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ABSTRACT. The following theorem is proved: Let r r(y) > 1, s, and be non-negative
integers. If R is a left s-unital ring satisfies the polynomial identity [xy x’y"x t, x] 0
for every x, y E R, then R is commutative. The commutativity of a right s-unital ring
satisfying the polynomial identity [x/- yrxt, X] 0 for all x, y E R, is also proved.
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1. INTRODUCTION.

Throughout this paper, R will be an associative ting (may be without unity 1). Z(R)
will represent the center of R, N(R) the set of all nilpotent elements in R, N’(R) the
set of all zero-divisors in R and C(R) the commutator ideal of R. For any x,y . R,
Ix, y] xy yx, the well-known lie product. By GF(q), we mean the Galois field (finite
field) with q elements, and (GF(q))2 the ring of all 2 x 2 matrices over GF(q).

A ring R is called left (resp. right) s-unital if x Rx (resp. x . xR) for each x R.
Further, R is called s-unital if it is both left and fight s-unital, that is, x . zR f3 Rx for
each x R. If R is s-unital (resp. left ,or fight s-unital), then for any finite subset F of
R, there exists an element e R such that ex xe x (resp. ex x or xe x) for all
x E F. Such an element e is called the pseudo (resp. pseudo left or pseudo right) identity
of F in R.

In a recent paper, it was proved.
THEOREM HK ([1, Theorem]). Let R be a ring with unity 1. If there exist fixed

positive integers r > 1, s > such that [xy- x’y"xs,x] 0 for all x,y . R, then R is
commutative.

The objective of this paper is to generalize Theorem HK. Indeed, we consider the case

that r is no longer fixed, depending on y for its value, and also R is left s-unital. Another
commutativity theorem for tight s-unital tings is also obtained.

2. PRELIMINARY.

In preparation for the proof of our results, we need the following well-known results.
LEMMA 1 ([2, Lemma 2]). Let R be a ring with unity 1, and let x and y be elements

in R. If kx"[x,y] 0 and k(x + 1)mix,y] 0 for some integers m >_ and k _> 1, then
necessarily k[x, y] O.

LEMMA 2 ([3, Lemma 3]). Let x and y be elements in a ring R. If Ix, Ix, y]] 0,
then Ix k, y] kxt’-l[x, y] for all integers k > 1.

LEMMA 3 ([4, Lemma]). Let R be a left (resp. fight) s-unJtal ring. If for each
pair of elements x and y in R, there exists a positive integer m re(x, y) and an element
e e(x,y) e R such that xme x and y"e ym (resp. ex z and ey ym),
then R is an s-unital ring.
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LEMMA 4 ([5, Lemma 3]). Let R be a rinwith unity 1, and let z and y be elements
in R. If (1 y’)x 0, then (1 y;m)x 0 for some integers k > 0 and m > 0.

THEOREM K ([6, Theorem]). Let jr be a polynomial in n non-commuting inde-
terminates x l,x,...,x, with relatively prime integral coefficients. Then the following are

equivalent:
(1) For any ring R satisfying the polynomial identity jr 0, C(R) is a nil ideal.
(2) For every prime p, (GF(p)) fails to satisfy f 0.
(3) Every semi-prime ring R satis’ing f 0 is commutative.
THEOREM H ([7, Theorem 21]). Let Rbe aring, and let n n(z) > be an

integer depending on x. Suppose that x"-x E Z(R) for all z E R. Then R is commutative.

3. RESULTS.

The main result of this paper is the following:
THEOREM 1. Let R be alert s-unital ring, and let r r(y) > 1, s, and be

non-negative integers. Suppose that R satisfies the polynomial identity

[zy- x’yrx’,x] 0 for all x,y . R. (3.1)

Then R is commutative.
LEMMA 5. Let R be a ring, and let r r(x,y) > 1, s s(x,y), and t(x,y) be

non-negative integers. Suppose that R satisfies the polynomial identity (3.1). Then C(R)
is nil. Further, if R has unity 1, then

C(R) C_ N(R) C_ Z(R). (3.2)

( ) (oo)0 0
and y el +e2 Then x and y fail toPROOF. Letx=e= 0 1 1 1

satisfy the polynomial identity (3.1) in (GF(p)), for a prime p. Therefore, C(R) C_ N(R)
by Theorem K.

