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ABSTRACT

Let 1 and 2 be lattices of subsets of a nonempty set X.

suppose 2 coallocates I and is a subset of 2" We show that

any ,-regular finitely additive measure on the algebra generated

by can be uniquely extended to an -regular measure on the

algebra generated by 2" The case when , is not necessary

contained in , as well as the measure enlargement problem are

considered. Furthermore, some discussions on normal lattices and

separation of lattices are also given.

KEY WORDS lattices, normal lattices, coallocation lattices,

semi-separated lattices, regular finitely additive

measures, u-smooth measures, measure extension,
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1. INTRODUCTION

Let X be an arbitrary set and land 2are lattices of subsets

of X. If ,c , and if coallocates ,, then any ,-regular

finitely additive measure on the algebra generated by , can be

uniquely extended to an -regular measure on the algebra generated

by 2. This situation has been investigated by J. Camacho in [2].
We extend his results in several directions in this paper. We will

consider the case where lis not necessary contained in (see

Theorem 3.1) and show that under suitable conditions any peMR() (see

below for definitions) gives rise to a v6 MR(). We will also
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consider besides measure extension problems, measure enlargement

problems (see e.g. Theorem 3.3) and will finally apply these results

to the case of a single lattice , thereby extending results of M.

Szeto [8] for measures on normal lattices.

We begin by giving some standard lattice and measure theoretic

background in Section 2. Our notation and terminology is

consistent with [1,4,6,7,9]. In Section 3, we consider the general

coallocation theorem and a variety of consequences of it. Section

4 is devoted to a more detailed discussion of normal lattices and

to separation of lattices. This work extends to some extent that

of G. Eid [3].

2. BACKGROUND AND TERMINOLOGY

In this section, we summarize some lattice and measure

theoretic notions and notations. This is all fairly standard and

as previously mentioned is consistent with standard references.

Definition 2.1

Let X be a nonempty set and e(X) is the power set of X. A

lattice is a collection of subsets of X, which is closed under

finite unions and finite intersections, and , X e . Let

’ -= L’ Le

where L’ denotes the complement of L. ’ is a lattice if is.

DeHnHon 2.2

Let , I and 2be any lattices of subsets of X.

(i) is if it is closed under countable intersections.

(2) is a complement generated (e.g.) lattice if

YLe., HL1,L e such that L Iln=xLn’.
(3) is a normal lattice if

V L L.6ff, LIL= =

(4) is a countaly paraoompact (c.p.) lattice if

V L,L. e, LIDL2D... limn_L.= (Lni{) =
3 I’ I’’’" 6 s.t. Yn, LnC.’ and .’I .

(5) S is Sl-countably-paracompact (SI-c.p.) if
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B2, eZ2 BIDB2D... Bn
9AI,A2,... 6 s.t. Vn, BnCA and A’

semi-separates if

A6, Be2, AB= B ,6, s.t. BcIand
separates if

oalloat. s, if

L,eS, s.t. L, cLuL, where ,eS

Definition 2.3

A finitely additive (f.a.) measure p is a finite nonnegative

function defined on the algebra A() generated by , such that

(I) v AeA(Z), #(A) > 0, (2) #() 0, and (3)[finite additivity]

ACB=O = p(AUa) /.(A) +

A 0-I measure is a two-valued finitely additive measure

taking value either 0 or i.

Usually, we simply refer # to as a measure on a lattice . to mean

that # is a finitely additive measure defined on the algebra A(.).

A f.a. measure # defined on the algebra A() is

(i) -regular iff v A e A(), ,(A) sup ,(L) LcA, Le ).

Or, equivalently, ,(A) inf (’) ’DA, {.6 ).

(2) o-smooth on A(.), iff

v A,A e A(), ADA,D..., (A) .(A)O as n--=

(3) o-smooth on , iff

V L:,L 6 , L:DL.D..., (Ln) (Ln)0 as noo

The following notations for the collections of measures on

A() will be used throughout

M() , , f.a. measure on A()

MR( m ,6M(w) . -regular

M() - (pEM(S) p o-smooth on A()

Mu( (,eM() , u-smooth on
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M (s) (.EM(.) , o-smooth on A (s) and S-regular

Similarly, we also define I(s), I.(s), I(), Io(s), and

IRo() for non-trivial 0-i measures.

