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1. INTRODUCTION.
Let D be ahomogeneous bounded domain in C*. One of the problems for the homogeneous bounded

domains is to classify those which are not symmetric. It is known that every homogeneous bounded
domain in C", n <3, is symmetric. It has been proved that in each C*, and C® there exists only one
non-symmetric homogeneous bounded domain. In order to study these non-symmetric homogeneous
bounded domains we need amethod to describe these manifolds. This description permits us to understand
better the geometry of these manifolds.

There were different descriptions of these non-symmetric homogeneous bounded domains. One of
them is by means of Siegel domains of second kind. This description is complicated and very difficult
to obtain some geometrical properties of these Kihler manifolds. Another method to describe the non-
symmetric homogeneous bounded domain is by means of J-algebra and normal J-algebra, which are
special kinds of J-algebras. This is a general theory, which is not always clear in order to find through
some geometrical properties of the non-symmetric homogeneous bounded domains which correspond to
a given normal J-algebra.

It is known that to every non-symmetric homogeneous bounded domain corresponds a normal
J-algebra. This normal J-algebra is a solvable Lie algebra.

The aim of the present paper is to describe the corresponding solvable Lie algebra to each of non-
symmetric homogeneous bounded domains in C* and C° by a special set of matrices. This description
allows to prove some very interesting properties of these Kihler manifolds. The whole paper contains
four sections. The second section contains the general theory about homogeneous bounded domains, and
the relation between these manifolds and the Siegel domains of the second kind. It also gives the connection
between homogeneous bounded domains and J-algebras and normal J-algebra. Finally, we study the
theory of s-structure on a complete Riemannian manifold.
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The unique non-symmetric homogeneous bounded domain in C* is studied in the third section. First
of all we give the description of this non-symmetric homogeneous bounded domain by means of the
Siegel domains of second kind. It also contains the corresponding normal J-algebra, which is solvable
by a set of matrices. This representation of the normal J-algebra allows us to understand better this Kihler
manifold. We give analytically the complex structure J, on this normal J-algebra s and the inner product
on s, which produces the Kihler metric on the corresponding solvable Lie group which is holomorphically
isomorphic onto this non-symmetric homogeneous bounded domain in C*. We also determine the Lie
homomorphism of this solvable Lie algebra and furthermore we classify which of them are isometrics.
This classification permits us to prove that this non-symmetric homogeneous bounded domain admits
k-symmetric structure.

The fourth section deals with the same problems, which are studied in the third section, for the unique
non-symmetric homogeneous bounded domain in €. The important result of this section is that this
Kihler homogeneous manifold cannot carry any s-structure of k order for any k € 2°.

2. Homogeneous Bounded Domains
Let C" be the n dimensional Euclidean complex space. An open connected subset of D of C" is

called domain. We denote by G (D) the group of all holomorphic automorphisms of D. If D is bounded,
then it is called bounded domain in C". Let D be a bounded domain in C". There exists on D a volume
element w which is defined by

2
w=W=1) Kdz;A...Adz, AdZ ,A ... A dZ,,
where z,, ...,z, are complex coordinates in C* and K and Bergman function on D, which is positive. The

Bergman function K gives the Kihler metric g on D defined by

x a dlogK _
- 2 d
8 hzl 121 02,0z, dz, A dz,

If D is a bounded domain in C, then (D, g) is a Kihler manifold and the group G (D) has a structure of
a Lie group. The bounded domain D in C" is called homogeneous, if the group G (D) acts transitively on
D and therefore D, in this case, can be written

D =G(D)H (2.1)
where H is the isotropy subgroup of G(D) at the point z, € C*. The relation (2.1) can also be written as
follows:

D =G(D)H,
where Gy(D) is the identify component of G(D) and H, is the isotropy subgroup of Go(D) atz,€D.

