ON A NONLINEAR DEGENERATE EVOLUTION EQUATION WITH STRONG DAMPING

JORGE FERREIRA

IM/UFRJ and Univ. Estadual de Maringá, Paraná and

DUCIVAL CARVALHO PEREIRA UFPA, Belém, Pará

(Received June 26, 1990 and revised form October 12, 1990)

ABSTRACT. In this paper we consider the nonlinear degenerate evolution equation with strong damping,

$$\begin{cases} K(x,t)u_{u} - \Delta u - \Delta u_{t} + F(u) = 0 & \text{in } Q = \Omega \times]0, T[\\ u(x,0) = u_{0}, (Ku')(x,0) = 0 & \text{in } \Omega\\ u(x,t) = 0 & \text{on } \Sigma = \Gamma \times]0, T[\end{cases}$$

where K is a function with $K(x,t) \ge 0$, K(x,0) = 0 and F is a continuous real function satisfying

(**)
$$sF(s) \ge 0$$
, for all $s \in \mathbb{R}$,

 Ω is a bounded domain of \mathbb{R}^n , with smooth boundary Γ . We prove the existence of a global weak solution for (*).

KEY WORDS AND PHRASES. Weak solutions, evolution equation with damping. 1991 AMS SUBJECT CLASSIFICATION CODE. 35 K 22

1. INTRODUCTION.

In this work we study the existence of global weak solutions for the degenerate problem

$$\begin{cases} K(x,t)u'' - \Delta u - \Delta u' + F(u) = 0 \\ u(0) = u_0 \\ (Ku')(0) = 0 \\ u = 0 \end{cases}$$
 in Σ

in the cylinder $Q = \Omega \times]0, T[$ where Ω is a bounded domain in \mathbb{R}^n with smooth boundary, T > 0 is an arbitrary real number, Σ is a lateral boundary of Q, F is a continuous real function such that $sF(s) \ge 0$, for all $s \in \mathbb{R}$, $K : Q \to \mathbb{R}$ is a function such that $K(x,t) \ge 0$, $(x,t) \in Q$, K(x,0) = 0, Δ is the Laplace operator and $u' = \frac{\delta u}{k}$.

Equation (1.1) is a nonlinear perturbation of the wave equation. For n = 1 or n = 2, (1.1) governs the motion of a linear Kelvin solid (a bar if n = 1 and a plate if n = 2) subject to no nonlinear elastic constraints, where K(x,t) is a mass density.

Problem (1.1) with K(x,t) = 1 without the term $-\Delta u'$ was studied by Strauss [1]. He proves the existence of global weak solutions and the asymptotic behavior as t approaches to infinity. The global weak solutions for the equation

$$K_1(x,t)u'' + K_2(x,t)u' - \Delta u + F(u) = 0$$
 (1.2)

with $K_1(x,t) \ge 0$, $K_1(x,0) \ge \alpha > 0$ and $K_2(x,t) \ge \beta > 0$ was studied by Maciel [2].

Problem (1.2) was also studied by Mello [3] for $F \in C^1(\mathbb{R})$, F(0) = 0, $\int_0^t F(\xi)d\xi \ge 0$, F' dominated by $|s|^p$, p > 0, K_2 independent of t non-zero inital data.

In [4] and [5], Larkin studied problem (1.2) with $F(u) = |u|^p u$ and $F(u) = |u'|^p u'$, p > 0, respectively. In both cases the initial data are zero.

Problem (1.1) with K(x,t) = 1 was studied by Ang and Dinh [6] with $F \in C^1(\mathbb{R})$, F(0) = 0 and $F' \ge -C$ with C > 0 "small." They proved the existence of global weak solutions and the asymptotic behavior when t approaches to infinity.

We denote by $(,), |\cdot|, ((,)), |\cdot|$ the inner and norm of $L^2(\Omega)$ and $H_0^1(\Omega)$, respectively, and $a(u, v) = \sum_{i=0}^{n} \int_{0}^{\frac{2u}{4z_i}} \frac{dv}{4z_i} dx$ represents Dirichlet's form in $H_0^1(\Omega)$.

