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ABSTRACT. It is proved that the product method A(C, 1), where (C, 1) is the Cesaro arithmetic
1nean matrix. is totally effective under certain conditions concerning the matrix A. This general

result is applied to study absolute Norlund summability of Fourier series and other related series.
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I. INTRODUCTION AND SOME RESULTS.
Let A = (@qi) be an infinite matrix with ang as real numbers. A given series u = Z“k or
k=0
the sequence of its partial sums {Uy} is said to be |A| summable if

~
Vn = Y Qmkllk (L.1)
k=0
0
is defined for all n. and v = Z m, converges absolutely. v is the series-tosseries, /A-transformation
n=0
ol u and we denote it by Aw. The matrix A is called absolutely conservative in case the absolute
convergence of w implies that of Au. We will be mainly concerned with the case in which /A is

absolutely conservative and

for every fixed n > 0. It may be worthwhile to mention that the condition:

0

Zl(\fﬂkl < oo (1.2%)

k=0
for every lixed n > 0. which is stronger than (1.2), is an cssential requirement for the definition
ol .1u for every u for which the sequence {u,} is convergent (see Szasz [10]. Lemmas | and 2 of
Chapter D).
Let A, B be given matrices for which Bu and the A-transformation of Bu, viz., ABu are
defined. Then the |A| summability of Bu or equivalently the absolute convergence of ABu defines
the |AB| summability of u. It may be noted that the |AB| summability is. in general, different
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than the absolute summability defined by the product matrix A.B (if it exists).

It may observed that the condition (1.2') and a fortiori (1.2) are automatically satisfied
whenever A is a lower triangular matrix (that is, a.x = 0 for & > n).

Let p = {p.} be given sequence of real numbers such that P, = ipk #0and P., =0.
(V. p) matrix is the lower triangular matrix A with =

Pa_ .
ag =1, ano=0.n21, ank =;‘,—"'—£u-¢

Pn-y

(1.3)

— Pnpa_x—=Pn_rpn .
= ~Riegiesiie, 1<k<n,

and then (1.1) defines the series-to-series (N, p)-transformation. The (.V, p)-transformation with

pn = 1forn=0,1,2,..., defines the series-to-series (C, 1)-transformation, given by b, = a, and

bn n(n+l)zkak Sl-8 ,,n>1, (1.4)

n
where 51 = 3"si/(n + 1) and {sa} is the sequence of partial sums.
k=0
0
For any sequence {3,}, we write ABx = fn — Bn41- {PFn}eBV means that ZlAB,.I < 00.
n=1

Let f(t) be an (L)-integrable periodic function with period 2xr. We assume, without loss of
0

generality that the constant term of the Fourier series F(t) of f(t) is zero. Let F(t) = ZA..(!)

n=1

0

and [°(t) denotes its conjugate series: ZB,.(t). Also, #°(t) = {nBy(t)}, and F'(t) is the derived
n=1

series of F(t). For a given point &, we write

8 = 6,(0) = 5z +0 + [z = 0}, $(0 = 3{S(+0 = [z = D),

61 = &1(0) = [ dlu)du,
and taking r = 0 or I, we say that A is |F,|-effective provided that ¢,(¢)eBV(0, ) implies that
I(r) is |A] summable. We say that A is (i) |Fy| -effective il [T |¢(¢)|t='dl < co implies that
I"(x) is |A| summable. (ii) |/} ]-cllective if ¥(t)eBV(0,x) implies that [*(xr) is |A| summable.
(iii) | F{|-effective if {t="(t)}BV(0, ) implies that () is [A] summable and absolutely total
effective if it is eflective in each of the senses defined above. ‘

Unless stated othcrwise, 0 = [r/t], i.e., the greatest integer not greater than « /¢, and K
denotes a positive constant not necessarily the same at each occurrence.

For a general matrix A, Tripathy [11] (sce also Kuttner and Tripathy [§]) and, Kuttner
and Sahney [7] have obtained sufficient conditions so that A is |Fy|-effective. The restrictions
imposed on 1 in [I1] are quite general. but it is usually difficult to verify them for special cases
of interest. The nature of the corresponding conditions used in [7] is such that they can be easily
verified, and. therefore the following result due to Kuttner and Sahney has the advantage of
having sotne direct applications.

