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ABSTRACT. It is proved that the product method A(C, 1), where (C, 1)is the Ceshro arithmetic

ean natrix. is totally effective under certain conditions concerning the matrix A. This general

result is applied to study absolute NSrlund summability of Fourier series and other related series.
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1. INTRODIi(’,TION AND SOME RESULTS.

Let A (a,,) be an infinite matrix with a,k xs real numbers. A given series u ut. or
k=0

le s,’,luence of its partial sums {U} is said to be IAI summable if

,. a.u (1.1)

is (h’fined for all n. atd v ,, converges absolutely. , is the series-to:series. :l-transfornatio

of u and wo <h’not ib I>y A. Tim mLrix A is 1] bsolutly consrvtiv in c tim absolute

,’otav<,rge<’(, of u inl>lies tirol of ..lu. W will I>e ninly co,cQrmd wiLl tim casQ i, whid ,,t is

,l)solttelv conservative and

k=O

fl)r every tixed n > 0. it may be worthwhile to mention that the conditio:

k=O

lbr ,v,ry lixed n 0. which is stronger than (1.2), is an essential requiretnent for the definitiot

of, lu tbr every ,, tbr which tie sequence {u,} is convergent (see Szhsz [10], Lemm ,ud 2 of

’lapter 111).

Let A, B be given matrices for which Bu and the A-trsformation of Bu, viz., ABu are

defined. Then the ]AI summability of Bu or equivMently the absolute convergence of ABu defines

the lAB[ summability of u. It may be noted that the IABI summability is, in general, different
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than the absolute summability defined by the product matrix A.B (if it exists).

It may observed that the condition (1.2’) and a ]ortiori (1.2) are automatically satisfied

whenever A is a lower triangular matrix (that is, a. 0 for k > n ).

Let p {p,, be given sequence of real numbers such that P,, ’pk 0 and P-t 0.
k---O

(N. p) matrix is the lower triangular matrix A with

c0o 1, O,,o 0, n _> 1, c,, p.
(1.3)

(a) for each fixed n, there is a positive integer r(n) such that {cnk} is nondecreasing for <_

k <_ r(n) and nonincreasing for k >_ r(n), or

and then (1.1) defines the series-to-series (N, p)-transformation. The (N, p)-transformation with

p. for n 0, 1,2 defines the series-to-series (C, 1)-trazxsformation, given by bo ao and

b, kay, S S_t, n >_ 1, (1.4)
n(n + l) =t

where S sk/(n + 1) and {, is the sequence of partial sums.
kO

For any sequence {,}, we write , =/3,- O,+t. {O,},BV means that la.I <

let f(t) be an (L)-integrable periodic function with period 2r. We ssume, without loss of

generality that the constant term of the Fourier series F(t) of f(t) is zero. Let F(t) A,,(t)

and l(t)denotes its conjugate series: B.(t). Also, l"’(t) {,,B.(t)}, and l"’(t) is the derived
nl

series of F(I). For a given point .,’. we write

(t) 0(l) {f(x + t)+ f(x -t)}, (t) {f(x + i)- f(x

and taking r= 0 or 1, we say that A is F,-effeetive provided that ,()BV(O, ) implies that

b’(.r) is A sum,nabh,. Wc say tl,at A is (i) I,1-effective ir Ij I,()l-’m < inplies tl,at

b’(x) is A summable. (ii)b’-effective ir ()eBv(o,l implies tlmt F’(x)is A summabh,.

(iii) IF-effective ir {-’e,()lv(0, )inplies that F’(x)is IAI ummable end absolutely total

effective if it is effective in each of the sens defined almve.

Unless stated otherwise, 0 [/], i.e., the greetet integer nt greeter then /. and

denotes psitive constant not neeeserily the seine et eeeh eurrence.

For a general mtrix A. ’rripathy [11] (s als Kuttner and Tripathy [8]) and, Kuttner

and Sahney [7] have obtained sufficient conditions s that A is F-effeetive. The restrictions

itnposed on ,I it [11] arc qtit(’ general. Ittt it is ,tsually (lillicult to v(,rifv them for special

1" iterest. The ature of the corresponding conditions used in [7] is such that they can be easily

v.ritied, and, theretbre the following result due to Kuttner and Sahney h the advantage o1"

Iavig sone direct al)plications.

THEOREM A. Let the matrix A be absolutely coeative anda 0 for all n, k. Suppose

that either
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(b) for each fized n, there ts a posttive tnteger s(n) such that {cr,,,/k} is nondecveasin9 for
< k < s(n) and nonmcreasng for k > s(n).