2. ASSUMPTIONS AND MAIN RESULTS.

We consider the following hypothesis:

- (H.1) $F: \mathbb{R} \to \mathbb{R}$ is continuous with $sF(s) \ge 0$, $\forall s \in \mathbb{R}$;
- (H.2) $K \in C^1([0,T]: L^{\infty}(\Omega))$ with $K(x,t) \ge 0, (x,t) \in Q$ and K(x,0) = 0
- (H.3) $\left|\frac{\partial K}{\partial t}\right| \le \delta + C(\delta)K$, $\forall \delta > 0$ where $C(\delta)$ is a positive constant.

Then we have the following result:

THEOREM 1. Under hypothesis (H.1)-(H.3) if $G(s) = \int_0^t F(\xi)d\xi$ and $u_0 \in H_0^1(\Omega)$, $G(u_0) \in L^1(\Omega)$ then there exists a function $u: [0,T] \to L^2(\Omega)$ such that:

$$u \in L^{\infty}(0,T:H_0^1(\Omega)) \tag{2.1}$$

$$u' \in L^{\infty}(0,T:H_0^1(\Omega)) \tag{2.2}$$

$$\sqrt{K(x,t)}u' \in L^{\infty}(0,T:L^{2}(\Omega)) \tag{2.3}$$

$$K'(x,t)u' \in L^2(0,T:H_0^1(\Omega))$$
 (2.4)

$$\frac{d}{dt}(Ku',v) - (K'u',v) + a(u,v) + a(u',v) + (F(u),v) = 0 \text{ in } \mathcal{D}(0,T), \forall v \in H_0^1(\Omega)$$
 (2.5)

$$u(0) = u_0 \tag{2.6}$$

$$(Ku')(0) = 0$$
 (2.7)

We divide the proof in two parts:

i) We consider F Lipschitzian and derivable except on a finite number of points with $sF(s) \ge 0$, $\forall s \in \mathbb{R}$.

ii) We consider F continuous with $F(s) \ge 0$, $\forall s \in \mathbb{R}$ and approximate F by a sequence $(F_{\eta})_{\eta \in \mathbb{N}}$, F_{η} Lipschitzian and derivable except on a finite number of points with $sF_{\eta}(s) \ge 0$, $\forall s \in \mathbb{R}$, $\forall \eta \in \mathbb{N}$, with $F_{\eta} \to F$ uniformly on bounded sets of \mathbb{R} .

2.1 LIPSCHITZIAN CASE

We have the following result:

THEOREM 2. Let $F: \mathbb{R} \to \mathbb{R}$ be such that $sF(s) \ge 0$, Lipschitzian and derivable except on a finite number of points. Let be $u_0 \in H_0^1(\Omega) \cap H^2(\Omega)$ with $G(u_0) \in L^1(\Omega)$, where $G(s) = \int_0^s F(\xi) d\xi$.

Then there exists a unique function $u: Q \rightarrow \mathbb{R}$ satisfying:

$$u \in L^{\infty}(0,T;H_0^1(\Omega)) \tag{2.8}$$

$$u' \in L^{\infty}(0, T; H_0^1(\Omega)) \tag{2.9}$$

$$u'' \in L^2(0, T; H_0^1(\Omega))$$
 (2.10)

$$K(x,t)u'' - \Delta u - \Delta u' + F(u) = 0$$
 in $L^2(0,T;H^{-1}(\Omega))$ (2.11)

$$u(0) = u_0, \qquad u'(0) = 0.$$
 (2.12)

PROOF. Let $(w_{\nu})_{\nu \in \mathbb{N}}$ be a basis of $H_0^1(\Omega) \cap H^2(\Omega)$ and $V_m = [w_1, ..., w_m]$ the subspace generated by the *m* first vectors of $(w_{\nu})_{\nu \in \mathbb{N}}$.