If p is S-regular, then o-smoothness on implies o-smoothness

on A(.). Thus, M(.) M.()Mo(.’) M(.’)M(s).
Since A(’) A(), we have M(s’) M(s) and I(S’) I(S).

Furthermore, , is o-smootho. A(e) (,eM()) iff, is cou.tablyadditive.

(1)

(2)

(3)

Let i,2 e M(s). Define

i < . if AEA(), I(A) < .(A)

I < 2 on if, if YLE, I(L) < .(L)

p1<_ . on ’, if YLe, ,(L’) _< .(L’)

Definition 2.4

Suppose Ic 2are lattices of subsets of X such that

and ,,.EM(s,). Denote #21 (or simply ,21) to mean the restriction

of "2t A

If I: I on A(sl), then .is called a measure extension of

"I from A(I) to A(2) (or, less precisely, from it .); and a

regular measure extension, if 2 e MR(s2)
If i -< 21 on i and I(X) 2(X), then 2is called a

measure enlargement of i from A(I) to A() (or, less precisely,

from I to 2); and a regular measure enlargement, if 2E M.().

Definition 2.5

A real-valued function e(X)[0,), is called a finitely

supera4itive inner measure, if

() , (() o

(2) [no.decreasing] V ACB C X / (A) _< /z (B) that is, /T

(3) [/inite superadditivity] A.B c X, AFB= / (AuB) >_ /z (A) + / (B)

A real-valued function e(X)[0,m), is called a finitely

subaItive outer measure, if it satisfies (1), (2)and

(Y) [iqnite subadditivity] A.B c X, AFB= / (AUB) _< / (A) + / (B)

Let be a finitely subadditive outer measure on (X,). A

set E c X is said to be -measurable, if

#=(T) p=(TE) + (TnE’), YTc X
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We have the following theorem characterizing a normal lattice

as a special case of the coallocatio, property

THEOREM Z. 1

is normal YL6 Sot. LC L;uL’, where L1,L2 =

Proof:

II II
Suppose LI,L2eff and LInL2=..’.X=LuL. Then by assumption,

Thus, when LIL,:, LIcI, L,c, we ave :=. - is normal.

Let Le and LcLuL where L,L. Consider L-L and L-L,

(L-L:)(L-L{ (LL)(LL) L(L;UL #. L-L: aria L-L
are disjoint. By noality, Bl,ze such that (L-L?)c,
(L-L)C and :=, or ,u=X. Define

Then ,u,= (L,)o(L,) L(ilu,) LX L. Now,

= LC LO(L’UL?) (LL’)U(LL) (LnL?) C L?
and = LCL(L’uL) (LL’)u(LL) (LoL) cL

The following results are obvious

(1) ff is normal , le coallocates itself , ff coseparates itself.

(2) 1 separates = Ie semi-separates 2"
Furthermore, we have the following measure theoretic charac-

terization of a normal lattice

THEOREM 2.2

ff is normal iff

THEOREM Z. 3

Suppose c LP. Then z coseparates ff = ff2 coallocates

Proo/:

Suppose L,C IuI, where LeZ,, ,eZ. Then,
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Define ;-L,n{., and ;-L,n,, hence ;,1"e,. And

= LI C LI{LI)’ L{L)

Thus, C. Similarly, ;c . Hence

THEORES 2.4

countablyparacompact H0(’) c o()
Proof:

Suppose n L t L

c.p. E.sw, s.t. L.c,

NOW L. , .(L.) 0 , SO(). Hence, M(’) c MO().

3. MEASURES ON COALLOCATION LATTICES

In this section we extend some of the work of [$] and [2] on

the unique extendability of a measure # e MR(,) to a measure

e MR(2) where , and are lattices of subsets of X. we note

that it is not always necessary to assume that c nor that X

belongs to the lattices in order for the main results of the

=oallocatlon theorem to hold (see Theorem 3.1). We first define two

functions which form an inner-outer measure pair.