Suppose also that in case (a). for ko >

r(n)+ko

r(n))_2ko

and tn case (b), for ko >_

o.t, 0(1 (1.5)

Z Z
s(n))_2ko

(.6)

Then A is IFol-effective.
Starting with an absolutely conservative method A. we obtain in the present paper a sub

licient condition that connects the proof of absolutely total effectiveness of ..I(C’, 1) with the

proof of It"l-effectiveness of the A matrix. As we shall see. such a result has some interesting

applications. We will first prove the following.

THEOREM 1. IJ’A is absolutely conservative, (I.2) holds and

ikt)l- O(l) 7)
n=l

Jb,. t,(O. r]. then A(C, 1) ,s absolutely total @ctive.
We shall obtain the following corollaries to ’rhrcm I.

COROLLAI[Y [. If A satisfies the hypotheses of Theorem A and (1.2). then A(C, 1) is

,,bsolutcly total effective.

COROLLARY 2. If {p,} is ay sequence such that {(n + i)p,/I,} {R,}tBV and

i.e.. {,’ is a bounded sequence, titan (V, p)(C, l) is absolutely total effective.

As we siail see in Lira Imt section of Lhc present paper, a special ce of Corollary provides a

result vlicl iciudes. nter alia. siarper results than those proved elseiaere. (Cf. [3], Threms
ud 2). On tim ottaer imnd. Corollary 2 includes inter alia tle results contained in [,l] (Tiworems
and 2).

In Section 4, we obtain anotimr timorem which provides a somewi]at more direct suiScicnt

,’o,,,litio,, for I/,1 i I/r/l-,qfoctivo,ess of A(C, ). This tlmoren, wlicla is less gonm’al titan

’l’heorem in the sense t,iat it does not provide tim absolutely total effectiveness of A(C, 1), is

readily applicable, and we deduce fi’om it considerably slorter proofs of some earlier results (see

1]. ’L’lmorms nd 2).

2. SOME PRELIMINARY RESULTS.

We shall nd the following lemm for the proof of Theorem and its corollies.

LEMMA 1. The necessary and sufficient condition that A be absolutely conservative is that

for all k 0,

Xh result of mm is wn known. S, .g., [9] o [6].
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LEMMA 2. Let {a,} be a given sequence; then for any number z we have

-(1 .r akz azTM a,,z" + a,+

where m and n are integers such that n m 0.

The proof of Lemma 2 is a straight forward calculation.

LEMMA 3. If A satisfies the hypotheses of Threm A, then (1.7) holds.

PROOF. Observing that (sin kt)/k is the imaginary part of exp(ikt)/k, we shMl prove (1.7)
by following closely the proof of Threm A, which contorts the proof for ]b,(t)l O(1) with

b,,(t) the A-transformation of (sinkt)/k. Thus. considering those values of n (if any)

for which r(n) 5 20(or s(n) 5 20), we have that {a,/k} is nonnegative and nonincreing for

k 20. Therefore, by an application of Abel’s Lemma to the inner sum and using the fact that

the partial sums exp(ik/) are O(l/t), we have

cxp(ikt)

,(n)<O k=20 n=l
(or (,)<O)

th 0(1) timat i otincd fron Lmma and tim hypothss that A is solutly onsrvtiv.

Considering the (’;e (I)), we follow exaCtly the argument in [7],

I I=o().
a(n)2e

In e (a), the part of the sum for k r(n) -O may be dealt with in [7], p. 43, and it

remains to show that when r(n) -0 > 20, then

., . i=o(). (.)

’1 rify this wo apply I,cmma 2 and get (of. [7],p. ,I 13)

(n)-o

k=28

(
a,.0 (n,,’(,)-0+ 1)/;t-’ I(.,/)1 + + (.) 0 +

whcrc. Ibr conw,nicnc(,, we writc t,(n. k) for a,.. Tlte rcst of the proof of (’2.’2) follows (lirectly

from [7]. This conplctes the proof of the present lcmma.

LEMMA 1. If {p, satisfies the hypotheses of Corollary 2, then (N, p) is absolutely regular

and a Jbrtov absolutclv conservative.