THEOREM A. Let the matriz A be absolutely conservative and anx 2> 0 for all n, k. Suppose

that either

(a) for each fized n, there is a positive integer r(n) such that {cnk} is nondecreasing for 1 <

k < r(n) and nonincreasing for k > r(n), or
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(b) for each fired n, there 15 a positive integer s(n) such that {anx/k} is nondecreasing for

1 £ & < s(n) and nonincreasing for k > s(n).

Suppose also that in case (a). for kg > 1

1 r(n)+ko
LY aw=00) (15)

r(n)>2ko r(n) k=r(n)—ko

and in case (b), fork, > |
1 s(n)+ko

S aw =0(1). (1.6)

s(n)>2ko s(n) k=s(n)—ko
Then A is |F,|-effective.

Starting with an absolutely conservative method A. we obtain in the present paper a suf-
licient condition that connects the proof of absolutely total effectiveness of (€, 1) with the
proof of |F,|-effectiveness of the A matrix. As we shall see, such a result has some interesting
applications. We will first prove the following.

THEOREM 1. If A is absolutely conservative, (1.2) holds and

pRIPp L LYY (L7)

n=1 k=20
Jor te(0. 7). then A(C.1) 1s absolutely total effective.

We shall obtain the following corollaries to Theorem 1.

COROLLARY L. If A satisfies the hypotheses of Theorem A and (1.2), then A(C,1) is
absolutely total effective.

COROLLARY 2. If {p,} is any sequence such that {(n + 1)p,/P.} = {Ra}¢BV and

B2+ 7R} = (2.
i.e.. {Sy} is a bounded sequence, then (N, p)(C. 1) is absolutely total cffective.

As we shall sce in the last section of the present paper, a special case of Corollary 1 provides a
result which includes, inter alia, sharper results than those proved clsewhere. (Cf. [3], Theorems
L and 2). On the other hand. Corollary 2 includes inter alia the results contained in [4] (‘Theorems
I and 2).

In Section 4, we obtain another theorem which provides a somewhat more direct sufficient
condition for |7 |— and |F{|—effectiveness of A(C,1). This theorem. which is less general than
Theorem | in the sense that it does not provide the absolutely total cffectiveness of A(C.1), is
readily applicable. and we deduce from it considerably shorter proofs ol some carlier results (sce
[1]. Theorems | and 2).

2. SOME PRELIMINARY RESULTS.
We shall need the following lemmas for the proof of Theorem 1 and its corollaries.
LEMMA 1. The necessary and sufficient condition that A be absolutely conservative is that
for all k > 0,
0
Y lank] = O(1). (2.1)

n=0

The result of Lemma 1 is well known. See, e.g., [9] or [6].
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LEMMA 2. Let {a,} be a given sequence; then for any number  we have
—(l-u) Z apz® Z Aapz ! — apz™ + apg ™t
k=m k=m
where m and n are integers such that n > m > 0.

The proof of Lemma 2 is a straight forward calculation.

LEMMA 3. If A satisfies the hypotheses of Theorem A, then (1.7) holds.

PROOF. Observing that (sin kt)/k is the imaginary part of exp(ikt)/k, we shall prove (1.7)
by following closely the proof of Theorem A, which contains the proof for ZIb,.( t)] = O(1) with
3 ba(t) as the A-transformation of Z(Gil‘l kt)/k. Thus. considering those values of n (if any)
for which r(n) < 20(or s(n) < 20), we llave that {anx/k} is nonnegative and nonincreasing for
k 2> 20. Therefore, by an application of Abel’s Lemma to the inner sum and using the fact that
the partial sums ¥ exp(ikt) are O(1/t), we have

Z | Z ( \(p(;kt

1(n)<20 k=20
(or s(n)<20)

O{Zn,.u} =0(1);

the O(1) estimate is obtained from Lemma | and the hypothesis that A is absolutely conservative.
Considering the case (b), we follow exactly the argument in [7}, p. 413, to get

l Z exp(tkt)

(n)>20 k=20

=0(1).