Each domain D in C" is connected with a Siegel domain in the same Euclidean complex space C".
Now, we give some basic elements for a Siegel domain.
Let Vbe a convex cone in R*. We consider the following map:
F:C'xc'—=c*+ F:(w,w')—Fw,w),
having the properties.
(i) Ifwis fixed, then the map
F,:¢'—=c*, F,:w—F,(w)=F(w,w'),

is complex linear.
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(i) FWw',w)=F(w,w').
(iiiy F(w,w)EYV, where V closure of V, Vw € C'.
@iv) Fw,w)=0<w=0.
The map F is called V-hermitian form on C'.
Let Vbe a convex cone in C*. Let F be a V-hermitian form on V. We consider a subset D(V, F) of
C'xC!=C**!' = ¢, where n =k + 1, defined as follows:
D(V,F)={(z,w) EC* x C' = C/| mz - F(w,w) € C*}
which is a domain in C* x C! = €*. This is called a Siegel domain of second kind associated to (V,F). If

1 = 0, then the domain D(V,F) is called a Siegel domain of first kind. Hence a Siegel domain of first
kind is defined by

D(v)={zECY|m(z)EV},
which is a special case of a Siegel domain of second kind for which the V-hermitian form F is the zero

form.
The following theorem is true ([3]).

THEOREM 2.1. Let D' be a bounded domain in C* = C* x C' = C**'. Then there is a Siegel domain
of second kind D(V, F) of €**! which is biholomorphically equivalent onto D'.

If the group G(D(V, F)) acts on D(V, F) transitively, then D(V, F) is called homogeneous Siegel
domain of second kind, which can be written

D(V,F)=G(D(V,F))T,
where T is the isotropy subgroup of G(D(V,F)) at the point (z,, w;) of D(V, F).

There exists a theorem similar to Theorem 2.1.

THEOREM 2.2. Let D' be a homogeneous domain in € = C* x C' = C**!. Then there exists a
homogeneous Siegel domain of second kind D(V, F) in €t *!, which is bihomographically equivalent onto
D',

Toevery Siegel domain of second kind D(V, F)in C* *! = C* we can associate an affine automorphism

group AF(D(V,F)). This group AF(D(V,F)) plays an important role in the theory of classification of
homogeneous bounded domains in C”.

We denote by AF(C***) the group of all affine automorphisms of C**!. The group AF(D(V,F)) is

defined as follows:
AF(D(V,F)) = {¢ EAF(C**"Y)§(D(V,F)) = D(V,F)}
which is a closed subgroup of AF(C**'). It is known that
AF(C**Y) = GL(C*Y) - T(C**)

where GL(C**") is the group of invertible linear transformations of C**!, T(C**?) is the group of linear
transformations of C**! and "+" denotes the semi-direct product.

Let D(V,F) be a Siegel domain of second kind in C* = C**!, If the affine automorphism group

AF(D(V,F)) of D(V,F) acts transitively on it, then D(V,F) is called homogeneous Siegel domain of
second kind D(V, F) in C* ! = C* which can be written

D(V,F)=AF(D(V,F)H ,
where H is the isotropy subgroup of AF(D(V, F)) at the point (z,w) ED(V,F).
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We have the following theorem.

THEOREM 2.3. Let D' be a homogeneous bounded domain in C* = C**! = ¢! x C'. Then there
exists an affinely homogeneous Siegel domain of second kind D(V,F) which is biholomorphically
equivalent onto D'.

From Theorems 2.2 and 2.3 we conclude that every affinely homogeneous Siegel domain of second
kind can be written

d(V,F)=AF(D(V,F))H (2.1)
which is also a homogeneous Siegel domain of second kind in the sense of Theorem 2.2, that means
D(V,F)=G(D(V,F))T (2.2)

From (2.1) and (2.2) we obtain
D(V,F)=G(D(V,F)T =AF(D(V,F))H
Both description (2.1) and (2.2) for a Siegel domain of second kind are used to study some properties
such as space.
Let D = G/H be a homogeneous bounded domain in C* = C*=!. It is known that D is a complex
manifold with Kihler metric g defined by
a2 dlogf