2.1.1 APPROXIMATION PERTURBED PROBLEM

Fix $\varepsilon > 0$ and for each $m \in \mathbb{N}$ consider a function of the form

$$u_{\epsilon m}(t) = \sum_{j=1}^{m} g_{j\epsilon m}(t) w_{j}$$

such that $u_{nm}(t)$ is a solution of the problem:

$$((K + \varepsilon)u_{--}^{"}, w) + a(u_{--}, w) + a(u_{--}, w) + (F(u_{--}), w) = 0, \quad \forall w \in V_{--}$$
(2.13)

$$u_{\text{\tiny LM}}(0) = u_{0_{\text{\tiny MM}}} \rightarrow u_0 \text{ strongly in } H_0^1(\Omega) \cap H^2(\Omega)$$
 (2.14)

$$u'_{--}(0) = 0 (2.15)$$

By Caratheodory's theorem, $u_{em}(t)$ exists on $[0, T_{em}[, T_{em} < T]$. The a priori estimates will allow us to extend $u_{em}(t)$ to whole interval [0, T].

2.1.2 A PRIORI ESTIMATES

I) Consider $w = u'_m(t)$ in (2.13). We obtain

$$\frac{1}{2}\frac{d}{dt}\left[\left(K, u_{em}^{'2}\right) + \varepsilon \left|u_{em}^{'}\right|^{2} + \left\|u_{em}\right\|^{2} + 2\int_{\Omega}G(u_{em})dx\right] + \left\|u_{em}^{'}\right\|^{2} - \frac{1}{2}\left[\frac{\partial K}{\partial t}, u_{em}^{'2}\right]$$

Integrating from 0 to $t \le T_{sm}$ and using (H.3) we get:

$$\begin{split} &(K, u_{\epsilon m}^{'2}) + \varepsilon ||u_{\epsilon m}^{'}|^{2} + ||u_{\epsilon m}||^{2} + 2 \int_{\Omega} G(u_{\epsilon m}) dx + 2 \int_{0}^{t} ||u_{\epsilon m}^{'}||^{2} ds \\ &\leq ||u_{0m}||^{2} + 2 \int_{\Omega} G(u_{0m}) dx + \int_{0}^{t} \left[\delta ||u_{\epsilon m}^{'}||^{2} + C(\delta)(K, u_{\epsilon m}^{'2}) \right] ds \end{split}$$

By (2.14) and because $G(u_0) \in L'(\Omega)$ we have:

$$\int_{\Omega} G(u_{0m}) dx \to \int_{\Omega} G(u_0) dx \tag{2.16}$$

By (2.14)-(2.16) and Gronwall's inequality, it follows that:

$$(K, u_{\epsilon_m}^{'2}) + \varepsilon \big| u_{\epsilon_m}^{'} \big|^2 + \big\| u_{\epsilon_m} \big\|^2 + 2 \int_{\Omega} G(u_{\epsilon_m}) dx + (2 - \tilde{C} \delta) \int_{0}^{t} \big\| u_{\epsilon_m}^{'} \big\|^2 ds \le M$$

where M is a positive constant independent of $\varepsilon, m, t, \tilde{C}$ is a positive constant such that $|v|^2 \le \tilde{C} ||v||^2$ and $\delta < \min \left\{ 2, \frac{2}{\tilde{c}} \right\}$. Thus

$$\left(K^{\frac{1}{2}}u_{nm}\right)$$
 is bounded in $L^{\infty}(0,T;L^{2}(\Omega))$ (2.17)

$$(u_{\scriptscriptstyle EM})$$
 is bounded in $L^{\infty}(0,T;H^1_0(\Omega))$ (2.18)

$$(u'_{tm})$$
 is bounded in $L^{2}(0,T;H_{0}^{1}(\Omega))$ (2.19)

$$(\sqrt{\varepsilon}u'_{EM})$$
 is bounded in $L^{\infty}(0,T;L^{2}(\Omega))$ (2.20)

II) Since F is Lipschitzian and derivable except on a finite number of points of R, we can differentiate with respect to t to obtain

$$\left[\frac{\partial K}{\partial t}u_{\epsilon m}^{"},w\right] + (Ku_{\epsilon m}^{"},w) + \varepsilon(u_{\epsilon m}^{"},w) + a(u_{\epsilon m}^{'},w) + a(u_{\epsilon m}^{'},w) + (F'(u_{\epsilon m})u_{\epsilon m}^{'},w) = 0$$
 (2.21)