In case (a), the part of the sum for & > r(n) — 0 may be dealt with as in [7], p. 413, and it

remains to show that when r(n) — 0 > 20, then

rin) =0 (XP(:L[)

1Y a |=o0). (2:2)
r(n)>38 k=20
To verify this we apply Lemma 2 and get (cf. [7],p. 413)
r(n)— 0
| 2 exp(rkt)l <
k=20
r(n)-0
L a,.gg a(n,r(n)—0+1)
t n )
K kz;o [Ar(ank/k)| + + ") =01

where, for convenience. we write a(n. k) for a,i. The rest of the proof of (2.2) follows directly
from [7]. This completes the proof of the present lemma.
LEMMA L. If {p,} satisfies the hypotheses of Corollary 2, then (V,p) is absolutely regular
and a fortior: absolutely conservative.
Lemma 4 may be proved by following the proof of Lemma 10 in [4].
LEMMA 5. If {R,}eB, then {S:}eB implies that P = p_, |pk| = O(|Pa|) and {S:}eB is
equivalent to the following:
I nll‘;‘ HPI =0(1), n=12,...
The first part of the lemma follows directly when we observe that
Ry Py,
Sl = 3 A
and appeal to the hypotheses {R,}e¢B and {S;}eB. The second part follows as a special case of
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an carlier result (see [5], Lemma 3; see also [2]).
LEMMA 6. If P; = O(|P.|), then uniformly for all r,s(r > s > 0)
|3 Peexp(—ikt)| < Kt™'|P,|
k=s
uniformly in 0 < t < .
Lemma 6 may be proved by applying Abel’s transformation and using the result that the
partial sums ¥ exp(—ikt) are O(1/t).
LEMMA 7. If {p,} satisfics the hypotheses of Corollary 2, then (1.7) holds for the (N, p)-
transformation defined by (1.3).
PROOF. Consider the condition:
n—k n—k— exp(ikt) -
N=$I3 B ] —=0(1), (2.3)

n=0 k=6 " n-1

which is obtained from (1.7) by replacing 20 by 0.
We shall first prove (2.3). Now observing that

P Py 1
Pn P"_l - (n + l)Pn-l

[Pe(Ri — Ry) + (n = k)pi),

we have

N=< an-.ﬂ):P ol z“) S (AR

n=60 k=0 r=k

20 1 n-0 (2 4)
—1ikt .
+E,nIP-1IIZ”"“p( ikt)|

=N+ N,,

say. Applying Abel’s Lemma to the inner sum, we have

n-6 n-1

z: Py exp(—ikt) Z AR,

nIP _ll0<m<n 7] =

N,<I\t2

n=60

Writing r’ for min (r,n — 0), we see that by a change in the order of summation. we have for any

0<m<n
n-0 n-1
| Z Py exp(=ikt) ZAR,] =| Z AR, Z P exp(=ikt)|
k=m r=k r=m k=m

n-1

< Kyt' Y AR P,
r=0

by virtue of Lemma 6. Thus,

n-1
N K Y - |AR P
n=1 | ﬂ"llr“o (2.5)

= I‘lZl—\Rv' |P |Z ‘(—_'TNP—I 0(1),

n=r
by virtue of Lemma 5 and the hypothesis that {R,}eBV.
Taking % = 0 if a > b, breaking the range for k into two parts viz., k < 0 and k > 0 and
observing that by Lemma 5, P; = O(|P,|), we have

n-6

. 1 .
Ny < K| Py E IP y + K E Y ll > prexp(—ikt)|.
n=6 n-1 n=60 =1l k=g

Since pr = Pe{Rx/(k + 1)} and the partial sums of 3_exp(—ikt) = O(1/t), an application of the
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Abel’s transformation shows that for any m with § < m < n, we have

. . - R Py .1 | Pal
n e < -1 ¢n-1 ( ) -1i2n
lz:k:m Pk exp( lkt)' = l\t Zk:m IA L + 1 l + ]\ t n
< I\'i{IARkl + —S—-}IPAI + K t"I—PLI.
she Fk+1) n

Thus. using the result of Lemma 5 and a suitable change in the order of summations, we have

N, < K+ | AR
2 <K + \l;a{l | + L+l)}l "'ZnIP-ll

n=k

=0(1), (2.6)

because {R,}eBV.
Combining (2.5) with (2.6), we prove (2.3). Since the above proof remains valid if 0 is
replaced by 20, we deduce (1.7) from the proof of (2.3).
3. PROOF OF THEOREM 1 AND ITS COROLLARIES.
(I). |£1|-effectiveness: We have assumed without loss of generality that the constant term in
I'(r) is zero so that
O(r) = / #(t)dt = 0. (3.1)
Now. we have

Au(r) = %/: é(t) cos nt dt.