- 2> d_ adz,
& qul kzl 02,0z, k

On the manifold D there exists a complex structure which gives the integrable almost complex
structure on it denoted by J.
Let tand b be the Lie algebras of G and H respectively. Let m be the tangent space of D at the origin
0 of D. Hence we obtain the decomposition:
t=b+m, bNm =0,
and since D is reductive we have the relation [b,m] C m. The Kihler metric g on D induces a Hermitian

positive definite symmetric form B on m. The almost complex structure J on D defines an endomorphism
Jo on m with the following properties

Jo:m—>m, J:X—=J(X), Ji=-id (2.3)

We can extend this endomorphism J, to another endomorphism J,' on ¢ which is defined as follows
Joit—=t, J X —=J)X"), J&=-id (2.4)

I X)=JyX), if XEm, J/X)=0, if XEb (2.5)

The endomorphism J, satisfies the following relation

X, Y]+J([JX), Y]) +J (X, J(N)]) - /o(X),Jo(Y)] =0, X,YEm (2.6)
which is obtained from the fact that the almost complex structure on D is integrable.
The relations (2.4), (2.5) and (2.6) imply that the endomorphism J, satisfies similar relation as (2.6),
that means
XY+ (U X), YD) +J (X, T, (V)] -V X),J'(¥)] =0, X,Y€E @7
From the Hermitian positive definite bilinear form B on m we obtain a linear form w on m which is
defined as follows
w:m—-R, w:X—->wlX)=BX,JX)) (2.8)
This linear form can be extended to another 1-form w’ or ¢’ defined by
w:it—=R, w: X->wX)=wX,) (2.9)
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This linear form w’ satisfies the relations
w'([J'oX),J (1)) = w'([X,Y]), (2.10)
w'([J'(X),X]) >0, (2.11)
forallX, YEtand X &b.
The linear form w also satisfies the relations
w(lJy(X),J((Y)D = w(X,Y]), (2.12)
w([J,(X),X])>0 X=0 (2.13)
forallX, Y Em.

Therefore from the homogeneous bounded domain D' = G/H we obtain the set {¢,b,J,’,w'}, where
Jy' is an endomorphism on thaving the properties (2.5) and (2.7) and w a linear form on ¢ with the properties
(2.10) and (2.11). The set {¢',b,Jy’,w'} is called J-algebra. There exists the following theorem ([3]).
THEOREM 2.4. Let D’ be a homogeneous bounded domain in €' = C* x C'. This manifold D’
can be written D’ = G/H, where G is a Lie group of analytic automorphisms of D’ and H the isotropy
subgroup of G at z, €ED’. We denote by ¢ and b the Lie algebras of G and H respectively. The complex
structure J on D’ induces a linear endomorphism J,' on ¢. Then there exists a linear form w’ on ¢ such
that the set {t,b,Jy’,w'} be comes a J-algebra.
In general, there are many J-algebras which correspond to the same homogeneous bounded domain
D', since there are a lot of Lie subgroups of the full group of analytic automorphisms on D’ which act
transitively on D'. Let D' be a homogeneous bounded domain in €* = C* x €', This is biholomorphically
equivalent onto a homogeneous Siegel domain of second kind
D(V,F)=G(D(V,F)T (2.14)
and at the same time is biholomorphically equivalent onto an affinely homogeneous Siegel domain of
second kind
D(V,F)=AF(D(V,F))H' (2.15)
Let t,, b, be the Lie algebras of G(D(V,F)) and T respectively. There are a linear endomorphism (J}),
and a linear form w; on #, such that the set {,,b;,(J,),,w,} is a J-algebra.
Similarly, let ,, b, be the Lie algebras of AF(D,(V,F)) and H' respectively. There exist a linear

endomorphism (J5), and a linear form w, such that the set {t,, b,,(J,),, w,} is a J-algebra.
The three J-algebras

{t:b,Jw}, {0, )pW1)s {055, Ws}
are isomorphic.
From the above we conclude that the study of homogeneous bounded domains in C" are reduced to
the study of J-algebras and we have the theorem
THEOREM 2.5. Let {¢,b,Jy,w'} be a J-algebra. Then there is always a bounded homogeneous

bounded domain D' = G/H in C* = C* x C! whose J-algebra is the given. There are also homogeneous
Siegel domain of second kind D(V,F) in C* = € x €' and an affinely homogeneous Siegel domain
D\(V,F)in €* x €' which have aJ-algebra the given {t,b,J;,w'}.