Definition 3.1

Suppose , and . are lattices of subsets of X and # e M().
For all EcX, define

#. (E) m SUp /(LI) EDL1, L,e,
and

A(E) -- inf (.(L) EcL L,eff,

We have the following

THEOREM 3.1 [Coallocatio. t%eorem]

Let , and be lattices of subsets of X . suppose

e M(I). We have
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(1) .. is a finltely superaddltlve inner measure

(2) 2coallocates "I = I. is finitely additive on ’(3) ff2coallocates ffl . " is a fintely saddtive outer measure

(4) . o,,
In particular, if X a.d e, then (X) .(X) (X)

(5)[a] s o,,

(6) suppose coailoces z E c X is -geasuEle

(7) suppose coailocates

If either [a] c
or [b] semi-separates z

then
[1"] eve element of is -measurable

[2" I is a fl.itely additive measure on ()
3" " is -regular on

[4"] " efl().
Proof:

() The proof is standard and is therefore omitted.

(2) Let A,B2 e

M2 coallocates

B A, ,B e

(L,) (AlUB1)

(A1) + (S1)

S sup{ M(AI) AD A, + SUp{ M(B1) BDB,

Taking sup on the left hand side,

sup(

. is finitely subadditive on S. Together with (I), #. is finitely

additve on .
(3) The proof is also standard and is omitted.

(4) Let Le

,’(L’) _< ,. (LI) [i]



708 J.K. CHAN

Now if Ae and Lc A, then by monotonicity of .
. (L’) _< inf . (A’) L’c A’, A).e z - " (L’) [ii]

[i] and [ii]

If X esl, take LI= X, .(X) sup{ (L,) XDLIe-I) (X).

If e, X=’ e and " . on ’(X) . (X)

consequently, A(X) ,. (X) ,(X).

(5)Is] Let L,I and A, s.t. L,c A’
..(A) sup

Taking inf, inf . (A) L c A, A 6 (LI)

i.e. " (L,)

(5)[b] Suppose ic 2, then "
.’. if iI then ,() ,.
Suppose L, c Ac A, where A, e S,

But # eMR(Z,) (A) sup ()
.’. . (A) (A) V Ae Z, hence

Now, " (L,) inf . (A) L,cA, A..
_< inf . (A,’) LIcA’, AI

inf (,(A,’) L,cA:,

(*.* ACAI)

.’. < on I, and (5)[a]= _< / on ,, " on ,.
(6) "" Suppose Ae, we have Ec X,

Suppose TC X, s.t. Tc A, Ae
’(T) inf .(A) TcA, A,eS,

Now (4)

..(At) .’(At)

Z ’(AE) + ’(AE’) (by assumption)

z .’(TE) + .’(TE’) (’" TeAl, ." T)

Taking inf,

" (T) _> " (TE) + " (TE’) [iiil

is finitely subadditive

/’(T) ’(Tr(EuE’)) < A(TE) + ’(TrnE’) [iv]
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[iii] and [iv] #A (T) #" (THE) + #A (THE’) T c X,

which is the definition of E to be A-measurable.

(6) "" By the definition of E to be A-measurable, we have

’(T) /(TnE) / ’(TnE’) YTc X,

But is finitely subadditive, the above is equivalent to

(T) > (TnE) / (TnE’) YTcX,

In particular, take T Le, we have

(7) suppose s coallocates S,.

t Le S. To prove that L is ’-measurable, we have to show,

by (6), that

VA62, let P,Q6 (.’. Q6) s.t.

P c A L and Q c A P’

Thus, P c A and Q c A
Now, PuQ C (AOL) U (AnP’) C A
and PnQ c Pn (AoP.)

a sup ((Q) A D PuQ e S

.(P) + ,(Q) PnQ=#

,* (A)

.(P) + ..(AInP’)

.(A) Z .(P) + ,.(AnP’) [v]

(7)[a] Suppose c

I f

AP’ (AzUP)

(P) + (AnLz) (PcL)
(A) Z sup ((P) AL DPe) + (AL)

B’(AL) + "(A L) VAeM1 " . on )
We conclude, from (6), that eve element of is -measurable.
A() A() c ,-murable se ). By a standard Carathodory
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argument, /’I/, is a finitely additive measure on

Suppose L2 e 2
.(L) .. (L) by (4))

sup ((L,) L,c L, L, eS
S sup (LI) L,c L, L, eS, by (5)[a])

But L,c L ’(L,)S ’(L), taking sup

sup (’(L) L. cL, LeS) ’(L)Hence,
’(L) sup (’(L,) L, cL,

which means that " is S,-regular o. . Since SIc " is also

S-regular on S. Now any element of A(S) is, of the fo

Ui, (Ai n Bi’ A S e S,
Conseently, " e MR(S,).