Taking $w = u_{\epsilon m}''(t)$ in (2.21), we get

$$\frac{d}{dt}\left[\left(K, u_{em}^{"2}\right) + \varepsilon \left|u_{em}^{"}\right|^{2} + \left\|u_{em}^{'}\right\|^{2}\right] + 2\left\|u_{em}^{"}\right\|^{2} + \left[\frac{\partial K}{\partial t}, u_{em}^{"2}\right] + 2\left(F'(u_{em}, u_{em}^{"}) - 0\right)$$
(2.22)

But

$$2(F'(u_{\epsilon m})u_{\epsilon m}^{'},u_{\epsilon m}^{''}) \le 2|F'(u_{\epsilon m})||u_{\epsilon m}^{''}||u_{\epsilon m}^{'}| \le 2\beta|u_{\epsilon m}^{'}||u_{\epsilon m}^{''}|| (2.23)$$

where β is a positive constant.

Integrating (2.22) from 0 to t and using (2.14)-(2.15), (2.23) and (H.3), it follows that

$$(K, u_{um}^{"2} + \varepsilon | u_{um}^{"}|^{2} + ||u_{um}^{'}||^{2} + (2 - \delta) \int_{0}^{\infty} ||u_{um}^{"}||^{2} ds$$

$$\leq \varepsilon ||u_{um}^{"}(0)||^{2} + C_{1} \int_{0}^{\infty} [||u_{um}^{'}||^{2} + (K, u_{um}^{"2})] ds$$

$$(2.24)$$

where C_1 is a positive constant.

Now, we are going to estimate the term $\varepsilon \mid u_{tm}(0) \mid^2$. Consider t = 0 in (2.13), and $w = u_{tm}(0)$. Then we get

$$\varepsilon |u_{um}''(0)| \le |\Delta u_{0m}| + |F(u_{0m}) \le C$$
 (2.25)

where C is a positive constant independent of ε , m and t.

By (2.24), (2.25) and Gronwall's inequality, there exists a positive constant M_1 , independent of ε , m and t, such that:

$$(K, u_{\epsilon_m}^{"2}) + \varepsilon |u_{\epsilon_m}^{'}|^2 + ||u_{\epsilon_m}^{'}||^2 + (2 - \delta) \int_0^t ||u_{\epsilon_m}^{"}||^2 ds \le M_1$$

So,

$$\left(K^{\frac{1}{2}}u_{lm}^{\prime}\right)$$
 is bounded in $L^{\infty}(0,T;L^{2}(\Omega))$ (2.26)

$$(\sqrt{\varepsilon} u_{\varepsilon m}^{"})$$
 is bounded in $L^{\infty}(0,T;L^{2}(\Omega))$ (2.27)

$$(u'_{sm})$$
 is bounded in $L^{\infty}(0,T;H_0^1(\Omega))$ (2.28)

$$(u_{im})$$
 is bounded in $L^2(0,T;H_0^1(\Omega))$ (2.29)

2.1.3 Limits of the Approximated Solutions

From the estimates (2.17)-(2.20) and (2.26)-(2.29), there exists a subsequence of (u_{tm}) , which we still denote by (u_{tm}) , such that:

$$u_{\varepsilon_m} \to u \quad \text{weakly - star in} \quad L^{\infty}(0, T; H_0^1(\Omega))$$
 (2.30)

$$u'_{em} \rightarrow u'$$
 weakly – star in $L^{\infty}(0, T; H_0^1(\Omega))$ (2.31)

$$u'_{em} \rightarrow u'$$
 weakly in $L^2(0, T; H_0^1(\Omega))$ (2.32)

$$\sqrt{\varepsilon} u_{\varepsilon m}^{"} \to 0$$
 weakly – star in $L^{\infty}(0, T; L^{2}(\Omega))$ (2.33)

$$Ku_{\varepsilon m}^{"} \to Ku^{"}$$
 weakly – star in $L^{\infty}(0,T;L^{2}(\Omega))$ (2.34)

By (2.18), (2.19) and compactness arguments we conclude that there exists a subsequence of $(u_{\epsilon m})$, which we still denote by $(u_{\epsilon m})$, such that:

$$u_{tu} \rightarrow u$$
 strongly in $L^2(0,t;L^2(\Omega)) = L^2(Q)$. (2.35)

