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ABSTRACT. In this paper we consider dual integral equations, which arise in boundary
value problems of bending of anisotropic plates. The function involved in these equations
is a linear combination of elementary function, which turns out to be a particular case of
a class of Fourier kernels, [2]. The method used here for solving the equations is some
what similar to the method used for solving dual integral equations of Titchmarsh type,
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INTRODUCTION
In this note we consider dual integral equations

0 (t)h,(xt)dt f(x), 0<x<l

(1.1)

0 (t)h,(xt)dt g(x), x>l,

where is the unknown function and

h,(x) e’X cosx sinx

h,(x) "x h(x), -_<_.
The method we employ for solving the system (1.1) is similar to a method developed by
Nasim & Sneddon, [1]. This procedure has been very effective for solving dual integral
equations when the functions h, and h involve Bessel functions J,,, Y,, and K,. As in

almost all the papers concerned with dual integral equations, here also, the solutions are
not derived in a rigorous fashion. But that is not to say that the analysis in this paper
cannot be made rigorous by imposing appropriate conditions on the functions involved.

It is worth noting that in our case the functions h, are a special case of Fourier

kernels defined by us elsewhere, [2]. Also we wish to point out that the functions h,(x)
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satisfy the differential equation
d_.._ h(Ax) h(
dx4

and equations (1.1) would therefore arise in many situations where we wanted to solve a

partial Differential Equation involving the operator .a4 A particular such case e.g., is the

bending of an anisotropic plate where the lateral deflection w satisfies the equation

o-4
+ 2k ow + 4 O.

The case k=0 is of. some importance for such plates, [3]. If we wanted to solve the
resulting equation (k=0) in x>0, y>0 with the plate clamped along x=0 and having.
discontinuous boundary nditions .along y=0, we would quickly arrive at equations (1.1).
For, in such a situation (with k=0), we seek solution w(x,y) in the form

+ sin x]d,
where f() is to be determined. This form is seen to satisfy the Partial Differential

Equation, the condition of clampness along x=0 (i.e. w - 0, on x=0, y>0) and the

condition that w=-0 on y=0 in x>0. If now, the plate is bent by bending moments of of
magnitude In(x) in 0<x<l (on 0) and is clamped along x>l, (on y=0), then f(,) must
satisfy

,f(,)(e-x cos ,x + sin ,x)dx In(x) in 0<x<l

and 0 f(A)(e-AX- cos Ax + sin Ax)dx 0 in x>l

where is an appropriate (material) constant, [3]. These equations are a particular case
of equations(1.1). We propose to solve such equations in this note.

2. PRELIMINARIES.

We shall need the following known definitions and results. The results from the
Mellin Transform theory can be found in Titchmarsh [4].

We define the Mellin Transform and inverse Mellin Transform, under appropriate
conditions, respectively as:

M[fCx); s] fCx) x-’dx

f*(s), where s==+ir, a<a<b, ---<r<(R), and

[+i(R) t*(s)’d’[f*(");x] 7i o,-i(R)

f(x).

Throughout this note, we shall denote the Mellin Transform of a function f by ft.

A function k is said to be a Fourier Kernel when for

0 k(xt) f(t) dt

and 0 k(xt) g(t)dt f(x),
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for some suitable functions f & g.
k(x), then

,
Furthermore, if k (s) denotes the Mellin transform of

k (s) k (i-s)

on some line of the complex s-plane.

The Erdelyi-Kober [5] operators are given by,

and

7,aI(0,x;a) f a ’(7+a)I(x,_t,)o/ t(n’t)- f(t)dt, a>0

TK,a(x’(R):a)f Va xolxCtO-xo)a" ’ ’-a-1)-’
f(t)dt, a>0.

It is an easy matter to see that

r(l+,/-s/) *M In,=(0,x:a) f(x): r(l+n + = -s/a) f (s)

and

M [K7,=(x,(R);a)f(x); s] r( + /) f=r(+ + sly)

The inversion form of those equations give us the following two results.

Lemma 1.
r(, + -})

.(); x]M-’ r(l + ’7 + a-)
I (O,x; a)M"[f*(s); x]

I (O,x; a)f

Lemma 2. M" f*(s); xr( + + )

Note that /I,0 /K,0 I, the identity operator.

r/K,a (x,(R); a)M-’[f*(s); x]

K,= (x,(R); )f

Now an important result from the theory of Mellin Transform.

