nonos-

cillatory solution of (2.1). Set

Z,, -A,,U, -V,,+-aU,,, (2.4)

then by (2.1)

A2Z,, -P,, U, < 0 (2.5)

so A Z,, is (eventually) strictly decreasing. From (2.5) it follows that if A Z,, is eventually negative we must

have Z,, _o% however this is contradictory since Z, U, +, aU, AU, + (1 a )U, --+ -oo implies

AU, -oo, which forces U,, to be eventually negative. We must have

AZ,, > 0 (2.6)

for all large n. Indeed we will show that lira U,, 0.

Writing (2.1) as A2Z,, -P,U,, and summing fromN to m 1, whereN is chosen large enough so that

A Z, > 0 for all n z N, we get

AZ.-AZ,,-- P.u..

The lim infcondition on P. yields

Letting m we see that :U,, < oo and therefore lira U,, 0. Because U,, 0 as n it follows that

Z,, 0 as n . From (2.6), Z,, is increasing, hence Z,, < 0 eventually. It then follows from the inequality

Z,, -AU,, + (1-a)U, < 0 that At], < 0 and from (2.6) AZ,,- A2U,, + (1-a)AU, > 0 and thus A2U,, > 0.

Finally from (2.5), AZ,, A3U,, + (1 a)AU’,, < 0 and we get AaU,, < 0 and the proof is complete.

Our next result though similar to the previous one requires a 1.

TIIEOREM 2. Consider the following equation

Am(AoU,,)-P,,U, -0 (2.7)
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where a > 1. If U,, is a nonoscillatory solution of (2.7) then for all n sufficiently large

sgn U,, sgn AU,, sgn A’U,,,
and

lim lull lim AU,,I lim &:’U,I .
PROOF. Assume without loss of generality that U,, > 0 for all n sufficiently large. Set

Z, -AoU,
then by (2.7)

So A Z,, is increasing. IfA Z,, is eventually positive then as n , Z,, and since Z,, AU,, + (1 a)U,,

and a 1 it follows that AU,, , which in turn implies U,, oo. To see why A:U,, o, note that U,,
implies A:’Z,, oo and A Z,, because of (2.8). But A Z,, A’U,, + (1 -a)AU,, and the result follows.

Now, if A Z,, were eventually negative and increasing then A Z,, would have a limit as n . However

A Z,, having a limit implies that EU,, < and this implies U,, 0. But U,, 0 implies Z,, 0 also and

therefore since Z,, is decreasing to zero, Z,, 0. But Z,, AU,, + (1 -a)U, 0 implies AU,, 0, a eontra-

[liction since U,, 0 and AU,, 0 is inconsistent with U, 0. Hence (2.7) cannot have a nonoscillatory

solution with AZ,A2Z, < 0 for all n sufficiently large.

It should be noted that the condition 0 < a < 1 was crucial in the proof ofTheorem 1. Our next result

requires a 1 and is similar to one obtained in [2] for the equation

a’U. -P./U..-O.
THEOREM 3. Consider the equation

a’(aou.)-e.u. -o (z.9)

where a 1. If U, is a nonoscillatory solution of (2-) then for all n sufficiently large either

sgn U,, sgn &U,, sgn A2U,, sgn A3U,,

sgn U,, sgn A(A,,U,,) , sgn A,,U,, sgn A’(&,,U,, ).

PROOF. We prove the ease for a 1. The proof for a 1 is similar. There is no loss of generality

in assuming U,, is an eventually positive solution of (2.9). Set Z, A,U, U, aU,. Then by (2.9)

A3Z.-V.U. >0. (2.10)

Clearly ,2Z. is increasing. In case A2Z. is eventually positive we will have lira &Z. lira Z , and since

Z,, < U,, it follows that U. . Since P,, c for large n

lim AZ. lim A2Z.
Since Z. AU. + (1 a)U. and a 1 it follows that AU. . Examining AZ. A2U. + (1 a)&U.

we see that A2U. as n . Continuing in this manner we see that (I) holds eventually.