Thus,

$$u_{\scriptscriptstyle {\rm EM}}
ightharpoonup u$$
 almost everywhere in Q .

whence, by (H.1) we have

$$F(u_{im}) \to F(u)$$
 almost everywhere in Q (2.36)

Since $K \in C^1([0,T;L^{\infty}(\Omega)))$, using (2.32) we obtain

$$(Ku''_{nm})$$
 is bounded in $L^2(Q)$ (2.37)

Then,

$$Ku_{*m}^{"} \rightarrow Ku^{"}$$
 weakly in $L^{2}(Q)$ (2.38)

Taking $w = u_{em}(t)$ in (2.13), integrating from 0 to t and using (2.18), (2.19) and (2.37), we get

$$\int_{O} F(u_{\varepsilon m}(t)) u_{\varepsilon m}(t) dx dt \le C \tag{2.39}$$

where C is a positive constant.

By (2.36), (2.39) and Strauss's theorem (see Strauss [1]) it follows that

$$F(u_{im}) \to F(u)$$
 weakly in $L^1(Q)$ (2.40)

Multiplying (2.13) by $\theta \in L^2(0, T)$, integrating from 0 to t and taking the limit as $m \to \infty$ and $\epsilon \to 0$, we obtain, by (2.30)-(2.34), (2.38) and (2.40):

$$\left(\int_{0}^{T} Ku'' \theta dt, \omega\right) + \left(\int_{0}^{T} -\Delta u \theta dt, w\right) + \left(\int_{0}^{T} -\Delta u' \theta dt, w\right) + \left(\int_{0}^{T} F(u) \theta dt, w\right) = 0, \quad \forall w \in V_{m}.$$

Since the V_m is dense in $H_0^1(w)$, the above equation is true for all $w \in H_0^1(\Omega)$ and the proof of (2.11) is complete.

The initial conditions (2.12) are obtained from (2.30)-(2.32).

The uniqueness is trivial because F is Lipschitzian.

3. PROOF OF THEOREM 1

We first approximate u_0 by a sequence of bounded functions $(u_{0j})_{j \in \mathbb{N}}$ in $H_0^1(\Omega)$. In fact, let's consider

$$\beta_{j}(s) = \begin{cases} s & \text{if } |s| \le j \\ j & \text{if } s > j \\ -j & \text{if } s < -j \end{cases}$$

it follows by Kinderlher-Stampacchia [8] that $\beta_j(u_0) = u_{0j} \in H_0^1(\Omega)$, $\forall_j \in \mathbb{N}$, $u_{0j} \to u_0$ strongly in $H_0^1(\Omega)$ and $\|u_{0j}\| \le \|u_0\|$.

Let $(F_n)_{n \in \mathbb{N}}$ be a sequence of functions defined by:

$$F_{\eta}(s) = \begin{cases} (-\eta) \left[G\left(s - \frac{1}{\eta}\right) - G(s) \right] & \text{if } -\eta \leq s \leq -\frac{1}{\eta} \\ (\eta) \left[G\left(s + \frac{1}{\eta}\right) - G(s) \right] & \text{if } \frac{1}{\eta} \leq s \leq \eta \\ \\ \text{linear by parts} & \text{on } -\frac{1}{\eta} \leq s \leq \frac{1}{\eta} & \text{with } F_{\eta}(0) = 0 \\ \\ \text{appropriated constants} & \text{for } |s| \geq \eta \end{cases}$$

where

$$G(s) = \int_{-\infty}^{s} F(\xi)d\xi.$$

It follows, by Strauss [1], Cooper-Medeiros [7] that F_{η} is Lipschitzian, for each $\eta \in \mathbb{N}$, $sF_{\eta}(s) \ge 0$ and $F_{\eta} \to F$ uniformly on the bounded sets of R. If we consider $G_{\eta}(s) = \int_{0}^{s} F_{\eta}(\xi) d\xi$ we get, $G_{\eta}(0) = 0$ and $sG_{\eta}(s) \ge 0$, $\forall s \in \mathbb{R}$, $\forall \eta \in \mathbb{N}$.