Let D' = G/H be a homogeneous bounded domain in C* = C* x C'. There exists a solvable Lie
subgroup S of G(D") which can be identified with D'. This domain is biholomorphically equivalent onto
ahomogeneous Siegel domain of second kind D(V, F) and simultaneously is biholomorphically equivalent
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onto an affinely homogeneous Siegel domain of second kind D(V,F) in €* = ¢ x C'. D(V,F) and
D((V,F) can be written
D(V,F)=G(D(V,FyH', D(V,F)=AF(D,V,F)T
It has been proved that there are solvable Lie subgroups S’ and S, of G(D(V,F)) and AF(D\(V, F))
respectively such that
D(V,F)=S' and D(V,F)=S,
The corresponding J-algebras of S, S’ and S, take the form
(s:Jpw), (s'.Jg,w") and (s,,(J;), W) (2.16)
respectively, where each of the Lie algebras s, s' and s,’ are solvable.
All the properties, which are valid for the solvable J-algebra (s,J,w) are valid for the other two
(s, 71, W) (5,01, W)
Since (s,J,w) is a J-algebra we have thatJ, is an endomorphism on s with the properties.

) Jois—=s, Jp:X—=JX), Ji=-1, (2.17)
(i) XY+ J4(oX), YD) + Jo([X,Ty(Y)D) - (XD, Io(Y)] = 0 (2.18)
w is a linear form on s with the properties

(iii) wis >R, w:X—=>(X), wl/X)J()])=w(X,Y]) (219)
(iv) w([/(X),X]) >0 (2.20)

and the operator
) advy:s —s, adty:t— adtyt)=[7,T]

has only real characteristic roots, Vx, € s, that is, adt,, as a matrix is R-triangular.

The set (s,J,w) is called normal J-algebra. The three Lie algebras, defined by (2.16), are normal
J-algebras, which are isomorphic.

Now, we consider a homogeneous bounded domain D' in C*. Let G, be the maximal solvable Lie
subgroup of G(D') which acts transitively on D' and splits over the real numbers. We know that such a
subgroup is defined uniquely up to conjugacy. )

The J-algebras which correspond to such subgroups are normal. Let (s,J,w) be a normal J-algebra.
From this we obtain an inner product { ) on s as follows

&Yy = WX, YD .

We have the following theorem

THEOREM 2.6. The correspondence between normal J-algebras and homogeneous bounded
domain in C" is one-to-one.

Let M be an n-dimensional connected Riemannian manifold, and /(M) the group of isometrics of
M. If there is a map s : M — I(M) such that for every x €M the image s(x) = s, is an isometry of M
having x as an isolated fixed point, then the isometry s, is called Riemannian symmetry at x or simply
symmetry atx. The Riemannian manifold M with this property is called Riemannian s-manifold. If there
is a positive integer k such that s* mid.,Yx €M, then M is called a Riemannian s-manifold of order k or
simply k-symmetric Riemannian space. The usual Riemannian symmetric spaces are Riemannian
s-manifolds of order 2.

We refer three results concerning Riemannian s-manifolds [9].
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I.  The group of all isometrics /(M) on a Riemannian s-manifold M acts transitively on it.
IL. Let M be a Riemannian s-manifold. Then M = G/H, where H is the isotropy subgroup of G at any
point of M.
III. LetM be a connected Riemannian s-manifold. There exists another s’-structure {s,’ : x EM} on M

such that with {s,’ : x €M} becomes a k-symmetric Riemannian manifold.