Denoting by 3= AL(x) the series-to-series (C, 1)-transformation of F(.r), we have

1 2 1 k
Ap(r) = ;r_/a ¢(l)m+—l)§rcos rt di.

Integrating by parts we sce that -} (r) is the real part of

2 qr 2 fr d
;/0 o(4)6i(t)dt =;/0 Lon(1)0x(0)d

(3.2)
2 ‘ ,
= ;I'-/o {tow(t) —/o Sp(u)du}dey (1)
where
) t
be(t) = A(L+l),z_:l7 exp(irt).
Thus, if 3~ ba(z) denotes the A(C, 1)-transformation of F(z), then we have
ba(z) = —-—Za,.k / t[Rebi(t))dds (1)
=
) ! L (3.3)
+7 Law [ [ (Rebuwldud(e).
Now it is easily seen that 6;(t) = O(1/kt), therefore,
£ lawkl [64(8)] = O(1), (3.4)
k=1
by virtue of the condition (1.2). Next we notice that
t
/o [Rebi(w))du = L(k Y rg sinrt.
Thus,
3 fowl | [ (Rebu(uldul = 0(0), (35)

k=1
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by virtue of the condition (1.2). In view of (3.4) and (3.5), we have
2 r el t
bo() = —= / [ER(nt) = 3 om / Rebi(u)du)déy (t) (3.6)
mJe k=1 °

where R(n,t) is the real part of
J(nvt) = Z 0,.*6&(!).
k=1

Since by hypothesis [ |[dé1(t)] < K, in order to prove that A(C, 1) is | F\|-effective, it is sufficient

to show that the following cstimates hold for te(0, 7}:

S =13 [(n )] = O(1) (3.7)
S1= 313 ans / Reby(u)du| = O(1). (3.8)
n=l k=1

We first proceed to prove (3.7). Breaking the range of summation for the inner sum into
1 <k < 20 and 20 < k, we use for the former range the fact that é(t) = O(1), while for the

latter range we replace ax(t) by the following expression which is equal to it:

(1 = exp(it))”!

T { vap(nt) —exp(i[k + 1]8)}.

r—l
I'hus, we write

0 20-1

S S KEL S Janel + K I Y - l)exp(,[L +1)0)]

n=1 k= n=1 k=20

+KZI Za,.,,k(k+ l)E:exp(:rt)l

n=1 k=26

< I\tz ZIQ,.kl + I\ZI Z Qnk

k=1n=1 n=1 k=20

exp(zkt)

+1\02 Z L(lc+ 1)la..l,l

n=1 k=26

< Atzl +KoY —L k(k+ ) S lawel +O(1)

k=1 k=20 n=1
=0(1),
by virtue of the hypothesis (1.7) and that A is absolutely conservative so that (2.1) holds. We

thus prove (3.7). Next, we have

51 < 21T+ 3 awprpiyy S snrt

n=1 \k= k=46 r=1
<t lane| + Kt71 a
E'g nk E;L(L-‘-l)l nkl
= 0(1),

by reasoning parallel to that used in the preceding paragraph. Thus (3.8), holds and we complete
the proof of |F|-effectiveness of A(C, 1).

(). | Fy|-effectiveness: Since. for the serics F(z),
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Ba(z) = %/‘: P(t)sinnt dt,

it follows from (3.4) that

) 2 r

ba(r) = ;/o w(t)(n, t)dt
where I(n,t) is the imaginary part of J(n,t) and ZE,‘(:) is the A(C, 1)-transformation of F(z).
But by hypothesis [ ¢=']23(t)]dt < K'; therefor, in order to prove the | F|-clfectiveness of A(C,1)

it is sufficient to show that

till(n,t)] =0(1).

n=1

This follows directly from (3.7). and we complete the proof of the |F\|-cffectiveness of
A1)

(). |Fy|-effectiveness: Lor the sequence F*(x),
2 Lg
nB,(z) = —/ cos nt dy(t),
T Jo
since w(r) = 0. Thus. the terms of the corresponding series are obtained as
o1 1 ,
() = —/ sin(=1)sin(n — =)/ dv'(t).
T Jo 2 2
Denoting by ¥ «! () the series-to-series (C. 1)-transformation of I w,(xr). we have

ul(e) = é/ sin( {cos( )lm&k( ) —sin(z )Ilcbk(t)}dw(!)
Thus, if 3 b}(z) denotes the A(C. l)-transformatxon of F ‘(1:) then in view of (3.4), we have
IR WL 1 1
bie) == / sin(5t) {cos(50)(n, 1) — sin(5t) R(n, 1) (1)

But by hypothesis y(t)eBV(0,r); therefore, in order to prove the |F}|-effectiveness of A(C,1)
it is sufficient to show that (3.7) holds. We thus complete the proof of the |F}|-effectiveness of
A(C.1).