Lemma 4 may be prov by following the prf of mma 10 in [4].
LEMMA 5. If {}tB, then {S}B implies that C Z,o P*] O(P,[) d {S}tB is

equivMent to the following:

=o(1)IP.I lPl
The first part of the lemma follows directly when we observe that

k +
and appeal to the hypotheses {}B and {S}B. The second part follows
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an carlier result (see [5], Lemma 3; see also [2]).
LEMMA 6. If P O([P,,[), then uniformly for all r, s(r >_ s >_ O)

L Pk exp(-ikt)l s Kt-’IP,

uniformly in 0 < < r.

Lemma 6 may be proved by applying Abel’s transformation and using the result that the

partial sums exp(-ikt) are O(1/t).
I,EMMA 7. If {p,,} satisfies the hypotheses of Corollary 2, then (1.7) holds for the (N,p)-

transformation defined by (1.3).

PROOF. Consider the condition:

_- _- p P_,

which is obtained from (1.7) by replacing 0 by 0.

Ve shall first prove (2.3). ,’Now observing that

Pk P-t
P. P,,-t

we h&ve

exp(ikt)
0(1) (2.3)

k

(n + t)P._, [P(n, ) + (,,

Nt + N,
say. Applying Abel’s Lemma to the inner sum, we have

n-O

max P, exp(-ikt) AR,.[.N < Ift
,=o nlP.-t[ o<.,<.-o_ =,,,

(2.4)

0 < n < n

n-I
_< K,t-’ IAR.I IP.I,

emO

by virtue of Lemma 6. Thus,

N g= nlP._lllAl.=o
=0(1)g,lA&l IP,I (n + 1)IP.I

by virtue of Lemma 5 and the hypothesis that {}eBV.
Taking 0 if a > & breaking the range for k into w parts vi.. k < 0 and k 0 and

observing that by Lemma , Pg O(IP), we here

N I,lPol nlP.-,I + I,
nlP._,l pexp(-ikt)l.

Since p P(R/(k + 1)} and the partial sum of exp(-ik) O(1/), an application of the

(2.5)

Writing r’ for min (r, n 0), we see that by a change in the order of summation, we have for any
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Abel’s transformation shows that for an5" m with 0 < m < n, we have

.k=,,, P, exp(-ikt)l < Kt-t ,,-t \k+lll+K tn

Thus. using the result of Lemma 5 and a suitable change in the order of summations, we have

t-’ . O(tl, (2.)

because R,, e/3 V.

Combining (2.5) with (2.6), we prove (2.3). Since the above proof remains valid if 0 is

replaced by 20, we deduce (t.7) from the proof of (2.3).

3. I’ROOF OF TIIEOI{EM AND ITS C.OROLLARIES.

(1). I"t I-effectiveness: We have assumed without loss of generality that the constant term in

/"(.r) is zero so that

NOW.

,(r) (t)dt O.

(l) cos ,,t dr.A,,(.r)
r

l)enoling by A.(.r) the series-to-series (C, l)-transformation of F(.r), we have

A.(.) (t) ,- cos ,.t d.
r k(’k + )

Itttcgrating by parts we see that ..l.(.r) is the real part of

where

6:(t)
/,’(k + l’i ’’exp(i’/)"r’--I

Thus, if b,(z) denotes the A(C, 1)-transformation of F(x), then we have

+- , [Re6(u)ldu)d,(t).

Now it is eily seen that 6(t) O(1/kt), therefore,

by virtue of the condition (1.2). Next we notice that

’[Re’(u)ldu
k(k + 1)

sinr.

Thus,

I,.,,I [Re6k(u)]du 0(1),

(3.3)

(3.4)

(3.5)
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by virtue of the condition (1.2). In view of (3.4) and (3.5), we have

2
[tR(n,t)- ot,,, ReS,(u)du]dda(t) (3.6)b,,(x) -rr

where R(n, t) is the real part of

Since by hyl)othcsis fo Id,(t)l <_ K, in order to prove that A(C, 1) is IF, l-,:frertive, it is sufficient

to slmw that the following estimates hold for re(0,

S’ Id(n,t)l O(1) (3.7)

S .,1, c,. ReS(u)dul 0(1). (3.8)
n----I k---I

We lirst proceed to prove (3.7). Breaking the range of summation for the inner sum into

< k < 20 and 20 < k, we use for the former range the fact that &,(t) O(1), while for the

latter rlulge we replace b(t) by the following expression whicl is equal to it:

(t exp(it))-’k+l {.1 -oxp(i,’t)-exp(i[k + ,]t)}.

