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ABSTRACT. An existence criterion for nonoscillatory solution for an odd order neutral differential
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1. INTRODUCTION.
In this paper we consider the first order neutral differential equations of the form

(x(t)-cx(t- r)y- p(t)x(g(t))= o, > o (1.1}

(x(t) + cx(t r))’ p(t)x(g(t)) f(t) (1.2)

and nonlinear neutral differential equation of nth order of the form

(z(t)-h(t)f(z(r(t))))(n) + p(t) f2(z(g(t))) O, >_ o (1.3)

Most of the works on oscillation theory for neutral equations deal with stable type equations.

There are a few papers (see e.g. [2], [3], [5]) where nonoscillation of unstable type equations of order

larger than one is discussed. In Section 2 we establish a result for the existence of an unbounded

solution of Eq. (1.1) which tends to infinity exponentially. Some’ results on oscillation and

nonoscillation for Eq. (1.3) are given in Section 3. To the best of our knowledge this is the first

time that a differential equation with nonlinearity in the neutral term is being studied. As pointed

out by Hale [1] it is useful to study neutral nonlinear differential equations of the form

(x(t)-a(t,x(t- r))y H(t,x(t- r))

As usual a solution x(t) of Eq. (1.j), j 1,2, is said to be oscillatory on [t0,oo if the set of zeros of

z(t) is unbounded, otherwise it is called nonoscillatory. In Section 3 we need the following lemma:

LEMMA. (e [6]). Lt X b BausCh p, r boded od d o,x ubt o
X, A, B be maps on F to X such that Ax + By F for every pair x, y q r. If A is a contraction and

B is completely continuous then the equation

Ax + bz z

has a solution in F.
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RESULTS FOR EQUATIONS (1.1} AND (1.2).
We assume that

and the functions p,g,F are continuous on [t0,oo), o > 0. In case

p(t)=p, g(t)=t-a, a>O,

from the analysis of the characteristic equation of Eq. (1.1) we know that Eq. (1.1) has always an

unbounded solution

z(t) Aeat er > 0

The question arises whether Eq.(1.1) has always an unbounded solution x(t) which tends to infinity

exponentially as tends to infinity. We explore that possibility.

For c > 0, let x(t) be a positive solution of Eq. (1.1). We put z(t)= x(t)-cx(t-
Then z’(t) > 0, and therefore two possibilities exist"

(i) z(t) > 0, eventually, or

(ii) z(t) < O, eventually.

Consequently, the nonoscillatory solution x(t) must satisfy one of the following type of asymptotic

behavior:

() li_..m:()= 0;

(b) m(t) # 0

() E%(t)= o

We prove the following:
THEOREM 2.1. Based on the value of c we have the conclusions:

(i) If c _> 0, Eq. (1.1) has always a positive solution x(t) satisfying (b) or (c);
(ii) If c > 1, Eq. (1.1) has always an unbounded solution x(t) satisfying (c);
(iii) If c > 1, Eq. (1.1) has always an unbounded solution x(t) which tends to infinity exponentially;

(iv) If 0 _< c < 1, and /p(t)dt oo, T >_ O, Eq. (1.1) has always an unbounded positive solution,

and every bounded solution of Eq. (1.1) either oscillates or tends to zero as tends to infinity.

PROOF. For a given continuous function p there exists a continuou function H(t)> 0 such

that

I p(t)H(t)dt oo lira
p(t) i] 0,

exp (t! p(s)H(s)ds
(2.z)

Define
(2.2)

Let BC([to, oO ,R) be a Banach space of bounded and continuous functions y-[to, oO ---, R. Define

a subset fl of BC as follows:

ft={y_BC’O<y(t)<l, to<t<c}.
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Clearly fl is a bounded, closed and a convex subset of BC. Now we define a mapping S on fl as

follows:
z(t-r) 1 1 ift>T,c,

z(t) +(t)Tp(s)z(g(s))y(g(s))ds + 2-’(t)
(2.3)(s)(t)