(IV). |F{|-effectiveness: For the series F'(z) = J_ ua(z), we have

un(z) = —%—/; ¢'(t)d£t-(cos nt)dt,

and. therefore,
@ =-2[ YOt ket 2 6u(0)}dt. (3.9)

Following the proof of the | F}|-effectiveness part, we deduce | Fy|-effectiveness of A(C, 1) from (3.7)
and (3.8) by comparing (3.9) with (3.2) and then appealing to the hypothesis that (y(t)/t)eBV(0, ).

Since ¢(t)eBV(0, ) implies that ¢,(t)eBV(0, ), the | F,|-effectiveness of A(C, 1) is included
in its |F|-effectiveness. Thus combining (I) - (IV), we complete the proof of Theorem 1.

To prove Corollary 1 we note that if A satisfies the hypotheses of Theorem A, then Lemma
3 ensures the condition (1.7) of Theorem 1. This together with (1.2) implies the conclusion of
Theorem 1, which is also the conclusion of Corollary 1. Since for the (N, p) transformation, (1.2)
holds automatically we use Lemma 4 and Lemma 7 to see that the hypotheses of Theorem 1 are
satisficd and in conclusion we obtain Corollary 2.
4. ADDITIONAL RESULTS.

We shall also prove the following.
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THEOREM 2. If A is absolutcly conservative and the condition g(t)cBV(0, ) implies the
|A| summability of " w,, where

o = /'g(z)cos(n + %)t dt, (4.1)

then the A(C,1) is |Iy|— and |F||—effective.

Comparing the hypotheses of Theorem | with those of Theorem 2, we observe that the
condition (1.7) of Theorem 1 is directly associated with the |A| summability of the series
Yreyexp(ikt)/k.  Similarly, the corresponding condition of Theorem 2 is closely associated
with |F,|-effectiveness of A, which is usually proved by cstablishing the stronger result that
T len(t)] = O(1) where 3 cq(t) is the A-transformation of ¥(sin kt)/k.

We shall need the following additional lemmas for the proof of Theorem 2.

LEMMA 8. For any fixed A > 0, we set

u(t) = E{am (k+ Mt}/(k + A).

=
If Zr,.(t) is cither (i) the A-transformation of u(t) such that A satisfies the hypotheses of
“Pheorem A. or (i1) the (N, p)—transformation of u(t) such that {p,} satisfies the hypotheses of
Corollary 2. then Z[(,.(t)l = O(1) for tc[0, ).
PROOF. In view of Lemma 4 and the hypotheses of Theorem A we notice that both A and
(N,p) are absolutely conservative and it follows that in order to prove Lemma 8 it is enough to
prove it with u(t) replaced by v(t) = E{sin (k4 A)t}/k. But we may prove this by following
closely the proof of Lemma 8 for the ca;e A = 0 which is contained in [7], [2] (proof of Theorem
C). This completes the proof of the lemma.
LEMMA 9. If g(t)eBV (0, ), then {V,}eBV, where

V. = _/ ()[sm (n+1)t] dt. 4.2)

PROOF. Let ¥ A,(x) denote the Fourier series at t = z, of a 2r-periodic function f(t)
such that g(t) = }{f(z +t) + f(z — t)}. Then we see that V, = z":sk(x)/(n + 1), where {sx(z)}
is the sequence of partial sums of 3~ Ai(z). Thus, in view of (’:132) the result of the lemma is
essentially that (C,1) is | Fy|—effective. The lemma now follows from Bosanquet [1] where it has
been shown that (C, a) is | F,|-effective for a > 0.

