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1. INTRODUCTION.
Functional differential equations (FDE) with delay provide a mathematical model for a physical or

biological system in which the rate of change of the system depends upon its past history. The theory of

FDE with continuous argument is well developed and has numerous applications in natural and engineering
sciences. This paper continues our earlier work [1-5] in an attempt to extend this theory to differential

equations with discontinuous argument deviations. In these papers, ordinary differential equations with

arguments having intervals ofconstancy have been studied. Such equations re’present a hybrid ofcontinuous
and discrete dynamical systems and combine properties ofboth differential and difference equations. They
include as particular cases loaded and impulse equations, hence their importance in control theory and in

certain biomedical models. Continuity of a solution at a pointjoining any two consecutive intervals implies

recursion relations for the values of the solution at such points. Therefore, differential equations with

piecewise constant argument (EPCA) are intrinsically closer to difference rather than differential equations.
In [6] boundary value problems for some linear EPCA in partial derivatives were considered and the

behavior of their solutions studied. The results were also extended to equations with positive definite

operators in Hilbert spaces. In [7] initial value problems were studied for EPCA in partial derivatives. A
class of loaded equations that arise in solving certain inverse problems was explored within the general
framework of differential equations with piecewise constant delay. The purpose of the present note is to

investigate the influence of terms with piecewise constant time on the behavior of the solutions, especially
their oscillatory properties, of the wave equation.



782 J. WIENER AND L. DEBNATH

SEPARATION OF VARIABLES IN SYSTEMS OF PDE.
Consider the boundary value problem (BVP) consisting of the equation

U,(x, t) AU=(x,t) +BU=(x,[t]),

the boundary conditions

and the initial condition

(2.1)

U(O,t)-U(1,t)-O, (2.2)

U(x, O) Uo(x). (2.3)

Here U(x,t) and Uo(x) are real m m matrices,A andB are real constant m x m matrices, and [.] designates
the greatest integer function. According to [6], a matrix U(x,t) is called a solution of BUT (2.1)-(2.3) if

it satisfies the conditions: (i) U(x,t) is continuous in G- [0,1] [0, oo); (ii) U, and U= exist and are

continuous in G, with the pogsible exception of the points (x,n), where one-sided derivatives exist

(n 0,1,2 ); (iii) U(x,t) satisfies Eq. (2.1) in G, with the possible exception of the points (x,n), and

conditions (2.2), (2.3).
Looking for the solution of (2.1) (2.3) in the form

U(x,t)- T(t)X(x) (2.4)

gives

whence

r’(t)X(x) AT(t) X"(x) +BT([t]) X"(x),

(AT(t + BT([t]))-’T’(t X"(x X-t(x _p2,

which generates the BVP

x"(x) +pX(x) O,

x(o)-x()-o

and the equation with piecewise constant argument

r’(t -AT(t p2 BT([t]) e2.

X(x) cos (xP) ct + sin (xP) c2,

(2.6)

The general solution of Eq. (2.5) is

where

(-I y’x2" P,’0(-l()’x2"P2n) sin (xP) -,,0 (- "icos (xP

and Ct, C2 are aitra constant matrices. From X(0)- O we conclude at Ct- O, and e condition

X(1)- O enables to ch sinP -O (although is is not e necesry conquen ofe equation

(sinP) C2 O). is can be written asew -e O or e I. umingat all eigenvaluespt,p ...,p=

ofP are distinct and S-PS dgt,p p,), we have e- I, whenceSeS- I and e I.

erefore, -g(j,nA,...,nj,), where the A are integer, and P-S-t, P2-SS-l-
Sd&g(j,jf ,j)S-, sin (xP) S sin (x)S- -Sdg(sinjx, ...,sinxj)S-. Furthermore,

we can put

P-diag(a(mO 1)+ 1),...,amj), 1,2,...) (2.7)

in (2.5) and obtain the following result.

(2.8)

THEOREM 2.1. There exists an infinite sequence of matrix eigenfunctions for BVP (2.5)
X(x)-Vdiag(sint(m(j’-1)+ 1)x sinnmjx), (]- 1,2

which is complete and orthonormal in the space L [0,1] ofm xm matrices, that is
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fo {O, j#k’X(x)X,(xlax- t,

where ! is the identity matrix.

REMARK. The matrices SXj(x)S- satisfy Theorem 2.1 for any nonsingular S.

