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ABSTRACT. The authors study the queueing process in a single-server queueing system with

state dependent service and with the input modulated by a semi-Markov process embedded in

the queueing process. It is also assumed that the server capacity is r > 1 and that any service

act will not begin until the queue accumulates at least r units. In this model, therefore, idle

periods also depend upon the queue length.
The authors establish an ergodicity criterion for the queueing process and evaluate

explicitly its stationary distribution and other characteristics of the system, such as the mean

service cycle, intensity of the system, intensity of the input stream, distribution of the idle

period, and the mean busy period. Various special cases are treated.
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i. INTRODUCTION.

Many standard queueing systems operate on the assumption that input and service

parameters are independent of the state of the system; to assume otherwise is frequently

regarded as too unwieldy. In this article we propose a class of queueing systems which can be

analyzed rather thoroughly even though the input and service parameters are state dependent.
We add the provision that the service is delayed until the service batch size reaches the

server’s capacity. We will show that such a class of systems readily avails itself to the

appropriate analytical techniques.

Allowing state dependence makes the model more versatile. Also, if the delay in service

seems too restrictive, models that do not make this assumption are already available.
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However, for the class of systems under consideration, we assume that r (_> 1) units are

necessary for service, and if fewer are available the server waits for more units to arrive. The

different possible values of r, as well as the formation of the idle period (which in our case does

not necessarily end with the arrival of the next unit), allows our system to encompass more

situations. Applications in transportation seem probable.

Other authors, such as Neuts, Sumita, and Takahashi (see [4]), have studied a Poisson

process modulated by a Markov process. In this article we consider the more general case of a

Poisson process modulated by a semi-Markov process. We also assume the service process is

state dependent. After a formal description we study the embedded queueing process construc-

ted over the sequence of instants of service completion (under no restriction to service time dis-

tributions). We extend the result for the continuous time parameter process by using tech-

niques appropriate for semi-regenerative processes. We establish a necessary and sufficient cri-

terion for ergodicity and give explicit formulas for the limiting distributions of the processes.

We derive the mean service cycle, intensity of the system, intensity of the input stream, distri-

bution of the idle period, and the mean busy period. Examples are presented throughout the

paper.

2. FORMAL DESCRIPTION OF THE SYSTEM

Let {ft, , (P=)feE, Q(t) t>_ 0} E {0,1,...} denote the number of units in a

single-server queueing system at time t, let {T. n E N, To 0,} be the sequence of successive

instants of service completion, let Q. Q(T. + 0), let C(-) be the counting measure associated

with the point process {T.}, and let (t)= Q(Tc(t)+ 0), >_ O. Then the input is a Poisson

process modu2ated by {(t)} due to a definition to follow.

Let (t) be an integer-valued jump process (with successive jumps at T, n E N, noting

that 0 is the increment of a jump in the case of Q.-1 Q.) and let {T; k N} be a non-sta-

tionary orderly Poisson point process with its intensity function A(t). Then we call the doubly

stochastic Poisson point process with intensity A((t)) the Poisson process modulated by the

jmp process {(t)} and it is denoted by {,}. Let Ne( denote the associated counting

measure. [For a formal definition of modulated processes see Dshalalow [3].]

If the queue length Q. is at least r, then at time T. + 0 the server takes a batch of units

of size r from the queue (according to the FIFO discipline) and serves it for a random time

r. + 1. Otherwise, the server idles until the queue length Q(t) first reaches level r after T. and

then it begins to process a group of r units taken from the waiting room of infinite capacity

(again, according to the FIFO discipline) with actual service time again equal to .+ 1. In
both cases we assume that . + has a probability distribution function B. {B0, B1 ,...}, Bi
being an arbitrary distribution function with finite mean bi.

3. EMBEDDED PROCESS {Q.}.

Let V. Ne(a.). Then the process {Q.} is defined recursively by

Q.+I=(Q.-r)+ + V.+, (3.1),
where operator (f) + is defined as (f) + sap{f,0}. From relation (3.1) and the nature of the

input process it follows that the process {ft,5,(P=)=g, Q(t);t >_ 0} ---, E has at Tn, n

_
1, the

locally strong Markov property (see definition A.3 in Appendix) and that
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Q, ;n 6 No} -- E is a homogeneous Markov chain with transition probability matrix T (Po)"
Let A,(z) denote the generating function of ith row of matrix T. From A,(z)= E’[zQ*] and

(3.1) we obtain

Ai(z) z(’ -")+ l,(A, A,z), e E (3.2),
where (8), Re(8)>0, is the Laplace-Stieltjes transform of the probability distribution

function B and A, A(i). For analytical advantage and with very little sacrifice of generality
we drop the modulation and service control when the queue length exceeds a fixed (perhaps
very large) level N. In other words, we assume that

B,(z) S(z), fl,(O)= (0), b, b,A, A, i> N (AS).
Without loss of generality we also assume that N > r- 1.