Next we consider the case where AZ. 0 and AZ. < 0. Then lira AZ. exists and summing (2.10)

from N to m 1 yields
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Lettingm oo it then follows that U,, < oo and hence ,,-.(R)lira U,, 0 which implies Z,, 0. Thus if ASZ,, > 0
and A:’Z,, < 0 then eventually we must have

ASZ. >0, &2Z. <0, AZ. >0, (2.11)

because A2Z. < 0 and A Z,, < 0 is inconsistent with Z,, 0, it then follows that either (i) Z,, > 0 or (ii) Z,, < 0
eventually. We will show that (i) is impossible. If (i) held then since Z,, AU,, + (1 a)U,, > 0 it follows

that AU,, > 0, in fact we have that AU,, > k + (a 1)U,, > k for some positive constant k and so U,, oo as

n o,:,. But this implies ASZ,, ---0% so we must have A2Z,, > 0 eventually, contradicting (2.11). So (i)
cannot hold, resulting in (ii) holding eventually.

3. SUFFICIENT CONDITIONS FOR OSCILLATION AND/OR NONOSCILLATION.

THEOREM 4. Every nontrivial bounded solution of

A3(AoU,)+P,U, -0 (3.1)

where a > 1, is oscillatory.

PROOF. Suppose (3.1) has a bounded nonoscillatory solution U,, satisfying U, > 0 for large n. Letting

Zn-AU,-U,/-aU,, we see that Z,, a-aU,,. From (3.1), A3Z,--P,U, <0. Obviously A2Z,, is

decreasing, and if A2Z,, is eventually negative, we see that Z,, oo. This clearly contradicts the boundedness

of U,,. Thus, we consider the case where A2Z,, > 0. In this case lira A2Z,, a: 0. Using the fact P,, is

bounded away from zero for large n, it follows that A Z,, < 0 andZ,, > 0 for large n. Furthermore, lim U, 0,

since A2Z,, implies U,, < oo. Since a > and

Z, AU,, +(1 a)U,, > O,

AU,, > 0 for all n sufficiently large. But this is a contradiction, since U,,AU,, > 0 is incongruent with U,, O.

EXAMPLE. The equation

A(, U.) + U,, -0.

sequence U, -()" as a solution. Hence equation (3.1) may have nonoscillatoryhas the solutions.

Before stating our final results consider the constant coefficient case P,, Q, Q > 0.

Equation (1.1) with P,, Q is

AU. +(-a)AU. +(-IQU.-o
So the characteristic polynomial is

(C,) [(t)-(t- 1) +(1 -a)(t- 1) + (-1)’Q
Similarly, equation (1.2) can be written as

A’U,, + (1 a)ASU,, + (-1)QU,,-0
with characteristic polynomial

(C2) g(t)-(t- 1) + (1 a)(t 1) + (-1)Q

i-- 1,2. (3.2)

i- 1,2.

i- 1,2 (3.3)

i- 1,2.
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The proofs of our final results follow from a careful examination of the characteristic polynomials (C) and

(c).
THEOREM $. Consider (2.4) where 0 < a < I, P, - constant and > a, then all nontrivial

solutions of (2.4) are oscillatory.

EXAMPLE. The general solution of

A2(A,/2U,,) + 6U, -0 (3.4)

U, K(-I) +K2(11/2y’f2sinnH +K3(11/2)’/2cosnO

where O arc tan(yr"fT) it follows from Theorem or from Theorem 5 that all solutions of (3.4) are

oscillatory.

RTHEOREM 6. Consider (2.7) where 0 < a < I, . constant and 0 < a < 1 jR, then all solutions

of (2.7) are nonoscillatory.

THEOREM 7. Consider (2.9) where 0 < a < I, P, constant and > 0, then (2.9) has oscillatory

and nonoscillatory solutions. Moreover, all nonoscillatory solutions are bounded and converge to zero.

Note that whena I, P, constant, equation (2.7) becomes A3U, U, 0. Clearly this equation

has oscillatory solutions for any > 0. Thus, the result ofTheorem 6 depends upon 0 < a < I. Furthermore,

it should be noted that Theorem 7 is interesting because, when a > I and P, is constant (2.7) must have an

unbounded nonoscillatory solution. Clearly the boundedness of the nonoscillatory solutions can be

attributed to the parameter a in the operator Ao.
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