I’lus, we write

n----I

k=l k=30

O(1),

by virtue of the hypothesis (1.7) and that A is absolutely conservative so that (2.1) holds. We
thus prove (3.7). Next, we have

0-

sinrts, -< .:,1 + ’:’"" -(: + t) .:,

O-I

k= kO

O(1),

by reasoning parallel to that used in the preceding paragraph. Thus (3.8), holds and we complete
the proof of IFtl-elfectiveness of A(C, 1).
(II). IP, l-effectiveness: Since, for the series
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it follows from (:3..1) that

,(t) sin nt dr.t3.(.r
r

"

where 1 (n, t) is the imaginary part of J(n, t) d .(z) is the A(C, l)-transformation of

But by lypothesis f t-[(,(t)ldt K; therefor, in order to prove the ll-elfectiveness of A(G, 1)

it is suificient to show that

I/(.,t)l o().

This fbllows directly from (3.7). and we complete the proof of the {{-.ffectiveness of

.,l((’. t).

(lIl). [l’l-effectiveness: For the sequence F’(x),

cos . d,(),

since ,() 0. Thus. tim terms of the corresponding series are obtained as

.,,(.r) sin(
2

sin(, 5 ) d,().

I)enoting by u(.r) tim series-to-series (C. l)-transformation of ,,(.r). we have

u.(a.) sin(){cos()t,n6(1) sin(g)Rc$(t)}d,(t).
Thus. if b(x) denotes the A(C. 1)-trsformatioa of F’(x) then in view of (3.4), we have

_4 " ! lt)I(n,t) sin(t)R(n,t)IdO(t).b(x)
r sin(2t){cos(.

But by hypothesis (t)eBY(O,r); therefore, in order to prove the [Fl-effectiveness of A(C, 1)

it is sufficient to show that (3.7) holds. We thus complete the proof of the [Fl-effectiveness of

(IV). IFl-effectiveness: For the series F’(x) Z u,(x), we have

and. therefore,
2 [ d

u,(z) -- (t)tt Re{ (t)}dt. (3.9)

Following the proof of the [F l-effectiveness part, we deduce IF]-effectiveness of A(C, 1) from (3.7)

and (3.8) by comparing (3.9) with (3.2) and then appealing to the hypothesis that ((t)/t)eBV(O, ).
Since (t)eBV(O, ) implies that ,(t)eBV(O, r), the IFol-effectiveness of A(C, ) is included

in its F-effectiveness. Thus combining (I) (IV), we complete the proof of Threm 1.

To prove Corollary we note that if A satisfies the hypotheses of Threm A, then Lcmma

3 ensures the condition (1.7) of Threm 1. This together with (1.2) implies the conclusion of

Theorem l, which is also the conclusion of Corollary 1. Since for the (N, p) transformation, (1.2)

holds automatically we use Lcmma 4 and Lemma 7 to s that the hypotheses of Threm are

satisfied and in conclusion we obtaitt Corollary 2.

4. ADDITIONAL RESULTS.

We shall also prove the following.
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TIIEOREM ’2. If A is absolutely conservative and the condition 9(t)Bl/(O,r) implies the

IAI summability of . to,, where

dr, (4.1)1)tw,, #(t) cos(n +

then the A(C, 1) is IFI- and IF[I-effective.
Comparing the hypotheses of Theorem with those of Theorem ’2, we observe that the

condition (1.7) of Theorem is directly associated with the I.’ll summability of the series

k__ cxp(ikt)/k. Similarly, the corresponding condition of Theorem 2 is closely associated

with I/;’o]-elt’ectiveness of /1, which is usually proved by establishing the stronger result that

:E Ic,,(t)l O(1) where E c,,(l) is the A-transformation of :E(sin kt)/k.
We shall need the following additional lemmas for the proof of Theorem ’2.

I.EMMA 8. For any fixed .\ > 0, we set

,,(t) {sin(k + ,)t}/(k + ).
k-’-I

If -c,,(l) is either (i) the A-transformation of u(t} such that A satisties the hypotheses of

’Tlworem :\. or (it) the (:V.p)-transtbrmation of u(i} such that {p,,} satisfies the hypotheses of

(’orollary ’2. then ’’l’,,(t}l O(1 for tel0,

PROOF. In view of Lemma 4 and the hypotheses of Theorem A we notice that both A and

(N, p) are absolutely conservative and it follows that in order to prove Lemma 8 it is enough to

prove it with u(t) replaced by v(t) {sin(k + )t}[k. But we may prove this by following

closely the proof of Lemma 8 for the case , 0 which is contained in [7], [2] (proof of Theorem

C). This completes the proof of the lemma.