Given assumption (AS), we can show that the transition probability matrix T is

reduced to a form of the A,.N-matrix introduced and studied in [1]. According to theorem A.1

(see Appendix), the Markov chain {Q.} is recurrent-positive if and only if

z Ai(z) < oo, 0,1 ..,N,lira
z--,l zeB(O, I)

and
(3.3)

"---:(A Az) < r (3.4).
zl: zB(O,

Condition (3.3) is obviously met and condition (3.4) is equivalent to

p Ab < r (3.5).

Given that p < r, the Mkov chin {Q} is ergc. Let P (p= ;x E) denote the

invit probability meure of operator T d let P(z) be the generating function of vector

P. Now we formulate the mMn result of this section.

THEOREM 1. The embedded queueing process Q,} is ergodic if and only if p < r.

Under this condition, P(z) satisfies the equation

o
(Po,’",PN) lz) z (A- lz) (3.6a),

with A(z) determined by (3.2). Probabilities Po, ...,PN form the unique solution to the follow-

ing system of linear equations:

EN=op,-z{A,(z)- z} 0, k 0,..., ko 1, s 1,...,S (3.6b),

E,N=oP,tp,- p + (r- i)+1 r- p (3.6c),
where p b, z are the roots of zN+ zN +-/( z)in the region B(0,1)\{I} with their

multiplicities ko such that s k N.

PROOF. Formula (3.6a) follows from P(z) E ,EP, A(z) and (3.2). It is easy to modify

formula (3.6a) into

=N+,pz_(N+I) =oP{A(z) zi} (3.6d).zN + zN +-,(_ z)
Obviously, :=N +, p,z’ (N + 1) is analytic in B(0,1) and continuous on OB(0,1). According
to theorem A.2, the function z z -(A- Az) must have exactly r zeros (counted with their

multiplicities) in i’(0,1), and all zeros on the boundary 0B(0,1), including the root 1, must be

simple after we meet the ergodicity condition p < r. Therefore, the denominator in the right
hand side of (3.6d) has exactly g roots in the region (0,1)\{1} and this, along with (P,1)= 1

(which is equivalent to (3.6c)), yields the equations in (3.65) and (3.6c).

Now we prove the uniqueness of {Po,...,PN}. Suppose that the system of equations
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(3.6b) and (3.6c) has another solution p: {p:; i-0,...,N}. We substitute p* into (3.6a) to

obtain the generating function P*(z). Then, P*(z) is analytic in B(0,1) and continuous on

0B(0,1). Therefore, P* {p ;i G } G (l, )- Obviously, equations P’(z) ,pA,(z)
and ,N__ 0{A,()-(-)}

P.() ,_(-)
are equivalent. The last equation is also equivalent to P* P’A. Since p* satisfies (3.6c) it

follows that (P’,I)= 1. Thus, the system of equations z= zA, (z,1)= 1 has two different

solutions in (l, -II) which is impossible. [’1

4. EXAMPLES AND APPLICATIONS.

DEFINITIONS 2.

(i) Let /j EJ[T], the mean sojourn time of the process {(t)} in state {j}, and let

j (/;j E E)T. Then PJ is the mean service cycle of the system, where P denotes the

stationary probability distribution vector of the embedded queueing process

(ii) Let ,=(x;zEE)T and let p=. be the HaAamard (entry-wise) product of

vectors/ and . We call the scalar product Pp the intensity of the system.

The concept of "intensity of the system goes back to the classical M/G/1 system,

where Pp reduces to p Ab. It is worth noting that the intensity of the system and the

capacity of the server (in our case r) coincide, as stated in proposition 4 and proved thereafter.

PROPOSITION 3. Given the equilibrium condition p < r, the mean service cycle

satisfies the following equation:

P- b/ =opj[(b,-b)/ (r- i) + (4.1).

PROOF. Obviously, /j b + (r j) +/A. The statement is now due to elementary

algebraic transformations. 13

PROPOSITION 4. Given the ergodicity condition p < r, the intensity of the system and

and the capacity of the server coincide.

PROOF. From definition of Pp and considerations as in propositi.on 3 it follows that

Pp= p+ N=op[(pj--p)+ (r-i) +] (4.2).
The statement is due to relation (3.6c) and elementary algebraic transformations. 13

EXAMPLES 5.