Now, we notice that the polynomial identity (3.1) can be written in the form

x[x, y]- x’[x, yr]x for all x, y e R. (3.3)

Let u E N(R), and x E R. Then there exist integers rl r(z,u) > 1, s s(x,u) >_ O,
and t(x, u) >_ 0 such that

x[x,u]-- x"[x,u’lx’’ for all e n. (3.4)

If we choose r2 r(z,u"’) > 1, s2 s(x,u’) >_ 0, and t =.t(x,u’) >_ O, then (3.3)
becomes z[x,u*] z"[x,(u’)’]z’’. Hence z[z,u] x"+"[x,u’’]x’’+’’. Thus for

any positive inte;er q,

But u is nilpotent, ur* " 0 for sufficiently larg;e q. So x[x, u 0 and by Lemma 1,

we get Ix, u] 0 for all x e R. Therefore, N(R) C_ Z(R) and hence (3.2) holds.

LEMMA 6. Let R be a left s-unital ring, and let r r(x,y) > 1, s s(x,y) >_ O,
and t(x,y) >_ O. Suppose that R satisfies the polynomial identity (3.1). Then R is an

s-unital ring.
PROOF. Let x,y e R. Then there is an element e e(x,y) . R such that ez

x, and ey y. Further, there exist integers r r(x,e) > 1, s s(x,e) >_ O, and

t(x,e) >_ 0 such that x’++e [xe- z’ez,xl + x"+’+ :r"+’+1. Also if r’
r’(y,e) > 1, s’ s’(y,e) >_ 0, and t’ t’(y,e) >_ 0, then we have y"+"+e’ y"+’+.
Hence, x++’+’+2e :++’+t’+2, and y++’+’+2er’ y++’+’+2. Thus we ob-

r’ -times
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similarly ys+t+s’+t’+2e"r’ ys+t+s’+t’+2. Therefore, R is s-unital by Lemma 3.

LEMMA 7’. Let R be a ring with unity 1, and let r r(y) > 1, s, and be

non-negative integers. Suppose that R satisfies the polynomial identity (3.1). Then R is

commutative.
PROOF. If s 0, then (3.1) becomes ztz,y [:r.,y"]. Replace z by x + 1 in

the last identity to get Ix, y] 0 for all z, y 6- R. Therefore, R is commutative. Next, if

s 0, and I (resp. s 1, and 0), then z[z, ] [z, yr]z (resp. z[z, y] z[z, yr]).
Replacing z by z + 1 gives Ix, y] 0 for all z, y 6- R, that is, y(Y) y 6- Z(R), r(g) >
for all y 6- R. Thus R is commutative by Theorem H.

Now, assume that s > 1 or > 1. Consider the positive integer k pS+t+l _p2, where

p is a positive integer larger than 1. Then by (3.3), we get for all z, 6- R,

[, l v’+’+’’[,1’ v[,1 (v)’[(), ](v)’ (p)[(v), 1 0.

Replace z by z + to obtain k[z, y] 0 for all z, y 6- R. In view of Lemma 5, C(R) C_ Z(R),
and hence [zk,U] kzk-’tz, v] 0. So

z 6_ Z(R) for all x 6- R.

If rl r(y), then (3.3) becomes

Let r2 r(y"t ). Then replace y by y’ in (3.3)’ to get

Thus

Since C(R) C_ Z(R) by Lemma 5,

(3.6)

Also by using (3.3)’, we have

’[, (u,),]’ [, (u’)’]’+’
(u,),-’ [, u, ].+’
ryrt(r2-1)[X, yrt ]xS+t.

Thus (3.6) gives r2(1-y("t-1)("2-))y"’-l[z, y"’]z’+t 0. The usual argument of replacing
z by z + 1 and using Lemma 1, yields r2(1-y("t-)("2-))y"-l[x,y’ 0. Then Lemma 4
gives

r(1 yk(rt-1)(r2-1))yr-l[z, yrt] 0 for all x,y 6- R. (3.7)

It is well-known that R is isomorphic to a subdirect sum of subdirectly irreducible
rings Ri (i 6- I, the index set), each of which as a homomorphic image of R satisfies the
property placed on R. Thus R itself cart be assumed to be subdirectly irreducible ring. Let
S be the intersection of all its non-zero ideals of R. So S = (0). Thus Sd 0 for all central
zero-divisors d (see [8]).

Let a 6- N’(R). Then by (3.5), a(t-)(-} 6- N’(R)glZ(R), and Sat(’-)(-l) 0.
By using (3.7), we get r2(1 a(t-)(,-))ar,-[z,at] 0 for all z 6-/.

If r2a’-[x,a’] # O, then 1 -a(t-)(r’-) 6- N’(R), and so

0 S(1 a(t-)(-l)) S Sa(t-)(-) S
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which is a contradiction to the fact S - (0). Thus r2ara-l[x,art 0 for all x E R. From
(3.3),and using Lemma 2 repeatedly we obtain for r r(a), and r2 r(a"t ),

.2"[Z (glrt

r2art(ri--l)[z, art

r2a(’t-])(’,-l)ar,-l[z,a"t]zz’+
=0.