LEMMA 9. If g(t)eBV(O,r), then {V,,}eBV, where

rV,,= [sin1/2(n+X)t] at. (4.2)n ’-t- 9(t)
mn t

PROOF. Let A,,(z) denote the Fourier series at x, of a 2r-periodic function

such that 9(t) 1/2{f(:t + t) + f(z t)}. Then we see that Vn ’s(z)/(n + 1), where

is the sequence of partial sums of A(z). Thus, in view of (1.4) the result of the lemma is

essentially that (C, 1) is IFol-effective. The lemma now follows from Bosanquet [1] where it has
been shown that (C, a) is IFol-effettive for > 0.

5. PROOF OF THEOREM 2.

(I). IFtl-effectiveness: Taking E a,, F(:t)in (1.4) we have

+ fo"1)s i- () {.i.( + )/. 1/2}a
rO

_[-(n+ 1) (t){sin(n + 1)t/sin-t}dt.
Using (3.1) and integration by parts (cf. [4], p. 480), we have

" 2-- sin It sin 1/2t

"’,(t){ }{sin(n+l)t}’ (5.1)+r( +tfo cos
sin1/2tn sin 1/2t :t dt
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W +
say. Thus. in order to prove that A(C, is }FI I-effective it is enough to show that both (V.
I’,_,) and (14, W,,_,) are [.4[ smnmable. That the former of these is [A[ summable follows

from Lemma 9 and the hypothesis that A is absolutely conservative when we observe that

(t)cBV(O,). Next we see that

I,V. w._ " 1(/)
-g sin t cos(n + ) at

and. therefore. ]A[ summability of (I,V l,V._t) follows from the hypotheses of Theorem

)eBV(O,r) This completes the proof of the" when we appeal to the fact that ((t)/sin it
]Ft I-effectiveness of A(C. 1).

(II). ]F]-effectiveness Ting a. F’(x) in (1.4), we have (cf. [4], p. 480)

-r(n + 1 O(t) ;sin t dt

" @(t){sin(n+l)t}d (5.2)2 Sin t sin t
1I" @(t) tcsl {sin(n+l)t}dt"+r(n + 1) sin t t) sin t

Comparing (5.2)with (5.1)and observing that by hypothesis {(t)/sin t}eBV(O,r), we prove

that A(C, 1) is ]Fl-effective by following the preceding proof. This completes the proof of

Theorem 2.

6. REMARKS.

We observe that the hypothesis concerning the IAI summability of w. w applied in the

d @(t)/sin t. Thus, in view of (3.1) d (r) 0proof of Threm 2 for g(t) (t)/ sin t
we may te g(x) 0. Therefore, on integration by pts we s from (4.1) that

w., {sin(n + )t}/(n + )dg(t).

If we now denote by EY, the A-transform of w, and assume (1.2] and that g(t)eBV(O,r),

then

U, -"c, {sin(k + )t}/( + )d(t)

-’.()d()
and a sucient condition for the ]a summability of w. is that Z [c.(t) 0(1) where Z

is the a-trsformation of sin(k + )t/(k + ). This is satisfied, however, by virtue of Lemma

8, when either A satisfies the hypotheses of Corolly or A is (N, p) and satisfies the hypotheses

of Corolly 2. Thus we deduce from Threm 2, ]F[- d F-effective parts of Corollary

and Corollary 2. It is interesting to observe that the foregoing arguments provide remarkably

shorter proofs of some earlier results {[4], Theorems and 2).

Following [7], we observe that if {p.} is nonnegative, nonincreing and {S}eB. then the

(N, p) satisfies the hypotheses of Theorem A, and Corollary provides the following result which

inter alia includes sharper results than those proved elsewhere ([3], Theorems and 2).
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COROLLARY 3. If {p,,} is nonnegative, nonincreasing, and {S}elt, then the (N,p)(C, 1}

is absolutelv total effectiw..

Corollary also shows that if, in Corollary ’2, we impose the additional restriction that

{p,,} is nonnegative and nonincreasing, then the hypothesis {R,}eBV may be deleted. It may

be ,uentioned here. however, that there exist sequences {p,} which satisfy tile hypotheses of

’o,’ollarv "2 but which are not even monotonic. The absolutely total effectiveness of tile (’es/tro

tnatrix (C,//) for b > vas initiated by Bosanquet [1] and was completed subsequently. As
a special case of Corollaries and 2, we obtain the absolutely total effectiveness of the (C, )

matrix for 8 > 1.

The authors should like to thank the referee for some helpful suggestions.
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