(i) Consider a special case of our model with r 2, N 4 and with B as a negative ex-

ponential distribution with parameter }. However, we retain all other assumptions about the

modulation and service control having Bo,...,B4 arbitrary. For this case we obtain/(- z)
(1 + p- pz)- and it follows that the only root of the equation z -/(A- z) inside the ball

B(0,1) is zx 2p Thus for equation (3.6b) we will be using z with multiplicity one

and 0 with multiplicity three. This will give 4 of total 5 equations in the unknowns P0,.-.,P4:

E’ (z‘-)+,=o ,(,- ,)-}, 0

’(o)o +,, (,), + [’() 2] 2S() + 2,(,), 0

o;(o)po-[,(,) + 1,-()p+()p o
[/o(Ao) lipo +/,(,)p, +/2()p O.
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The fifth equation will be (3.6c) with r 2 and N 4. This system can be solved by

elementary algebraic methods. The solution of this system will then be put into equation

(3.6a) to have the generating function P(z) in an explicit form.

(ii) By dropping the modulation and service control and setting r 1, we immediately

arrive at the classical formula by Kendall established for the model M/G/1.

5. CONTINUOUS TIME PARAMETER PROCESS Q(t)}.

In this section our main objective will be the derivation of the stationary distribution of

the queueing process with continuous time parameter. Prior to this, we will be concerned with

some preliminaries.

From section 3 and definition A.4, it follows that {fl,J,(P=)=,E, Q(t); t>_ 0} ---, (E,
(E)) is a semi-regenerative process with conditional regenerations at points T., n E N. Let

f,, (P=)=,E, Q,, T,: n 0,1,... (E x R +, 9(E x R + )) be the associated Markov renewal

process and let Y(t) be the corresponding semi-Markov kernel. With a very mild restriction to

the probability distribution functions B, we can specify that the elements of Y(t) are not step

functions and thus {Q., T,} is aperiodic. By proposition 3, the mean service cycle Pfl, which

js also the mean inter-renewal time of the Markov renewal process, is obviously finite. There-

fore, following definition A.5 and given that p < r, the Markov renewal process is ergodic.

pIt also follows that the jump process {f,,( )E, f(t); _> 0} --, E, defined in section

2, is the minimal semi-Markov process associated with the Markov renewal process {Q. ,T.}
and therefore, following the definition in section 2, the input process {f,,(P)=,E, Ne} - E
is a Poisson process modulated by the semi-Markov process {f(t)}.

Let g(t)= (g,k(t);j, k e E) be the semi-regenerative kernel (see definition A.6). The

following statement holds true.

LEMMA 6. The semi-regenerative kernel satisfies the following equations:

(, j, ,)(1 B()) d 0 < j <, <gjk(t) Io u)Aju(k-- (5.1)
,,,(k- )[1 B()], < < k

O, O<k<j,

with (; y e R+ the Poisson semi-group and e(,n,-) the Erlang-n probability density func-

tion with parameter .
PROOF. The above assertion follows from straightforward probability arguments. [’l

Now we are ready to apply the Main Convergence Theorem to the semi-regenerative ker-

nel in the form of corollary A.8, thereby arriving at the stationary distribution of the queueing

process {Q(t)}.

THEOREM 7. Given the equilibrium condition p < r for the embedded process {Q.},
the stationary distribution (r;x e E) of the queueing process {Q(t)} exists; it is indepen-

dent of any initial distribution and is expressed in terms of the generating function r(z) of by

the following formula:

PflrCz)(1 z) i f(A Az)]P(z) + v= o p,z/(
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where P(z) is the generating function of P, Pfl is determined in proposition 3, and A(z) is

defined in (3.2).

PROOF. Recall that the Markov renewal process {Qn,Tn} is ergodic if p < r. By
corollary A.8 the semi-regenerative process

provided that p < r. We can see that the semi-regenerative kernel is Riemann integrable over

[+. Thus, following corollary A.8, we need to find the integrated semi-regenerative kernel H
(which is done with routine calculus) and then the generating function h(z) for each row of H.
First we find that

zp h(z), i > r (5.2b).
Then,

j()
1 ’-%(A-)

A,(1 z) ,0 _< i < r (5.2c).

Formula (5.2a) now follows from corollary A.8, equations (5.2b) and (5.2c) and some algebraic
transformations.

EXAMPLES 8.

(i) By dropping the modulation of the input process we obtain from proposition 4 that

Pfl, -- ands(z) rl_z)P(z).
(ii) By using obvious probability arguments we derive the probability density function

of
an idle period in the steady state:

: 0P
U- r--1

oP
The mean idle period in the steady state is then

s (s.3)
0
p,

(iii) Formula (5.3a) and theorem 7 allow us to derive the mean busy period B in equilib-
,-I r is the probability that the server idles. On the other hand, it alsorium. Clearly

0

equals j .. Thus we have

-1

(iv) Now we turn to the special case in example 5 (i) applying its results for the process

with continuous time parameter. We use probabilities P0,--.,P4, substituting them into

formulas (5.2a) and (4.1) for r 2 and N 4, thereby reducing the generating function r(z) to

an explicit form.