Suppose "2 semi-separates if,.

We conclude, from (6), that every element of ] is #’-measurable.

A(,) A(, c /’-me.asurable sets ). By a standard Caratheodory

argument, .’[, is a finitely additive measure on A

.(L.) _< .’(,) -< ."

Taking sup,

L E "1 semi-separates .
and " # on a’,

sup( /(L,):LICL2’ L]6]} _< sup{
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But B" (Lz’) sup{ (LI). LICL’ L,eS Hence,

is -regular o, and -reguIar on S, and conseently,

Note If eace., then . trivially semi-separates ,, (7)[a] (7)[b].

Corollar.y 3.1

Suppose -- 2= X e , and coa//ocates itse//, (. is norrnal).

then
(1) A is finitelyaddit,ve and ^(x) . (X) (X)

(2) ," (L) +
Proof:

(I) Direct consequences of Theorem 3.1.

(2) From Theorem 3.1(4),

Now ^ is finitely additive,

’(X) ’(LuL’) A(L) + ’(L’) ^(L) +

But (X) ,. (X) (X), .’. ,’(L) + . (L’) (X).

The coallocation theorem leads to the following direct conse-

quences whose proofs are omitted.

THEOREM 3. Regular measure extension on coallocation lattices

Suppose e c e. and e MR (el). If .. coallocates , then

there exists a unique 6 MR(,) s.t. on I, " ul16 MR(I).
Furtheore, u is S-regular on S. Note that IS
TBOR[M . Regular measure enlargement on coallocation lattices

Suppose S, c S and 6 S(s,). If s coallocates s then

ue MR(S,), s.t. S u on S and (X) P(X).

THEOREM 3.4 [Regular measure enlargement on a normal lattice]

Suppose is normal and eM(). Then there exists a unique

u6 MR(e), s.t. < u on le and (X) u(X).

Furthermore, if we impose a o-smoothness condition on , we

obtain the following

THEOREM 3.5

Suppose e c e and !e. coallocates e, and , M(e,),
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v MR(2) where v is the regular measure extension of . Then

Proo/:

, M(,) , 6 MR() hence by Theorem 3.2,

" S, 6 MR(S,) is the unite regular measure extension of .
Theorem 3.(7) is -regular on .

v . , , A., A.c, V> O,

" on 1, since fl is -regular [Theorem 3.1(5)[b]]

a’(s:) < a(A.) + /2 [

Since A.c B , without the loss of generality, we may assume

A. lO. Tus, (A.) --0 V a is o-smooth on S,

Hence, [i] " (B) <

conseently, " (B) 0 V B e S

In particular, if S,= S= is noal, we ave

Corollary 3.5

suoe ts .., na ,(). .(), ts ehe

regular measure enlargement of , S v on , fl (X) u(X) Then,

(’).

Suppose $1 C $ and coallocales 1 and, is o..,o=, ..d .o. Suppose e .(,), and

v e MR() where v is the unite regular measure extension of ft.

hen, (e.).
Prool:

Thom3. eo(), (fi:) --0 (S.) --0 VS.e.
.’. v is o-smooth on S, and since is regular on S, ve M(S).

We now give two applications of the results on coallocation

lattices to topological spaces.
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1) MEASURES ON A LOCALLY COMPACT HAUSDROFF SPACE

Let X be a locally compact Hausdroff space and ,= Ko is the collec-

tion of all compact 6-sets, while 2 K is the collection of all

compact sets. Note that in this case, X does not belong to either

K0 or K, unless X is compact. Then K0 c K and it can be shown

that K coallocates K0
For any 6 MR(K0) is o-smooth, be-

cause K0 is compact. Thus, , 6M(K0). By the coallocation

theorem, we can extend uniquely to a regular measure v which is

also o-smooth, because K is compact. Hence, v 6 MRO(K).
2) MEASURE ENLARGEMENT FROM ZERO SETS TO CLOSED SETS

Suppose X is a countably paracompact and normal topological space.