Let $\phi_{\omega i} \in \mathcal{D}(\Omega)$ such that

$$\phi_{ui} \to u_{0i}$$
 strongly in $H_0^1(\Omega)$ as $\mu \to \infty$ (3.1)

It follows by Theorem 2 that there exists a unique function u_{uin} satisfying the conditions:

$$u_{\min} \in L^{\infty}(0, T; H_0^1(\Omega)) \tag{3.2}$$

$$u_{n,n} \in L^{\infty}(0,T; H_0^1(\Omega)) \tag{3.3}$$

$$u_{uin}^{"} \in L^2(0,T;H_0^1(\Omega))$$
 (3.4)

$$Ku'_{uin} - \Delta u_{uin} - \Delta u'_{uin} + F(u_{uin}) = 0$$
 in $L^2(0, T; H^{-1}(\Omega))$ (3.5)

$$u_{\mu j\eta}(0) - \phi_{\mu j}, \qquad u'_{\mu j\eta}(0) = 0$$
 (3.6)

We now prove that $u_{\mu j \eta}$ converges to u and u is the solution of Theorem 1. Taking the inner product of (3.5) by $u'_{\mu j \eta}$ and integrating from 0 to $t \le T$, we have:

$$(K, u_{\mu j \eta}^{'2}) + \|u_{\mu j \eta}\|^{2} + 2 \int_{\Omega} G_{\eta}(u_{\mu j \eta}) dx + 2 \int_{0}^{t} \|u_{\mu j \eta}^{'}\|^{2} ds$$

$$\leq \|\phi_{\mu j}\|^{2} + 2 \int_{0}^{t} G_{\eta}(\phi_{\mu j}) dx + \int_{0}^{t} [\delta |u_{\mu j \eta}^{'}|^{2} + C(\delta)(K, u_{\mu j \eta}^{'2})] ds . \tag{3.7}$$

Since u_{0j} is bounded in Ω , fixing j, we obtain:

$$F_n(u_{0i}(x)) \to F(u_{0i}(x))$$
 uniformly in Ω as $\eta \to \infty$, (3.8)

$$\int_{\Omega} G_{\eta}(\phi_{\mu j}) dx \to \int_{\Omega} G_{\eta}(u_{0j}) dx \quad \text{if} \quad \mu \to +\infty \,. \tag{3.9}$$

and

$$(G_{\eta}(u_{0j}(x)) \to G(u_{0j}(x))$$
 uniformly in Ω as $\eta \to \infty$. (3.10)

Whence, there exists a subsequence $(G_{\eta j})_{j \in \mathbb{N}}$ of $(G_{\eta})_{\eta \in \mathbb{N}}$, which we still denote by $(G_{j})_{j \in \mathbb{N}}$, such that

$$\int_{\Omega} |G_j(u_{0j}) - G(u_{0j})| dx \to 0 \quad \text{if} \quad j \to \infty.$$
 (3.11)

Moreover, $G(u_{0j}) \to G(u_0)$ a.e. in Ω and $G(u_{0j}) \leq G(u_0)$. Since $G(u_0) \in L^1(\Omega)$, by the Lebesgue's dominated convergence theorem we get

$$\int_{\Omega} |G(u_{0j}) - G(u_0)| dx \to 0 \quad \text{as} \quad j \to \infty,$$
 (3.12)

Thus, by (3.11) and (3.12), it follows that

$$\int_{\Omega} G_j(u_{0j}) dx \to \int_{\Omega} G(u_0) dx \quad \text{as} \quad j \to \infty$$
 (3.13)

By (3.7), (3.9), (3.13) and Gronwall's inequality, we have

$$(K, u_{\mu jj}^{'2}) + \|u_{\mu jj}\|^2 + 2 \int_{\Omega} G_j(u_{\mu jj} dx + (2 - C\delta) \int_0^t \|u_{\mu jj}^{'}\|^2 dx \le C, \qquad (3.14)$$

where C is a positive constant independent of μ , j and t.