3. Non-symmetric Bounded Domain in C*

In C* there exists only one non-symmetric homogeneous bounded domain D’. First we give the
affinely homogeneous Siegel domain D(V,F) which is biholomorphically equivalent onto D’. We
describe below Vand F.

Let Q = H(2,R) be the vector space over R of all real symmetric matrices 2 x2. This is a three

dimensional real vector space, that is isomorphic onto R>. Therefore k = 3 and hence / = 1. The convex
cone Vis V = H*(2,R), that means all positive symmetric matrices 3 x 3. The mapping F defined by

uv 0) G.1)

F:c—¢C3, F:(u,v)—’F(u,v)-(0 0

Then D(H*(2,R),F) is an affinely homogeneous Siegel domain of second kind biholomorphically
equivalent onto D'.

Now, our method consists of describing D' or equivalently D(H*(2,R),F) by a normal J-algebra
(s,JpW).

We have proved that the solvable Lie algebra s can be described by the set of matrices

0 x a y K

0y 000
s={A=|0 0 B 0 Of/x,0,y,kER ,B,8,AER’} (3.2)
0003340
00 0 0 A

From this construction of s we conclude that the endomorphism J,, has the form

Jo=(By), BuER, lskis5 (3.3)

which must satisfy the relations (2.17) and (2.18). From these conditions and after a lot of estimates we

obtain
x 0 0 0 pu 0 0 0
0 x 0 0 0 v 0 0
0 0 ¢ 0 0 0 p O
0 0 0 T 0 0 0 o
1+x
JO- —T 0 0 0 -K 0 0 0 (3.4)
2

0o -2 o 0o 0 -x 0 0
o o -2 0 0 0 -¢ 0
0 0 0 -2 o0 o0 0 -t

where p, v, p, O ER’
The linear form w on this Lie algebra s defined by

w(X) = (X;, X) (3.5)
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where ( ) the usual inner product on s and X; = (K|, K;, K;, K., K5, K¢, K;, K;) a fixed vector. In order wat

w satisfies the conditions (2.19) and (2.20) we must have
Kp>0, Kyv>0, Kyp>0, Ko>0 (3.6)
Now, we have proved the following theorem.
THEOREM 3.1. Let D' be the unique non-symmetric homogeneous bounded domain in
C*= C*x C. The corresponding normal J-algebra is (s,J,, w), where s, J, and ware given by (3.2), (3.3)

and (3.4) respectively.
Now, we determine the solvable Lie group S which corresponds to the solvable Lie algebra s.

We denote by GL(S) the group of all nonsingular endomorphisms of s. The Lie algebra gl(s) of
GL(S) consists of all endomorphisms of s with the standard bracket operation [X,Y]=XY —YX. The
mapping

ad:s - gl(s), ad:B — adB

whereadB :s — s,adB : T — adB(T) =[T,B]is ahomomorphism of s onto a subalgebra ad(s) of gl(s).
Let Int(s) be the analytic subgroup of GL(s) whose Lie algebra is ad(s). Int(s) is called the adjoint group
of s.

The group Aut(s) of all automorphisms of s is a closed subgroup of GL(s). Thus Aut(s) has a unique
analytic structure under which it becomes a topological Lie subgroup of GL(s). We denote by d(s) the
Lie algebra of Aut(s). Now, the group Int(s) is connected so it is generated by the elements e*%, X €.
Therefore Int(s) is a normal subgroup of Aut(s).

From the above we conclude that the solvable Lie group S of s is defined by

1 > -1) %(e”~l) -1 i(e*-1)

o 0 y 0 0 |/ yporer ‘
0 0 0 e 0
0 0 0 0 et

The inner product on the solvable Lie algebra s is defined by
(X’Y> = w([JOX’ Y) (3.8
where w is given by (3.4). This inner product determines the Kéhler metric on S which is essentially the
Bergmann metric on it.