Lemma 3. The Parseval Theorem, [4]

M-’[f*(s)g*(s); x]

the convolution of f and g.

jof (.)1x)g T
fog,

dt

Next we give a formal description of the method we shall employ in solving.dual
integral equations (1.1) for azbitrary functions h and h2. These dual equations (1.1), are

equivalent to

m,( )dx
0 0

((u)ht(ux)du el(t), 0<t<l

(R) 1m.() dx (u)h,(ux)du t>l.

(2.1)
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Here the functions t and 2 are defined in terms of the functions f and g and (as yet)
arbitrary functions m and m2 by the equations.

It0 tltCt) fCx) mt() dx

and

1(t) g(x)m,() dx. (2.3)

Supse now we find functions m and m such that

m,(y)h,() dy m,(y)h,(y)y dy k(z), say (2.4)
0

then the unknown function is the solution of the single integrM equation

[ (u)k(ut) du t) (2.5)
J0

where

t) (t) H(1-t)+ ,(t) H(t-1),

H(t) being the Heaviside function.

exploit the theory of Mellin Transforms.

Now, due to the result of lemma 3, we can write the equation (2.4) as

mt(s)ht(s m2(s)h2(s k (s),
whence

To determine the arbitrary functions m and m2, we

where

(t)h(xt)dt f(x), 0<x<l

(t)h2(xt)dt g(x), x>l

(3.1)

We consider now

,
m(s)

m(s)
It is then possible to decompose h(s)/(s in such a way so that m t(s and m:(s) are

appropriately determined and eventually the functions mt and m2 and hence l and are

then known. Next, to find , from (2.5), we have due to lemma 3,

*(l--s)k*(s) *(s),

i.e., *(s) *(1--s) #*(1-s)h*(s) sayk’(l-s)

Then the last equation is equivalent to

(x) t)h(xt)dt,

giving us the required solution of the system (1.1), where

1h(x)= M-l[l,(1._s); x].
3. THE DUAL INTEGRAL EQUATIONS I.
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and
ht(x e-X-cos x + sin x,

h2(x x’(e-x- cos x + sin x), -1<__I,

the functions f and g are known and ( is to be determined. Now, for an appropriate
complex s, the Mellin transforms of h and h2 are, respectively, [6, Chapter 6],

2 r(s)sin 1/4z sin1/4(s+l)
3

:-, r(1/2 + )r( + )
r(1 i 3)r( 1/41,

h l(s+u)

Then

m,(s) hi(s

mi(s) h2(s)

r(1/2 + )r( + 1/4)r( )r( )
’r(1 - 3 r( +

whence,

and

From the equation (2.2),

,
m l(s) 2

r(1 1/4)r( )
r(-- 1/4)r( - )

m(s) r(1/2 + + 1/4)r( + + 1/4)

I f(x)m 1,() do

0 f(x)mt(t-)l-’xx dx

where l(x) mi(x H(x-1), H being the Heaviside function.

for -l<v<0,
Due to lemma 3, we have

M"[mi(s)f (s); t]

2v I y (0,t:4) I (0,t;4)f,
0,- _,_

if(S); t]

by repeated use of lemma 1.

But if 0<v<l, then

r( 1/4)r(1 I)
Ct(t) M-l[22vr(1 -- 1/4)r( - I)

r(s); t]
(3.2)
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I 1 1 v (0,t;4) 3 v (0’t;4)M’i
-, - 0, -2i’’ I 1 1 (0,t; 4) I 3 (0,t; 4)F,
-,- 0,-

where F(x) x- [x-f(x)].
Next, om equation (2.3) we have

(3.2a)

where ,(x) m(x)H(1-x).

g(x) m dxx

g(x) ’i - dx,
0

Then by lemmas 2 and 3, for 0<v<l,
1 s 3 s

-,r r (+1 r(l-%r)
M

Lr(+1/4ir(+-+1/4)

But if-l<u<0, then

K1 v(t,(R); 4)K (t,(R); 4)g

KI" .,,i
[1"()+.:..,(,,,,,, ,,.),.,i:-, *(,,);

-,r ,]K1/2, 1/4+(t,(R); 4)M [r(_+l
(2+v+s)g*(s);

,l

(3.3)

G() .+’ (-.- g()).where

(3.3a)

Hence the function

(t) i(t)H(1-t) + ll(t)H(t-1)

is completely known, with Ct and 1 as defined above by the equations (3.2) and (3.3).

