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ABSTRACT. Let P[A,B],-1

_
B <A <_ 1, be the class of functions p such that p(z) is

1 + Az A function f, analytic in the unit disk E is said to belong to the classsubordinate to
1 + Bz"

zg’(z)K*[A,B] if, and only if, there exists a function g with g(z) E P[A,B] such that Re (zf’(z))’
g,() > ,

0 _</ < 1 and z E E. The functions in this class are close-to-convex and hence univalent. We
study its relationship with some of the other subclasses of univalent functions. Some radius

problems are also solved.
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INTRODUCTION.
Let f be analytic in E {z" z < 1} and be given by

f(z) z +

_
anzn (1.1)

A function g, analytic in E, is called subordinate to a function G if there exists a Schwarz
function w(z), analytic in E with w(0)= 0 and Iw(z) < in E, such.that g(z)= G(w(z)).

In [1], Janowski introduced the class P[A,B]. For A and B, 1 _< B < A _< 1, a function p,

lAzanalytic in E with p(0)= belongs to the class P[A,B] if p(z)is subordinate to i Bz" When
A 1, B=-1, we obtain the class P of functions with positive real part in E. Also for
A 1 2/, B 1, 0 _</ < 1, we have the class P(/). A function h E P(/), 0 _</ < 1 if and only
if Reh(z) >/, z e E.

Let S*[A,B] and C[A,B] denote the classes of functions, analytic in E, and given by (1.1) such
zf’(z) (zf’(z))’ P[A,B] respectively. Also, for B 1 and A 1 27,that
f(z) e P[A,B] and

f’(z) E

0 <_ 7 < 1, we have S*(7) and C(7) the classes of starlike and convex functions of order % see [2].
Now we have the following:
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DEFINITION 1.1: Let f be analytic in E and be given by (1.1). Then f is said to be iv. he

class K[A,B], -1 _< B < A _< 1 if and only if there exists a g S*[A,B] such that, for z E E.
f’() P(3).()

This class has been defined and studied by Silvia [3] in a more general way. When

B 1, A and 3 0, we have the class K of close-to-convex univalent functions.

DEFINITION 1.2." Let f be analytic in E and be given by (1.1). Then feK*3[A,B if and

only there exists a S*[A,B] such that (zf(z))’
g’(z) E P(3) for z E E.

For 3 0, A 1 and B -1, we obtain the class K* discussed in [4].
If we take g e C[A,B] in Definition 1.2, we obtain the class C*[A,B]. The special cases of this

class have been investigated in [5, 6, 7].
We shall focus on the class K*[A,B] and establish the relationship of this class with some

other subclasses of close-to-convex functions. It is clear that

and
C[A,B] C S*[A,B] C K3[A,B C K

C[A,B] C C*3[A,B C K*3[A,B C K3[A,B] C K

We shall also solve some radius problems for the functions in K*3[A,B].
PRELIMINARY RESULTS.
We shall need the following:
LEMMA 2.1 [81" If f C(7), then f(z)is analytic, univalent and starlike of order A(7) where,

for 0_<7< 1,

47(1-27)

()
4- 22+

(log4)-1

This result is sharp.
LEMMA 2.2. Let p P(3), 0 </3 < 1. Then

p(z) (1 3)h(z) + 3, h P (see [2]).

ii) If(z) < 2[Rv(z)-
1 r2

iii) p’(z)[ 2(1 3)
(1 r)((1 23)r + 1)

For (ii) and (iii), we refer to [9].
LEMMA 2.3. The radius of convexity of S*[A, B] is given by the smallest root ro in (0,1) of

i) A2r2 (3A B)r + 1 0 if R < R2

ii) [(A-B)+4A(1-A)]r4+2[(A-B)+2(1-A)2]r2+(A-B)r-4(1-A)=O, if R2 < R1,
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where

and

L I/2 L (1 ,4)(1 + At2),R1 ’/ R2=I_Br,1-Ar

K (A- B)(1 r2) + (1 B)(1 + Br2).
LEMMA 2.4. Let p E P[A,B]. Then

1+At1 Ar < Rep(z) < p() <1- Br-

LEMMA 2.5. Let N and D be analytic in E, D maps onto a many-sheeted starlike region.
N’(z) N(z) [A,B].N(0) 0 D(0) and D"(z) P[A,B]. Then

For the above two lemmas we refer to [11].
3. MAIN RESULTS.

From Definition 1.2 ad Lemma 2.5, we clearly see that the function f belonging to K*[A,B]
is close-to-convex axed hence univalent. In fact, we can prove the following:

THEOREM 3.1. Let f K*[A,B], 0 _</ < 1. Then f Ka[A,B], where o(/)is given as

4(1- 2/
4_2;+I’

a(/) (3.1)
1(log4)- /

This result is sharp for A 1- b/, 1.

PROOF. Since f . K*[A, B], there exists a g S*[A, B] such that, for z e E,

(zf’(z))’
g’(z) (1 )h(z) + ,, h . P

z’(z)(t-) (z) +’
g’(z)
D’(z)

for some , 5’*

(3.2)

So

D(z)= g(zi i()l-’dt

o L-J
(3.3)

where we integrate along the straight line segment [0,2], z E. Using Lemma 2.5 for B 1 and
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N(z) zff(z) zff(z)A . , ona.a th,t ---_, P > _> O, a i- ,t O, w

Izl=r, z E E; see [12].
From (3.4) it is clear that

zf’(z) + ,.21
g(z) r2[ <

2r ()
-1 r2

Min Min Re Zgf,[f E K*[A,B] Izl =r

Min zin
zf’(z)

f E K*[A,B] r g(z)

and hence it is sufficient to find the minimum of the right hand side of (3.3). Then from [8], we

have

Shpness for A I- 2, B i follows by ting

-(1 z)2 1

f(z) 9(z)-- 2- I

1log(1 z)-1 fl

Using Definition 1.2 and Lemma 2.1, we immediately have the following:
THEOREM 3.2. Let f e C[1-2%- 1]. Then st e g[1-2A, 1], where A(7)is as given in

Lemma 2.1.