(Sy)(T)+ (1-), if o < < T,

where T is chosen sufficiently large so that t- r > o y(t) > o z(t) >_ 1,

and

z(t-) [c
z(t) +(t) p(s)z((s))ds <_ ,

T

for > T. Using (2.1) and (2.2) one finds that

f p(s)z(g(s))ds
(t- ,’) o

z(t) .-,0, and
z(t) 4oo, as t--.oo,

(2.4)

which shows that (2.4) is possible. Thus we have Sgl C f

Let Yl and Y2 be elements of f. Then

(Sy2)(t)- (Syl)(t) <_ c z(t) Y2(t- r)- Yl(t

and

+ (t) I p(s)z(g(,))ly2(g(s)) yl(g(s)) ds
T

-<1/2lly2-Yl II,

qY2 "qYl sup l(Sy2)(t)- (Syl(t)

sup [(Sy2)(t)- (Syl)(t)[
t>T

-< 1/2 y2 y

which shows that S is a contraction on ft. Hence, there is an element y Eft such that Sy y.
That is,

z(t- T) 1 9f c z(t) +(t)fTp(s)z(g(s))y(g(s))ds +.-x.j if t_> T,

y(Y)+ (1-), if to _< t _< T,

Obviously p(t) > 0 for t >_ 0. Set

x(t) y(t)z(t)
that is,

T

which shows that x(t) is a positive solution of Eq.(1.1) for t _> T. This proves (i), (ii) and first part
of (iv); In case c > 1 we have

(2.5)

(2.6)

(2.7)

(t) >_ =(t-,) >_ >_ c"x(t-,).
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or

x(t) > z(to)e
p(t- t), for >_ o

where p > 0, which shows that (iii) is true. In order to prove the second part of (iv) we let

x(t) to be a bounded positive solution of Eq. (1.1). Put

u(t) (t)- (t- )

The u’(t) > 0 and limtou(t ests. Let limtu(t I. If > 0 then x(g(t)) I. Consequently,

u(t)- u(T1)= / p(s)x(g(s))d, I
T1 T1

since TlP(S)ds t we have a contradiction to the boundedness of x(t). In view of (2.7)
we c sume that c0. Now for 0<c<1 we cnot have the ce that l<0. Thus

limtu(t 0 d hence we have limtx(t 0. This completes the prf of the threm.

EXAMPLE 2.1. Consider the equation

which satisfies the sumptions of threm (2.1(i). In fact, (2.8) e solution: () 1 + .
EXAMPLE 2.2. The equation

((0-(- /)’= ( --)(0, fo (.l

satisfies the hotheses of threm 2.1(ii). We note that (2.9) h ubouaea solutio ()= e.
EXAMPLE 2.3. The equation

(x(t)- 2x(t 1))’ (e 2)t + ex( 1) for > 2t-1

satisfies the assumptions of theorem 2.1(iii). In fact, (2.10) has a solution x(t) tet.
EXAMPLE 2.4. Consider the equation

(2.10)

(2.11)

One can easily check that x(t)= sint is a bounded oscillatory solution of (2.11).
EXAMPLE 2.5. The equation

)’
satisfies the hypotheses of theorem 2.1(v). In fact, (2.12) has a solution x(t) e-t.
OPEN PROBLEM. What is a criterion for the existence of oscillatory solutions for Eq.(1.2)?

THEOREM 2.2. Consider the Eq.(1.2) and assume that there exists a function f such that

F(t) f’(t) and

lira sup f(t) + o

f(O=-o. (.)

Then every bounded solution of Eq. (1.2) is oscillatory.

PROOF. Set

z(t) (t) + (t- )
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and let x(t) be a bounded positive solution of (1.2). Then (1.3) reduces to

(z(t)- f(g))’ p(g)z(g(t)) >_ O

If z(t)- f(t) < 0 eventually, then 0 < z(t) < f(t) eventually, a contradiction. Hence z(t)- f(t) > 0

eventually, which is impossible, in view of that fact that z(t) is bounded. This completes the proof.

EXAMPLE 2.6. The equation

(z(t) + x(t- 70)’- tx(t 2r) sint, (2.14)
satisfies the assumptions of Theorem 2.2. Hence every bounded solution of (2.14) is oscillatory. In
fact, x(t) sin is such a solution.

3. NONLINEAR NEUTRAL EQUATION (1.3)
(i) h 6. C(R +,R);
(ii) fi E C(R,R), xfi(x > 0, 1,2, as z # 0

Ifl(x)-ya(y)l <Llz-yl z, yE[0,1]

f2 is a nondecreasing function, L is a positive constant;

(iii) r,g G C(R +,R) 0 < r(t) < M, M is a constant

im (t) o %g(t) oo

(iv) there exists a > 0 such that

and

Lh(t)e(t-r)) <_ c < 1,

Lh(t)e(t-r)) + (n- 1)! I (s- t)n- lp(s)f2(e-g(S))ds < 1.