THEOREM 2.2. Let E(t) be the solution of the problem

T’(t) -AT(t)P, T(O) t (2.9)

and let

n(t) E(t) + (E(t) l)a-lB. (2.10)

If the matrix A is nonsingular, then Eq. (2.6) with the initial condition T(0)- Co has on [0, oo) a unique

solution

T(t) M(t It]) Mr’l(1) Co. (2.11)

PROOF. On the interval n s < n + 1, where n 0 is an integer, Eq. (2.6) turns into

T’(t)--AT(t)p2-BC.P2, C. T(n)

with the general solution

T(t)-E(t-n)C -A-IBC..
At n wehave C. C A-IBC., whenceC (I +A -tB Cn and T(t (E(t n + (E(t n I)A -ZB C.,

that is,

Att-n + wehaveC.+t=M(1)C, and

Hence,

which is equivalent to (2.11).

r(t)-M(t -n)C,. (2.12)

C, -M’(1) C0. (2.13)

T(t) M(t n )M’(1) Co,

THEOREM 2.3. If M(1)[[ < 1, then r(t)ll exponentially tends to zero as

EXAMPLE. For the scalar parabolic equation

ut(x,t a2u=(x,t) + bu=(x,[t])

we havem andPj nj, according to (2.7). For Eq. (2.9), withA a andP Pj, we haveE(t) e

and M(t) e-’2’2’ (1 e-"2’). Hence, the inequality M,(1)[ < is equivalent to

-1 <e 1- <1,

whence

a(1 + 1-

Since the function (1 + e-’)/(1 -e-’) is decreasing, all functions T(t) exponentially tend to zero as

if and only if

-a<b a.
If b < -a2, then all T(t) monotonically tend to infinity as ; and if b > a?(1 + e-"’=) (1 e ), then

all T/(t) are unbounded and oscillatory. For any b > a-, there exists a positive integer J0 such that the T(t)
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are unbounded and oscillatory, for j > j0- Indeed, letting b a:’ + and solving the inequality

a + >u(1 + e-"’)/(l
gives

e < /(2a’- + ),

which holds for any > 0 and sufficiently large j and implies Ms(1 <-1. If b -a2, then Ms(t)= 1,

T(t)- Ts(0 and u(x,t)--Uo(X), for all t. Therefore, the condition Ibl a is necessary and sufficient for

the series

u(x,t) i. Ti(t)xi(x) (2.14)

to be a solution of the scalar BVP (2. I) (2.3), withA a and B b, if Uo(X) is three times continuously

differentiable. The coefficients T(0) are given by

r(0) I ’Uo(X)x(x),
where X(x) vsin (=jx) and uo(x) C[O, 1] satisfies uo(0) uo(1) 0.

THEOREM 2.4. The solution T O of Eq. (2.6) is globally asymptotically stable as +oo if and

only if the eigenvalues of the matrix M(1) satisfy the inequalities

I,1 < , r- 1 m. (2.15)

PROOF. There exists a nonsingular matrix Q such thatM(1) QJQ-, whereJ is a diagonal or Jordan

matrix with the diagonal elements ,.,. Hence, from (2.13) it follows that

C,, (QJQ-’)"Co )J"-Q Q-Co
or

C,- E Q,(n)’,, k m (2.16)

where the entries of the matrices Q,(n) are polynomials ofdegree not exceeding k 1. This implies C, O

as n oo if and only if (2.15) holds, and the conclusion of the theorem follows from (2.12).
LEMMA. All entries of every solution of the equation

T’(t) -AtT(t)A (2.17)

with constant m xm matrices A andA2, are linear combinations of terms exp()ct.2)t), where )and

ct? are eigenvalues ofAt andAz and k is integer.

PROOF. Assume, for simplicity, that the eigenvalues ofA andA are distinct, and let

SIAIS! DI diag(ct),t), ct,

SA2 2 diag(ctt-), ct), ct,
Then the substitution T -S1V changes (2.17) to

V’(t) DV(t)A

and the substitution V WS transforms (2.18) into

W’(t) DW(t) D2.

The entries of W(t) are c0 exp(ctl)?)t), with arbitrary constants c0, and the completion of the proof follows

(2.18)
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from the formula T StWS. If some of the eigenvalues are multiple, polynomial factors will replace the

constants c#.
THEOREM 2.5. If all eigenvalues ofA have positive real parts, Uo(x)IE C3[0,1], and IIA-’II < ,

then BVP (2.1) (2.3) has a solution (2.14). This series and all its term-by-term derivatives converge

uniformly.

PROOF. The functions T(t) satisfy Eq. (2.6), with P; given by (2.7). Therefore, setting in the above

lemmaA -a, A Pf and noting that Re ctl) < 0, a}2) > 0, we conclude that E;(t) 0 asj oo and all

> 0, where E;(t)is the solution of (2.9). Hence, (2.10)implies g;(t) -A-B asj oo and g(t)ll < L
for sufficiently large j, by virtue of the condition IIA-BII < 1. From the formula

Ti(t M;(t -[t])Mid(1)
we note that T(t)ll 0 exponentially as o, for sufficiently large j. Therefore, for any > 0, ther

exist to 0 and j N such that ,,(t)ll < , for > to, where Rc(t) is the remainder of series (2.14) after

the Nth term. For 0 < to and large j, we have TAt)If < CoAl, and in this case the uniform convergence
of series (2.14), together with its respective derivatives in and x, follows from the smoothness of the initial

function Uo(x) and the formula

r(o) Co ]o UoCx)X(xWx.