Then, there exists a subsequence of $(u_{\mu ij})_{\mu \in \mathbb{N}}$, which we denote by $(u_{\mu i})_{\mu \in \mathbb{N}}$ and functions u_j and u such that

$$\begin{vmatrix} K^{1/2}u'_{\mu j} \to K^{1/2}u'_{j} & \text{weakly - star in} & L^{\infty}(0,T;L^{2}(\Omega)) \\ u_{\mu j} \to u_{j} & \text{weakly - star in} & L^{\infty}(0,T;H^{1}_{0}(\Omega)) \\ u'_{\mu j} \to u'_{j} & \text{weakly in} & L^{2}(0,T;H^{1}_{0}(\Omega)) \end{vmatrix}$$
(3.15)

as $\mu \rightarrow \infty$, and

$$\begin{vmatrix} K^{1/2}u'_j \to K^{1/2}u' & \text{weakly - star in } L^{\infty}(0, t; L^2(\Omega)) \\ u_j \to u & \text{weakly - star } L^2(0, T; H_1^1(\Omega)) \\ u'_j \to u' & \text{weakly in } L^2(0, T; H_0^1(\Omega)) \end{vmatrix}$$
 (3.16)

as $i \to \infty$.

Moreover, by (H.2) and $K^{1/2}u'_{\mu jj} \in L^{\infty}(0,T;L^{2}(\Omega))$ if follows that:

$$Ku'_{ui} \in L^{\infty}(0,T;L^{2}(\Omega)) \tag{3.17}$$

and

$$Ku'_{uij} \rightarrow Ku'_{ij}$$
 weakly – star in $L^{\infty}(0, T; L^{2}(\Omega))$ (3.18)

as $\mu \rightarrow \infty$, and

$$Ku'_{i} \rightarrow Ku'$$
 weakly – star in $L^{\infty}(0, T; L^{2}(\Omega))$ (3.19)

as $j \to \infty$.

By (H.2), (H.3), (3.3) and (3.4) we get

$$(Ku')' \in L^2(Q). \tag{3.20}$$

So, by (3.18) and (3.19) we have that $Ku'_{\mu ij}$ is weakly continuous of [0,T] in $L^2(\Omega)$. Moreover, $(Ku'_{\mu ij})(T)$ is bounded in $L^2(\Omega)$.

Multiplying (3.5) by $u_{\mu ij}(t)$ and integrating from 0 to T, we obtain

$$\int_{0}^{T} (F_{j}(u_{\mu jj}), u_{\mu jj}) dt \leq \int_{0}^{T} ||u_{\mu jj}||^{2} dt + \int_{0}^{T} \left| \left(\frac{\partial K}{\partial t} u'_{\mu jj}, u_{\mu jj} \right) \right| dt + \int_{0}^{T} \left| \left(\frac{\partial K}{\partial t} u'_{\mu jj}, u'_{\mu jj} \right) \right| dt + \int_{0}^{T} \left| a(u'_{\mu jj}, u_{\mu jj}) \right| dt + \left| ((Ku'_{\mu jj})(T), u_{\mu jj}(T)) \right| + \left| ((Ku'_{\mu jj})(0), u_{\mu jj}(0)) \right|.$$

$$(3.21)$$

Using (H.2), (H.3) and a priori estimates, it follows that

$$\int_{Q} F_{j}(u_{\mu jj})u_{\mu jj}dxdt \leq C, \tag{3.22}$$

C positive constant independent of μ , j and t.

Just as in Theorem 1, we prove that:

$$F_i(u_{uij}) \to F(u_i)$$
 a.e. in Q as $\mu \to \infty$ (3.23)

whence by (3.22), (3.23) and Strauss's theorem (see Strauss [1]), we have

$$F_j(u_{\mu jj}) \to F_j(\mu_j)$$
 weakly in $L^1(Q)$ as $\mu \to \infty$. (3.24)

Also, by (H.3) and (3.14) it follows that

$$(K'u'_{uii})$$
 is bounded in $L^2(Q)$. (3.25)

So

$$K'u'_{uij} \to K'u'_{i}$$
 weakly in $L^{2}(Q)$ as $j \to \infty$ (3.26)

and

$$K'u'_{i} \to K'u'$$
 weakly in $L^{2}(Q)$ as $j \to \infty$. (3.27)