Let z 3 (zero sets) and e2 , (closed sets) That is, , is c.p.

normal. 3 c , because all zero sets are closed 6-sets, and

disjoint closed sets can be separated by disjoint zero sets.

Therefore, 3 is c.p. and normal. Thus, 3 coseparates ,. Hence

, coallocates 3 [Theorem 2.3].
Let MR(3 Then by Theorem 3.2, there exists a unique regular

measure extension e MR(,) Theorem 3.1(7)[a] implies on all open

sets is 3-regular.

Suppose 6 MRs(3). By Theorem 3.5, the unique regular measure

extension is 6 MR(, nSa(,’). Now , is c.p., hence

[Theorem 2.4]. Then, v MR(,). This is the result of Marik [5].

4. NORHAL LATTICES

In this section, we give further characterization of normal

lattices and further consequences of a lattice being normal in

terms of associated measures on the generalized algebra.

Defnton 4.1

Let be a lattice of subsets of X, and p M().

E c X, define

,’(E) inf ,(’) Ec’, 6

/"(E) inf --z/(E.’) Ec U.__,ln, {....
p.(E) m sup

y’(E) -= inf

It is clear that if , MR(), then , ,’ on A().
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THEOREM 4.1

Proof:

Let ,,u e M(s), such that ,(X) u(X) Then

/z < u on . Iz < u < u’< I" on

It is obvious that < u on u < on ’. Let E c X s.t.

Ec’ E, u(’) < ,(’) Taking inf

inf(u(’) ’e’ S inf(,(’) ’e’ ),

.’. u’(E) S ’(E). In particular, E e u’S ’ on . Hence,

S u S u’S ’on .
THEOREM 4.2

Suppose e I (), L1,L e .,
’(LI) i and ’(L2) I ’(LnL) 1

Then, is .ormal.

Proof:

Suppose is not normal. Then

3, I (s), l,,e I.(), s.t. , < u on , , < u. on , but u, ,.
.’. 3 Li,L2e , LlcL ,

,(Lz) 1 %(L,) 0 and ul(L-) 0 %(L) 1

NOW if L,C ;’, {, S, then u,() I. Since

< u, on u < on ’, we have ({,’) 1 ’ (LI) i.

Similarly, if L.c {, , S, then ’(L=) I.

Then, by assumption, ’ (L;nL=) i. But L;nL2 , .’. ’ (L;L=) =0

gives a contradiction. Consequently, is normal.

THEOREM 4.3

Let uM(), ,oM(), s.t. u(X) p(X) and

on ’ < MR(’u_ p 6 Then

(1) p < u u’ _< p’ on

(2) is normal = u= u’ p’ on .
Proof:

(I) u_< p on ’ p < u on , and u MR() u= u’. Hence

by Theorem 4.1, p < u u’< p’ on .
(2) Suppose is normal and 3 L s.t. u(L) < p’(L).

( + >

.’. u({’) < u(L) + z and L
By normality, 3 L.,Lb, s.t. Lc L;, c L{, L;CL{=
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.’. L C L’ C LB C ’
(n) < p’ (L) _< p’ (n’) p(m.’) _< P(Lb)

_
(Lb)

_
(I’ < u(L) +

p’(L) < u(L) gives a contradiction. u u’ / on S.
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THEOREM 4.4

Let S be a lattice of subsets of X, and e Mo(s Then,

(I) I <- IZ" erywhere

(2) ’= on S’

(3) < " < /’ on S

(4) (X) ,,(X) ’(X)

(5) .(L’) + ’(L) (X), YLeS

(6) If S is normal, then < " < ’= on S

(7) If S is 6-normal, then " ’ onS.

NOT The condition e So(S is imposed, because when is a 0-i

measure and if is not o-smooth, then " m 0.

Proo/:

(I) By definition of ", the inf encompasses more sets than that of

’ hence " < ’ everywhere.