5. PROOF OF THEOREM 2.
(I). |Fi|—effectiveness: Taking " a, = F(z) in (1.4) we have

S} = (n—ilj /o' #(t) rgﬂ{sin(r + %)t/ sin %t}dt

= ﬁ [ é(¢){sin %(n + 1)t/sin %t}zdt,

Using (3.1) and integration by parts (cf. [4], p. 480), we have

St = _L/” ¢|(:) sm(’n-:-l)t dt
2r Jo sin 3t sin 3¢

1 &, (t) 1) [sini(n+1)t)? (5.1)
+1r(n+ 1) Jo sinlt {cos Et}{ sin I,t } dt



650 H.P. DIKSHIT AND J.A. FRIDY
= W+ V,,

say. Thus. in order to prove that A(C.1) is |Fy]-effective it is enough to show that both S"(V,, —
Va1) and T(W, — W,_;) are |A| sunmable. That the former of these is |A| summable follows
from Lemma 9 and the hypothesis that A is absolutely conservative when we observe that

o1 (t)cBV(0, 7). Next we sce that

L= dy(¢)
Wo = Wooy = -;/o sin 3¢

cos(n + %)t dt
and. therefore, |A| summability of (W, — W,_,) follows [rom the hypotheses of Theorem
2 when we appeal to the fact that (®,(¢)/sin -;-t)eBV(O,x). This completes the proof of the
| Fi|—effectiveness of A(C.1).

(II). | Fy|-effectiveness : Taking 3 a, = F'(z) in (1.4), we have (cf. [4], p. 480)

B 1 g~ d [sini(n+1)\?
Sp= —m/o ¢(t)z{——z.———-} dt

1
sin 2t

¢(t) {sin(n + l)t} dt (5.2)

27r o sinz t sin %t

- s 1 ¢ 2
1 rp(tl) (cos -l-t) sin z(rzl-l- 1) dt.
m(n+1) Jo sinjt 2 sin 3t

Comparing (5.2) with (5.1) and observing that by hypothesis {#(t)/sin }t}¢BV(0, x), we prove
that A(C,1) is |Fj|—effective by following the preceding proof. This completes the proof of
Theorem 2. ‘
6. REMARKS.

We observe that the hypothesis concerning the |A| summability of f: wy, was applied in the
proof of Theorem 2 for g(t) = ®,(t)/ sin }t and ¥(t)/ sin }¢. Thus, in vi:;vl of (3.1) and ¢(r) =0

we may take g(w) = 0. Therefore, on integration by parts we see from (4.1) that
L 1 1
wn = = [ {sin(n + 3)t}/(n + 3)dg(2).

If we now denote by 3"y, the A-transform of 3w, and assume (1.2) and that g(t)eBV(0,r),
then

. [ tsin(k + )t}/(l.+ )dy(t)

k=1

=- / calt)dg(t)

and a sufficient condition for the |A| summability of Zw,. is that 3" |ca(t)] = O(1) where 3 ca(t)

n=1
is the A-transformation of Z sin(h+ = )t [(k+= ) This is satisfied, however, by virtue of Lemma
8, when either A satisfies the hypotheses of Corollary 1 or Ais (V,p) and satisfies the hypotheses
of Corollary 2. Thus we deduce from Theorem 2, |Fy|— and |Fj|—effective parts of Corollary 1
and Corollary 2. It is interesting to observe that the foregoing arguments provide remarkably
shorter proofs of some earlier results ([4], Theorems 1 and 2).
Following (7], we observe that if {p,} is nonnegative, nonincreasing and {S;}eB. then the
(N.p) satisfies the hypotheses of Theorem A, and Corollary 1 provides the following result which

inter alia includes sharper results than those proved elsewhere ([3], Theorems 1 and 2).
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COROLLARY 3. If {p.} is nonnegative, nonincreasing, and {S;}e13, then the (V,p)(C,1)

is absolutely total effective.

Corollary 1 also shows that if, in Corollary 2, we impose the additional restriction that

{p.} is nonnegative and nonincreasing. then the hypothesis { R, }eBV may be deleted. It may

be mentioned here. however, that there exist sequences {p,} which satisfy the hypotheses of

C'orollary 2 but which are not even monotonic. The absolutely total effectiveness of the (‘esaro

matrix (C,8) for 6 > | was initiated by Bosanquet [1] and was completed subsequently. As
a special case of Corollaries 1 and 2, we obtain the absolutely total effectiveness of the (C, )

matrix for § > 1.
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