Now we can state the following theorem.

THEOREM 3.2. The homogeneous non-symmetric bounded domain in C* is biholomorphically
isomorphic onto the solvable Lie group S defined by (3.7). The Kihler metric g on S is defined by the
relation (3.8).

Let F be a Lie automorphism on s. This F can be represented by the matrix

a, 0 0 O a 0 0 O
0 apb 0 0 O a 0 O
0 0 a; 0 0 0 a; O
F= 0 0 0 a O 0 0 ag4
0o 0 0 0 1 0 0 O
0 0 0 0 0 1 0 O
0O 0 0 0 0 0 1 o0
0o 0 0 0 0 0 o0 1
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which becomes an isometry with respect to the inner product

(X’Y)" (Xo’[JX’YD =w(X,Y])

when

l-a
a,=x1, ap==x1, az=zx1, a,==1, a,s-li‘;z (-T“)

= vx 1-ay, o = op 1-ay; d = ot (l-ay
1 ap )0 T 14\ an )0 T 14\ au )’

Therefore if F is an isometry, then it has the form

a1l ~a,,)

a 0 0 o 0 0 0
vill - )
0 ap 0 0 0 == 0
l1-a
. 0 0 a; O 0 0 l‘f’;, — 0
isom ™ 1-a

0 0 0 a O 0 0 S

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 o0 0 0 1

wherea); =xl,ap=x1,a3+1,a,+1.

From the form F,,,,, we obtain that it has the eigenvalue 1 with multiplicity at least 4 times. Therefore
we have proved the following theorem.

THEOREM 3.3. The homogeneous non-symmetric bounded domain in C* with the standard Kzhler
metric does not admit any k-symmetric structure.

4. Non-symmetric Bounded Domain in ¢*

In €’ there is only one non-symmetric homogeneous bounded domain D’. It is well known that there

exists the affinely homogeneous Siegel domain D(V, F) which is biholomorphically equivalent onto D'.
Therefore we need V and F which are described below.

The convex cone V, in this case, is the same as in paragraph 3, that is V = H*(2,R). The mapping
F is defined by

"V, sy,
2
¥y +ig¥y -

2 Uvy

F: C*xC—H(2,R),F: (u -(:2‘) , V= (:‘)) - F(u,v)=3(uV +V'u) = e

2,

Hence we have, in this case, k =3 and 1 =2. From above we conclude that D(H*(2,R),F) is an
affinely homogeneous Siegel domain of second kind biholomorphically onto D'.

Now, our method consists of describing D' or equivalently D(H*(2,R),F) by a normal J-algebra
(s,JoW).

We have proved that the solvable Lie algebra s can be described by the set of matrices.
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L X % % X
0 0 0 0

5o A _ 0 ﬁl Xz 0 XI’XZ’XBX‘ER (4'1)
00 0 % O VPP P ER (4.4)
0 0 0 0 ¥

From this construction of s we conclude that the endomorphism J; has the form

Jo=B), BLER 1=k, 1s5

which must satisfy the relations (2.17) and (2.18).
From these conditions and after a lot of calculations we have

P 0 0 0 0 q 0 0 0 O
0O p, O O 0 0.g 0 0 0
0 0 p O 0O 00 g 0 0
0 0 0 p 0O 00 0 g O
0 0 0 0 Ps 0 0 0 0 gs
2 9 90 0 0 p, 0 0 0 O

a

Jo- l*p: (4'2)
0 = 0 0 0 0 p 0 0 O
l#p;
0 0o - 0 0 0 0 p, 0 O
149}
0 0 0o - 0 0 0 0 p O

9

1¢p:

as

wherep, ER, i=1,...,5, ¢ ER i=1,...,5.