Further, from (2.7),
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k (s)

Then, [7 Sec. 20.5],
h(x) M-[ 1

k*(1-s) ;x

3 11i,(1 .
-1/22- G ) :I g,g g,, 0

Finally the solution of the dual equations (3.1), can now be written as

0(u) Nt)h(ut)at, -1 < v < .
0

Note that the solution is also valid for u -1.

(3.4)

Next we list two special cases, which are of some interest.

Let v 1, g(x) 0 and f(x) x, a>-2. Then

,(t) o

where

That is,

and from (3.2a),

=1F(x)

Ct(t) Io, 1/2 (0,t; 4)F

(+)x

(2+a) I0,1/2(0,t; 4)x=

2-1/2(2+a) t’ I (t -x4)-1/2 xS/tdx
0

r(l+) ==4.

The solution of the integral equations

(t)ht(xt)dt x= 0<x<l

is then given by

where from (3.4),

t0(t h,(xt)dt 0, x>l

I’(I+D 1
)(x) 4

i,(+[ IO h(xt)t=dt

h(x) r 04

Evaluating the above integral, we obtain, [7 Sec. 20.5], for a > -2,

(3.5)
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as the solution of the system

1Let v -1, f(x) 0 and g(x) x, < -.
Then l(t) 0

and from (3.3a),

where

2(t) 1/4 K3 l(t,(R); 4)G,

G() ’ (-9

Therefore,

(1-)x0

1-) K3 1(t,(R):4)x3

-1/2(-B)t ( tO -1/2 - d

Hence the solution of dual equation

is given by

Now from (3.4),

0(t hl(xt)dt 0, 0<x<l

(xt)-)(t)hCxt)dt l<x<(R)

(x) 2

(3.6)

o],
and on evaluating the above integral, we obtain,

3
0

1(x) 16 x"1/2

1"( ) ’s 1,,- ] ’I’
as the solution of the system (3.6).

4. DUAL INTEGRAL EQUATIONS II.

Next we consider the system (1.1) with

h(x) ex + cos x-sin x
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Now, [6],
h.(x) x h(x),-1<u_1.

2V r(s)sin 1/4 2-l-s)sin 1/4l-s)

1/222s-s

and h,(s) h1(s+v).
The equation (2.7) is satisfied, if we set

r( )r( )

, r( )r(1/2 )
In 1(s) 2v

m:(s)
r( + )r( + + 1/4)

and
, r()r(1/4 + )

k (s) /F 2s*"-s

Let 0<v<1, then as before

M"[m:z(s)g (s); t]

M-’[ r(1/4 + )r()
lv

Klv(t,(R); 4) K v(t,(R);
[,[ 0,

-I 1
J f(x)m,() dx$,(t)
o

M"[m,(s)f (s); t]

I)M-’ 2’-’r(1/2 I)r( I)
(1-v-s)f*(s); t]

where

I 3 1 u (0,x; 4)I 1 3 v,0,x:4,FI
[, 1 ,, [

F(x) 2’-’x --(x"vfCx)).
Now let -l<v<0. Then, as above

1 s 1 s

,(t) M.,[2 r( )r(9_- )
1 v s I v_r(--)r(- [)

i’*(S); t]
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2tuI 3 v(O,x; 4) I 1 {O,x; 4)f
-, - -, -and

[ r(1)r(1/4 + l)
(+,).(); ,]’(’) " r( + + r)r( + + )

Hence the solution of the system is given by

(x) t)h(xt)dt,

where (t) Pt(t)H(1-t)+p2(t)H(t-1),
1and h(x) M"[-,(l_s); x]
9

r" 1/2 2’ G ([) vl v311
04 ;i’[ ’[’J"

Special cases when v 1 can easily be derived from the general solution.

We also note that the solution of equations (1.1) where
2h,(x) (Y0(x), K0(x))

and
h,(x) xh,(x), -I_<_1

can also be obtained along similar lines. It is well known that the functions hi(x) are

Fourier Kernels, [2].
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