(2) Take E ’ eS’ ’= on S’ In particular,

’(X) (X)

(3) From (I)and [i], we have #"(X) _< (X). We now show that

"(X) (X). For suppose X U,,Li’, pairwise disjoint Li, E,

and , ,(Li’) < ,(X), but ,,(Li’ lim,=,,(,)

Since U, L’ e ’ and , L’; X, or LI , also , 6 u()
Taking the inf of the above, we have "(X) a (X).
consequently, " (X) (X)

Now suppose B LES, B(L) > #"(L),

"(X) "(LuL’) < "(L) + "(L’)

-< p"(L) + 9(L’)

< /(L) + p(L’)

(X)

[ii]

(v "_< on S’)

by assumption)

contradicting [ii]

.’. < " on S. Together with (I), we have < " < ’ on S.

(4) [iland [ii] /(X) /z"(X) /’(X).
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(5) Ye > 0, . (L’) < () where L’ D e-%,,

(X)

Taking inf, we have

/(X) .(L’) > /F(L) [iii]

If L’ D., /z.(L’) > /(L’) > /() since /. < / on 2’’

(X) .(L’) <_ (X) () (’)

Taking inf, we have

/(X) /. (L’) < inf (#(’) L C ’ E -%’, J #’(L) [iv]

[iii]and [iv] = /(X) /z.(L’) /F(L) VLE2".

(6) L is normal, then Corollary 3.1(2) and (5) imply /’(L) /F(L) L2".

Now ,= A on 2", and from (3), _< . _< #.= A on 2".

(7) From (I), " < ’ everywhere. Suppose 3 L e 2", s.t. " (L) < #’(L)

Then LcUn=IL.* L.2". 2"is

Let Di IL., LnD= . -%’, is normal 3A,BE2", s.t.

LEA’, D cB’, A’nB’

/’ (L) < /F(A’ /z(A’ < /(S) < /" (B)
fmm

Taking inf, and since L c U._-I L.*,

/F(L) < inf{ __l/z(L) LC__IL, L.2" J #"(L)

gives a contradiction. "(L) #’(L), or #" #’ on 2".
I

THEOREM 4.5

Let -%’, be a lattice of subsets of X, and let Mo(2"), p M(2"),
s.t. _< on 2", ;,(X) (X).

If -%’, is countably paracompact and normal, then p Mo (-%,,).

Proof:
Let L L. -%’,, V n

-%’,’ c.p.

-%’, normal

or, LocA.’e.c.’e, (.) _< (A.’) _< (^.’) _< .(e.) 0

(one may assume, with the loss of generallty, Bnl ).

(’." p_< on -%,,’; Bn e and eo(2")) p(Ln) 0, or peso(2").
I

THEOREM 4.6

Suppose -%’i c -%’,2, and -%’I separates -%’,2 Then,

-%’1 normal -%’,2 normal.
Proof:

"" Suppose -%’i is normal.



MEASURES ON COALLOCATION AND NORMAL LATTICES 717

Let # I(e,.), ., % Ix(:e,), s.t. # _< .on :e,, bn .
on x" 1 noal v,I Ub [Theorem 2.2].
Extend u[ and Ub[ to u.= ub noal,

"." , separates , the extension is unite.

"" Suppose is noal.

t . I(.), ., I.(.), .. . .on., . onx.
Extend , to AE I(), and ., Ub to %, "b e IR()
respectively. We now show that A S f. on and A S fb on

For suppose B Le s.t. A(L) 1 but .(L) O. Then

%(L) . But %eIs(,), e, s.t. ,LI, %(,)=
Since , separates B LxE,, s.t. LcLxcL
.’. 1 (L,) A(L,) -,(L,) S u.(L,) ,.(n,) S

.’. .on S:. Similarly, rbon S:. Since S: is noal,

THEOREM 4.7

sppoe

_
’,., .d , H.(..),

p(X) (X), p Then

1 separates 2 u is l-regular on
Proof:

uEMR(), V L; e, u(L;) sup(

L= , and S, separates S
B L,, , el, s.t. LICL, ,C,, LIn

Taking sup, u(LI) sup(.(.) LI D.ES.
i.e. is Sl-regular on S
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