The linear form w on this Lie algebra s is defined as follows
w(X) = (X5, X) (43)
where ( ) is the usual inner product on s and X,(k;, K5, K3, Ky, Ks, K¢, K7,Kg,K0,K o) 2 fixed vector. In order w
to satisfy the conditions (2.19) and (2.20) we must have
q, ¥,>0, ¢, x,>0, g, x,>0, g5 k>0 4.4)
Now, we have proved the following theorem
THEOREM 4.1. Let D be the unique non-symmetric homogeneous bounded domain in C* = C* x 2,

The corresponding normalJ-algebra is (s,Jy, w), where s,J, and ware given by (4.2) and (4.3) respectively.

Now, we determine the solvable Lie group S which corresponds to the solvable Lie algebra s. We
denote by GL(s) the group of nonsingular endomorphisms of s. The Lie algebra gi(s) of GL(s) consists
of all endomorphisms of s with the standard bracket operations.

[X,Y]=XY-YX.
The mapping
ad :s - gl(s), ad:B — adB
where
udB :s —s, adB :T — adB(T)=[T,B]

is a homomorphism of s onto a subalgebra ad(s) of gl(s). Let int(s) be the analytic subgroup of GL(s)
whose Lie algebra is ad(s). It is known that Int(s) is called the adjoint group of s.
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The group Aut(s) of all automorphisms of s is a closed subgroup of GL(s). Thus Aut(s) has a unique
analytic structure under which it becomes a topological subgroup of GL(s). We denote by d(s) the Lie
algebra of aut(s). Now, the group Int(s) is connected, so it is generated by the elements e**), X € 5.
Therefore Int(s) is a normal subgroup of Aut(s).

From the above we conclude that the solvable Lie group S of s is defined by

r LA LY LA X v PR
L™= SE™-1 SE®-1) gE"-1) SE™-1)
0 eV 0 0 0 0
S=]L= 0 0 e% 0 0 0 /xiER. '.-1""’5
0 0 0 ev’ 0 0 w.ER l-l,...,s
0 0 0 0 e'h 0
0 0 0 0 0 ew,

The inner product on the solvable Lie algebra s is given by (4.3). This inner product determines the
Kihler onS which is essentially metric the Bergman metric on it. Now, we can state the following theorem.
THEOREM 4.2. The homogeneous non-symmetric bounded domain in €’ is biholomorphically
isomorphic onto the solvable Lie group S defined by (4.5). The Kihler metric g on S defined by the

relation (4.3).
Let F be a Lie automorphism on s. This F can be represented by the matrix

a, 0 0 O O aq, 0 O 0 O

0 ao 0 0 0 O a, 0 O O

0 0 a3 0 0 O O a3 O O

o 0 0 @ O O O O g O
F=i0o 0 0 0 ag 0 0 0 0 a
o o0 0 0 0 0 1 0 O O

o 0 0 0 0 0 0 1 o0 O

o 0 0 0 0 0 0 O0 1 O

0 o 0 0 0 0 0 O o0 1

which becomes an isometry with respect to the inner product
K. Y) = X, [JX, Y] =w(X,Y])

when
a“-il, azz-:l’ %-tl, a“-tl, a”-:tl,

_pa 1-ay  pap 1-ap %_@l-an
1+p! ay ’ 1+p} ap ’ apy  ay

16

_Pdh 1-ay, _PsPs 1-as
1+p? au ~ ' 14p? as

)

If F is an isometry, then it has the form
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a, 0 0 0 o 0 0 0 0
PA; 1-apn
Py 1-ay
0 0 a3; 0 0 0 0 o 0 0
0 0 0 a, O 0 0 0 P tu 0
F - lepy
0 0 0 0 as O 0 0 0o 2l
leps 9ss
0 0 0 0 0 1 0 0 0 0
00 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

where a;; = %1, ay =1, @ ==1, ay,==1, ass==+1.
From the form of F,,,, we obtain that it has the eigenvalue 1 with multiplicity at least 4. Therefore

we have proved the following theorem.

THEOREM 4.3. The homogeneous non-symmetric bounded domain in C* with the standard Kihler

metric does not admit any k-symmetric structure.
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