(v) If the input is a stationary Poisson process then its intensity is A, which is also the

mean number of arrivals per unit time. In the case of a modulated input process its intensity is

no longer a trivial fact. We define the intensity of any counting measure N by the formula

where pt(z)= E=[N([0,])]. We will apply ergodic theorem 3.9 established in Dshalalow [3] for

more general Poisson process modulated by a semi-Markov process:

: P/P/
where by proposition 4.3 P r and P satisfies equation (4.1) and thus we have:- (s.3).
A trivial special case appears when we drop the modulation of the input and therefore use
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formula (4.1) combining it with formula (5.3b). Then : A, as it should be.

Another interesting special case is due to the assumption that b b and r (observe
that we only require that the service means bo, b,.., are equal but do not restrict the

corresponding distributions). Then we have that r equals the reciprocal of Pfl b + Poo
APPENDIX

THEOREM A.1 (Abolnikov and Dukhovny [1]). Let {Q,,} be an irreducible aperiodic

Markov chain with the transition probability matrix A in the form of a Ar,v-matrix. Then

{Q,}/s recurrent-positive if and only if
lira z A(z) < , i= O,1,...,N, (A.la)

z-.1: zB(O,
and

lira d-/(A Az) < r (A. b).
z-,l: zeB{o, 1}

THEOREM A.2 (Abolnikov and Dukhovny [1]). Under the condition of (A.lb) the

function z- (A-Az) has exactly r roots belonging to the closed unit ball B(0,1)= {ze C:
< 1}. Tho oot o th o=d=, 0(0,X) =
DEFINITION A.3. Let T be a stopping time for a stochtic process {,, (P=)=,,

Z(t); t0} (E, (E)). The process {Z(t)} is sMd to have the locally strong Markov

propey at T if for each bounded random viable (: E d for ech BMre function f:
E R, r 1,2,..., it holds true that

E’[f o ( o OT IT] EZr[f o (] P’-a.s. on {T < },
where is the shift operator.

DEFINITION A.4. A stochtic process {fl,,(P=)=,e, Z(t);t 0} (E, (E)) with

E 5 N is cMled semi-regenerative if

a) there is a point preeNS {T,} on R+ such that T, (n) d such that each T
is a stopping time relative to the conic filtering a(Z;y t),
b) the process {Z(t)} h the locMly strong Mkov property at T,, n 1,2,..., d

c) {Z(T, +0),T,; n 0,1,...} is a Mkov renewM preens.

DEFINITION A.5. Let {X, ,T} irreducible aperiic Mkov renewM process

with discrete state space E. t E=[T] be the me sojourn time of the Mkov renewM
preens in state {x} d let fl= (=;x E)T. Suppose that the emded Mkov chMn

is ergic with stationy distribution P. We cMl Pfl the mean inter-renewd time. We cMl the

Mkov renewM process recuent-positive if its me inter-renewM time is finite. An
ieducible ariodic d recurrent-sitive Mkov renewM process is cMled ergodic.

DEFINITION A.6. Let {fl,, (P=)=,E, Z(t);t 0} (E, (E)) be a semi-regenerative

process relative to the sequence {T} of stopping times d let

r(t) P,{Z(t) t,T > t}, , e E.
We will cM1 the functionM matrix K(t) (K#(t) j,k e E) the semi-regenerative keel.

THEOREM A.7 (The MMn Convergence Whrem, cf. inl [2], p. 347). Let

{,, (P=).,, z(t); e 0} (E, (E)) i-#=ti tohti=

e sequence { Tn} of stopping times and let K(t) be the coesponding semi-regenerative keel.

Suppose that the sociated Markov renewal process ergodic and at e semi-regenerative

keel Riemann integrable over R +. Then the stationa dtbution
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process {Z(t)} ezista and it is determined from the formula:
rk E,,EP, f o K,k(t)dt, ke E (A.Ta).

COROLLARY A.8. Let H= (hj;j,kE E)= fo K(t)dt (the integrated semi-regenerative

kernel), let h(z) be the generating function of th row of matri H, and let x(z) be the

generating function of vector z. Then
1 h(z) (A.Sa)() P--B E,EV

PROOF. From (A.Ta) we get an equivalent formula in matrix form, r -. Finally,

formula (A.Sa) is the result of elementary algebraic transformations. !’!
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