Multiplying (3.5) by $w = v\theta$ with $v \in H_0^1(\Omega)$ and $\theta \in \mathcal{D}(0,T)$, integrating from 0 to T, taking the limit as $\mu \to \infty$, and using (3.15), (3.16), (3.18), (3.24) and (3.26) we get

$$\frac{d}{dt}(Ku'_{j},v) - (K'u_{j},v) + a(u_{j},v) + a(u'_{j},v) + (F_{j}(u_{j}),v) = 0 \quad \forall v \in H_{0}^{1}(\Omega) \text{ in } \mathcal{D}'(0,T).$$
 (3.28)

$$u_i(0) = u_{0i}$$
 and $(Ku'_i)(0) = 0.$ (3.29)

Moreover, by (3.24), it follows that:

$$F_i(u_i) \to F(u)$$
 weakly in $L^1(Q)$. (3.30)

Taking the limit in (3.28) as $j \rightarrow \infty$ and using (3.16), (3.19), (3.27) and (3.30) we prove (2.1)-(2.5) in theorem 1.

It's not difficult to check that $u(0) = u_0$ and (Ku')(0) = 0.

REMARK. Replacing (H.2) by (H.2)' $K \in C^1([0,T]:L^{\infty}(\Omega))$ with $K(x,0) \ge \alpha > 0$,

$$K(x,t) \ge 0$$
, $(x,t) \in Q$.

we get with the same arguments

THEOREM 3. Under hypotheses (H.1), (H.2)', (H.3) if $G(s) = \int_0^s F(\xi) d\xi$ and $u_0 \in H_0^1(\Omega)$, $u_1 \in L^2(\Omega)$, $G(u_0) \in L^1(\Omega)$, then there exists a function $u : [0, T] \to L^2(\Omega)$ such that

$$u \in L^{\infty}(0,T;H_0^1(\Omega))$$

$$u' \in L^2(0,T;H_0^1(\Omega))$$

$$\sqrt{K}u' \in L^{\infty}(0,T;L^2(\Omega))$$

$$K'u' \in L^2(0,T;H_0^1(\Omega))$$

$$Ku'' - \Delta u - \Delta u' + F(u) = 0 \text{ in the weak sense in } Q$$

$$u(0) = u_0$$

$$u'(0) = u_0$$

ACKNOWLEDGEMENT. This research was completed while the second author was visiting LNCC/CNPq in a Post-Doctoral Program during 1989.

REFERENCES

- [1] Strauss, W. A. On Weak Solutions of Semi-linear Hyperbolic Equations, An. Acad. Bras. Ciências, 42 (4)(1970) 645-651.
- [2] Maciel, A. B. Sobre Uma Equaçã Hiperbólica-Parabólica com Não Linearidade do Tipo Contínuo, Doctoral Thesis, IM/UFRJ, Rio de Janeiro, Brasil, 1986.
- [3] Mello, E. A. Soluções Fracas de um Problema Hiperbólico-Parabólico Não Linear, Doctoral Thesis, IM/UFRJ, Rio de Janeiro, Brasil, 1983.
- [4] Larkin, N. Boundary Problem in the Large for a Class of Hyperbolic Equations, Sib. Math. Journal, Vol 18 (6)(1977), 1003-1006.

- [5] Larkin, N. Global Solvability of Boundary Value Problem for a Class of Quasilinear Hyperbolic Equations, Sib. Math. Journal, Vol. 22 (1)(1981), 82-88.
- [6] Ang, D. D. and Dinh, A. P. N. On The Strongly Damped Wave Equation $u'' \Delta u \Delta u' + F(u) = 0$, SIAM J. Math. Anal., Vol. 19 (6)(1988), 1409-1418.
- [7] Cooper, J. and Medeiros, L. A. The Cauchy Problem for Nonlinear Wave Equations in Domains With Moving Boundary, *Annali Scuola Norm. Sup. Pisa XXVI* (1972), 829-838.
- [8] Kinderlher, D. and Stampacchia, G. An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, (1980).
- [9] Lions, J. L. Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires, Dunod, Paris, 1969.
- [10] Strauss, W. A. The Energy Method in Nonlinear Partial Differential Equations, *Notas de Matemática*, 47, IMPA, Rio de Janeiro, Brasil, 1969.