Replace z by x + 1, and apply Lemma to obtain [z, a] 0 for all z E R. Hence N’(R) C_
z().

Now, if x e R, then x Z(R), and zr Z(R), where r r(y) for any y E R. By
(3.3), we get (x x’")x[x,y] xx[x,y] x’x[x,y] x[:r,,(x’y)] x’[x,(x’y)"]x O.
Thus

( x’-+)[,] 0 for all , R. (3.8)

If R is not commutative, then by Theorem H, there exists an element x, E R such that
:r. x Z(R), where n kr k + 1. This also reveals z Z(R). Thus neither x nor
x x is a zero-divisor, and so (x xa)x’ N’(R). Hence (3.8) forces that Ix, y] 0 for
all x, y R. Thus x Z(R) which is a contradiction. Therefore, R is commutative.

EXAMPLE 1. Lemma 7 is false for tings without unity 1. In fact, any nilpotent
ring of index <: 4 and rill ring of index 2 will easily satisfy the polynomia2 identity (3.1),
but such a ring need not be commutative (see [9l).

Indeed, let D be the ring of all k x k matrices over a division ring D, and let

A (aij) e Dt aij =O, J >-i }.

Then At is a non-commutative nilpotent ring of index k. for any positive integer k > 2.
Obviously A3 satisfies (3.1) and A3 is not commutative (see [10]).

EXAMPLE 2. Let F be a field. Define an algebra A over F with basis {a,b,c}
where ab c and all other products are zero. A is nilpotent of index 3, satisfies (3.1) and
A is not commutative.

COROLLARY 1 ([11, Theorem]). Let R be a ring with unity 1 such that there exist
fixed integers r > 1, and >_ 1 satisfying the polynomial identity [zy y"x, x] 0 for all
z, y R. Then R is commutative.

COROLLARY 2 ([12, Theorem]). Let R be a ring with unity 1 in which [zy-
xmy", :r,] 0 for all z, y /R and fixed integers r > 1, s _> 1. Then R is commutative.

PROOF OF THEOREM 1. By Lemma 6, R is an s-unital ring. Hence in view of
Proposition 1 of [13], we can assume that R has unity 1, and satisfies (3.1). Hence R is
commutative by Lemma 7.

REMARK 1. The example of Grassman algebras rules out the possibility that r 1

in Theorem 1.
COROLLARY 3 ([5, Theorem]). Let R be a left s-unital ring, and let r > 1, and

>_ 1 be fixed non-negative integers. If R satisfies the polynomial identity [:r,y-yrx t, :r,] 0

for all x, y R, then R is commutative.
REMARK 2. Corollary 1 is also true for fight s-unital tings.

If s r n > 1, then we have the following:
COROLLARY 4. Let R be a left s-unital ring, and let n > 1 be a fixed integer. If

R satisfies [xy znyazn, z] 0 for all x, y R, then R is commutative.

REMARK 3. One might conjecture a possible generalization of Theorem 1 when

R is right s-unital. Some extra conditions are required to established the commutativity.
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The following example shows that there is a non-commutative right s-unital ring satisfying
the polynomial identity (3.1).

{EXAMPLE 3. Let R a
0 0 0 0

c

1
be a subring of (GF(2)). It is easy to check that R is a right s-unital ring

satisfying the polynomial identity (3.1) for r > 1, s > 1, and > 1. Also, R is not a left
s-unital ring. However, R is a non-commutative ring (see [14, Example@).

If s 0 in Theorem 1, then Theorem 1 is also valid for fight s-unital ring.
THEOREM 2. Let r r() > 1, and be non-negative integers. If R is a right

s-unital ring satisfies the polynomial identity

[xy-- yrxt,x] O for all x, y ER, (3.9)

then R is commutative.
LEMMA 8. Let r r(x,y) > 1, and (x,y) be fixed non-negative integers. If R

is a right s-unital ring satisfies the polynomial identity (3.9), then R is s-unital.
PROOF. Since R is right s-unital, then for any x,y R there exists an element

e e(z,y) R such that xe z and ye y. Let r r(x,y) > 1, t(x,y) > O,
r’ r’(z,y) > 1, and t’ t’(x,y) >_ O. Replace y by e in (3.9) and follow the argument
of Lemma 6 to obtain err’x+’+ x+’+, and err’y+’+ y+’+=. By Lemma 3, R is
s-unital.

PROOF OF THEOREM 2. By Lemma 8, R is s-unital. Hence, we can assume
that R has unity (see [13, Proposition 1]). Therefore, R is commutative by Lemma 7.
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