THEOREM 3.3. Let f E K[A,B]. Then there exists a g E VIA, B] such that h defined by

(zf’(z))’
z"(z)1 4"

belongs to K,o[A,B], for z E E.
(zf’(z))’PROOF. Since f E K*o[A,B], we have G’(z) E P(fl), G E S*[A,B]. Let G(z)= zg’(z), so

g E C[A,B]. Now

Thus
C’(z)=(zg’(z))’=g’(z) 1 + g--j

(zf’(z))’
G’(z)

(zf’(z))’ h’(z)
g’(z)

g’(z) 1 4"

and this implies h c:_ Kfl[A,B].
We now deal with the radius iroblems.
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THEOREM 3.4. Let f E K[A,B], z E E.
least positive root in (0,1) of the equation

Then f E K*[A,B] for z < rl, where r is the

1 (A 4- 2)r 4- (2//- 1)r2 4- Ar3 0

PROOF. For z E, we can write

’() g()(), P() d g S*[A,].

Then

(f())’ g() h’()g’(z) h(z) + g-
from which it follows that

L g’() - g()

Now, since g E S*[A,B], it follows from Lemma 2.4 that

Using (3.5) and Lemma 2.2(ii) we have

g(z) < r(1 Br)
g’(z)l- 1 Ar (3.5)

[Reh(z) ] [1- (A + 2)r + (2B- 1)r2 + Ar3]
(1 r2) (1 At)

and this gives us the required result.

THEOREM 3.5. Let f K[A,B]. Then f C[1, 1] for z < ro, where ro is as given in

Lemma 2.3.

PROOF. Since st K[A,B] imphes that (zf(z))’g,(z) E P(), g E S*[A,B], z E E. To show that

/ C[1, 1] for z < to, it is sufficient to prove that g C[1, 1]= C for z < ro and this
follows immediately from Lemma 2.3. Hence the theorem.

THEOREM 3.6. Let F zf’ and let f E K*[A,B]. Then F maps I < 2 onto a convex

domain, where r2 is the least positive root in (0,1) of the equation

(1 2/)r3 + (ro + 2) (2/- 1)r2-(2ro + 1)r + ro O,

and ro as given in Lemma 2.3.
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PROOF. zF’(z)= z(zf’(z))’= zg’(z)h(z),
Thus

h E P(), g E S*[A,B]

(zF’(z))’_ (zg’(z))’ zh’(z)
F’(z) g’(z) + h(z)

and

(ZF’(z))’ Re (Zg’(z))’
F’(z)

> g’(z)- h()

Since g E S*[A,B], it follows from Lemma 2.3 that g E C[1, 1] C for [z < to. So we have, see

Re!Zg’(z))’ > ro- r (3.6)’(z) ro + r

Using (3.6) and Lemma 2.2(iii), we have

(ZF’(z))’ ro r

F’(z)
>-ro+F

2r(1 -/)
(1 r)((1 2/3)r + 1)

(ro r)(1 r)((1 2/)r + 1)- 2r(1 -/)(ro + r)
(ro+r)(1-r)((1-2)r + 1)

After simplification we obtain the required result.
THEOREM 3.7. Let f e K*[A,B] with respect to G E S*[A,B], 0 _</ < 1. Let, for 0 < a _< 1/2,

and
f(z) (1 a)F(z) + a zF’(z)

g(z) (1 o)G(z) + ez

(3.7)

(3.8)

Then f eK*[A,B] with respect to g for I1 <r, where

r4
1 and r3 the least positive root in (0,1) of the equation

r min(r4,r3) with

ro +[I 2a(1 + to)It (to + 2c)r2 (1 2c)r3 0

The number ro E (0,1) is given in Lemma 2.3.

PROOF. We can write (3.7) as

F(z) z1-b i zal---2 f(z)dz.
0

(3.9)
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So

[ izF’(z)- I
U z - (1 --) z-2 f(z)dz q- z"- f(z)

0

f’()dz

Thus

: /(z)- (- ) - /’(z)dz
(.F’())’ o
’(z) (- ) i - g’(z)a

o

(1-)h(z)+ , hEP.

Differentiating both sides and simplifying, we obtain

g’(z) >_ (1 -/)Reh(z)

Now

2
1 r2

z1- 1 g’(z)dz
0 -(zG’(:))’z- lg’(z) (- 1)+

iz(-1) g’(z)dz
G’(z)

0

Using (3.6) and (3.11), the relation (3.10) yields

(3.10)

(3.11)

ReF(Zf’(z))’-]>(1-)Reh(z)[g’(z) r2 ro / (I 2()rJ

---(1-/) Re h(z)[r(1- 2a 2a r)r- (r + 2a)r2 (1- 2a)r3](1 r2) [ro + (1 2cr)r] (3.12)

Since it is known [13] that g E *[A,B] for z < r4
2 q4a2 2a + 1

we obtn from (3.12)

that f e K)[A,B] for [z < r min(r4,r3) where r3 is the let sitive rt of (3.9).
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