Then Eq.(1.3) has an eventually positive solution z(t) which tends to zero exponentially as t---,oo.

PROOF. Let o be sufficiently large so that

2" rain {t f0 r(t), inf g(t)}
t>_T0

As before, BC([T, oo)) denotes the Banach space of all bounded and continuous real valued

functions defined on IT, oo). Let II be a subset of BC as defined in Se. 2. Define operators $1 and

S2 on 12 as follows:

h($)eat fl(y(’r(t)e-ar(t)) t >_ o
(SIY)(t)

(S19)(0)+ (1-), for T _< t _<
-u

(n- 1)! I (s- t)(n- 1)p(s).f2(Y(9(sl)e-ag(e)) ds,

(sl(O r (s/(./+ ( -/,
if t > to

for T _< t _< o

By (iv), for every x,y E 12 we have SlX -k S2y E f. Condition (iv) implies that ,S’ is a

contraction on 12. It is easy to see that

tt (S2Y)(t)[ < MI for E

where M is a positive constant. From this it follows that S2 is completely continuous. By Lemma
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there exists a y E f such that

That is,

(S + S2)y y

h(’)ea’fl(Y(r)(t))e-ar(’))+ (n-1)’ I (s- t)("- 1)P(s)f2(Y(g(s))e-ag(s)) if > o

o (t0) + ( ), for T < < o

It is easy to see that y(t) > 0 for _> T. Set x(t)= y(t)e-at

Then oo

z(t) h(t) fl(z(r(t))) + (n
1 I (s t)n- l[(s)f2(x(g(s)))ds t>to

or

(x(t) h(t) fl(x(r(t))))
n
+ p(t)f2(x(g(t)) 0, t _> tO

This completes the proof.
EXAMPLE 3.1. Consider a nonlinear neutral equation of the form

+
where

2t 8t
p(t) e-g - e3e-$ > 0

for all large values of t. In our notation

h(t) 41- fl(x) x3 L 3 f2(x) x1/3

Ogviously the hypotheses of theorem 3.1 are satisfied. Therefore Eq.(3.1) has a solution z(t) which

tends to zero exponentially as too. In fact, x(t) e-t is such a solution of (3.1).
Now we establish an oscillation criterion for Eq.(1.3) for the case n 1.

THEOREM 3.2. Assume that

(i) r,g,f and f2 are continuous, f2 is nondecreasing

()>0, o#o, i=.2, IA()l<zll,

(3.1)

(ii) O < h(t) < c and (cL) < l

(iii) lira =q,
!/40

(iv) r(t) < t, tl r(t) oo, g(t) < t, lina g(t)= oo,

(v) hminf p(s)ds= p pq >-e

Then every solution of Eq. (1.3) is oscillatory.

MARK. We first prove a lemma which we nd in the prf of the threm.

LEMMA 3.2. Let x(t) eventuMly positive solution of Eq. (1.3). Set

z(t) z(t) h(t) f (x(r(t))). (3.2)
Then z(t) > 0 eventuMly.

PROOF. For convenience we put a r, a0 I identity, an aoan- 1,n 0,1,.-.. From
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(1.3) it follows that z is nonincreasing. In case z(t) < 0 eventually, then

z(t) < cfl(z(r(t)) < cLz(cr(t)) < < (cL)nz(crn(t))
which implies that lim z(t) 0. Consequently, tmz(t)= 0, which is a contradiction.

t-oO

PROOF OF THEOREM. Suppose the contrary, and let z(t) be an eventually positive solution

of Eq. (1.3). Then z(t) > 0, eventually. Since z(t) > z(t) we have

f2(x(t)) >_ f2(z(t)) (3.3)
Then from i’1.3) and (3.3) we have

z’(t) + p(t) f2(z(g(t)) < 0, (3.4)

which implies that (3.4) has an eventually positive solution. However (v) implies that (3.4) cannot

have a positive solution, by a known result [4]. This completes the proof.
EXAMPLE. Consider

(x(t)-cx(t-2r) sin2x(t 2r))’ + p(t)z(t-)= 0, for > 2r (3.5)
where

p(t) 1 -c sin2(sint)- c cost sin(2 sint) >_ 0, and 0 < c < 1/2 (1
It is obvious that

Therefore the hypotheses of Theorem 3.2 are satisfied. Hence every solution of (3.5) is oscillatory.

In fact, z(t) sin is such a solution.
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