THEOREM 2.6. If all eigenvalues k, of the matrix M(1) are negative, where M(t) is defined by

(2.10), then each entry of every matrix solution of Eq. (2.6) is oscillatory and, more precisely, has a zero

in each interval n s n + 1, for sufficiently large n.

PROOF. Let )(t) denote an entry of a solution T(t) of Eq. (2.6) and let c,’)-xc’)(n). Then from

(2.16) we get

t,-n+
r-I r-I

where q,’) are the entries of the matrices Q,. If c,’) 0, for infinitely many n, then ’)(t) is oscillatory.

Assuming c,’) ,, O, for all sufficiently large n, we conclude that

lim -(’) "-(’)

(since the coefficients q,)(n) are polynomials of n), where h is one of the eigenvalues ofM(I). Hence,

c,./c,b < 0, starting with some n, which implies that t’Xt has a zero in each interval n < < n + 1, for

sufficiently large t.

THEOREM 2.7. If the matrix M(1) has a negative eigenvalue, then there exists an initial matrix Co
such that the corresponding solution T(t) of Eq. (2.6) has an oscillatory entry with a zero in each interval

n < < n + 1, for sufficiently large n.

PROOF. Assume, for simplicity, that in the equation M(1)- QJQ-i the matrix J is diagonal,

J- d/ag(Xa, k2, k,,), and that . <0. In the equation C,-QJ’Q-Co put Co-Q; then C,-QJ" and

c,)- (qll, q21 q,,,:X7), where cl) is the first column of C,, and (qll,q21 q,t) is the first column of
,.i)/r.0). k < 0 as n -- , whichQ. Since Q is nonsingular, there exists an element qil O. Hence, lim ,.,, 1,,--,

proves that the entry )(t) of the solution T(t) has a zero in each interval (n,n+ 1), for sufficiently large n.

Following [8], we can prove that if the matrix M(1) has no positive eigenvalues and no eigenvalues

with equal moduli, then each entry of every solution of Eq. (2.6) is oscillatory. On the other hand, the

availability of positive eigenvalues for M(1) implies the existence of nonoscillatory entries for T(t).
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Separation of variables in the matrix equation with constant coefficients

U(x, t) AoU(x, t) +A2U=(x, t) + BoU(x, It ]) + B2U=(x It])
leads to (2.5) and to the EPCA

T’(t) -AoT(t -A2T(t) p2 + BoT([t])-B2T([t]) P2,
which can be also investigated by the above method.

3. A SCALAR WAVE EPCA.

Separation of variables in the equation with constant coefficients

u,,(x, t) a-u=(x, t) bu=(x, [t]) (3. I)

and boundary conditions (2.2) yields X/(x) vsin (nix) and leads to the EPCA

T"j(t + a=nj=T(t bnj=T([t]). (3.2)

For brevity, we omit the subindexj and make the substitution T’(t) V(t), which changes (3.2) to a vector

EPCA

where w col (T, V) and

w’(t) -A w(t) +Bw([t]),

0
A=

Eq. (3.3) on the interval n < < n + becomes

with the solution

where

w’(t)-Aw(t)+Bc., c. w(n)

w(t)-M(t -n)c.,

(3.3)

M(t) eA’ + (e’ -I)AqB. (3.4)

Therefore, Eq. (3.3) with the initial condition w(0) co has on [0, oo) a unique solution givenby the right-hand

side of (2.11), where M(t) is defined in (3.4).
THEOREM 3.1. For b < 0, the solution w 0 of Eq. (3.3) is unstable.

PROOF. Computations show that

e cos(cot)/+ co-I sin(cot)A

and

where co anj. Also,

Hence,

and

e’’ -I (coscot 1 co- sin cot /
,-cosincot coscot- 1’

eA, I AqB (b(1 coscot)/a
bcosincot/a

M(t)- (coscot + ha-2(1 coscot)
(ha -- 1)cosin cot

co- sincot

coscot /

b b
detM(1 -- + cosco.a"



WAVE EQUATION WITH DISCONTINUOUS TIME DELAY 787

The condition b < 0 implies detM(1) > and shows that at least one of the eigenvalues . ofM(I) satisfies

I > 1. Therefore w(t)ll as /, fo some initial vector c ,, 0.

THEOREM 3.2. For b > a 2, the solution w 0 of Eq. (3.3) is unstable.

PROOF. Calculations yield

b 2ta b bdet(M(1)-l)-),.2-2 costa+s,n -)k+ l-+cosco
and the expressions .--s +d, L-s-d for the eigenvalues ),.,g of M(1), where s- costa+mn ,
()d - sin:’ta +sm -. The condition b > a shows that d:’ > 0 and . > 1. The latter inequality

implies w(t)]l oo as +oo, for some initial vector Co 0.

THEOREM 3.3. The solution w 0 of Eq. (3.3) is asymptotically stable as + if an only if

0 <b <a2, (3.5)

andta, 2.nn, n -0,1,2

PROOF. The condition d < 0, which means that the eigenvalues ofM(1) are complex, leads to

ta

cos2 - b2/(2a b)2,

whence

Since kll and detM(1) 3qgz, the inequality X, < is equivalent to detM(1) < I, that is, to b > O.

Therefore, in the case of complex eigenvalues, a criterion for asymptotic stability is

0 <b < max(a2(1 tan2), a2(1- cot27)). The ,nequahty d > 0 m the case of distinct real eigenvalues
2toleads to b > max(a2(1 -tan 7), a (1 -cotZ7)), and the nequahaes < 1, g > -1 yield b < a2. Hence,

in this case a criterion of asymptotic stability is

max(a2(1- tan2-), a2(1- cot2-))<b <a2.

2,0 ct27))’ then d 0 and :k costa + ba-2 sin2ta/2 whenceFinally, if b max(a2(1 -tan 7), a2(1
costa < . < cos2ta/2 and g[ < 1. According to (2.15), this implies asymptdtic stability and completes the

proof of criterion (3.5).
REMARK 1. If b -a2, then - 1, - costa, and the solutions of (3.3) are bounded but not

asymptotically stable.

REMARK 2. In Theorems 3.1 and 3.2 it was implicitly assumed that ta ,, 2atn. If ta 2nn, then. 1, which leads to the existence of unbounded solutions for (3.3).
COROLLARY 1. If the coefficient a is irrational, then (3.5) is a criterion of asymptotic stability of

the solutions to (3.2) for all j.

PROOF. Recalling that ta-taj -aj, we note that the equality aj 2n is impossible for any

irrational a.

COROLLARY 2. For any rational a, there exist infinitely many integersj such that the corresponding
solutions wj(t) of (3.3) are unbounded.

PROOF. The equation ta 2n impliesj 2n/a, andjwill be an integer for infinitely many integers

n.
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THEOREM 3.4. Each component of every solution of Eq. (3.3) oscillates if and only if either of the

following conditions holds true:

(i) b < max(a2(1 tan2), a2(1 cot2));

(ii) max(a:’(1 -tan), a(1-cot -)) < b <
2s’"2

and costa <-I/2.

PROOF. Hypothesis (i) means that the eigenvalues ofM(1) are complex, and in this case all nontriviai

solutions of (3.3) oscillate componentwise. In the case of real eigenvalues, we require d2> 0 and

kt s + d < 0, which also implies L2 s d < 0, where s and d are defined in Theorem 3.2. The condition

d > 0 leads to the left-side inequality in (ii), and the condition k < 0 yields the right-side inequality in (ii).
Finally, the restriction costa < -1/2 arises from the comparison of the inequalities s < 0 and k < 0.

REMARK 3. The restriction costa < -1/2 implies a2/2sin2(ta/2) < 2a2/3.

In conclusion, it is worth noting that the asymptotic properties of Eq. (3.2) depend on the algebraic

nature of the coefficient a. For b < 0, all solutions of Eq. (3.2) are unstable and oscillatory; for b a all

solutions of Eq. (3.2) are unstable and nonoscillatory. These two cases hold true for both rational and

irrational values of a. For

0<b < max(a2(1-tan2), a(1- cot2)),
all solutions of(3.2) are asymptotically stable and oscillatory, provided that ta ,, 2n. However, as indicated

in Corollary 2, for any rational a, there exist infinitely many integers j such that tar "2n, which leads to

the existence ofunbounded solutions for (3.2). Furthermore, since ta t.o anj, the inequality costa < -1/2
breaks down for infinitely many integers j. Therefore, under hypothesis (ii) of Theorem 3.4, there are

infinitely many solutions of Eq. (3.2) which are asymptotically stable and oscillatory, as well as infinitely
many solutions which are asymptotically stable and nonosciilatory(ta , 2n). Also, for to , 2n and

a/2 sin(ta/2) < b < a, the solutions of (3.2) are asymptotically stable and nonoscillatory. Problems of this

nature deserve further investigation.
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