AN INFINITE VERSION OF THE PÓLYA ENUMERATION THEOREM

ROBERT A. BEKES

Mathematics Department, Santa Clara University Santa Clara, CA 95053

(Received July 29, 1991 and in revised form December 17, 1991)

ABSTRACT. Using measure theory, the orbit counting form of Pólya's enumeration theorem is extended to countably infinite discrete groups.

KEY WORDS AND PHRASES. Infinite discrete group, Pólya's emumeration theorem . 1991 AMS SUBJECT CLASSIFICATION CODE. 05A15

1. INTRODUCTION.

Let G be countable discrete group acting as permutations on a countable set D. Let S be a finite set with cardinality, |S| = N. Denote by S^D the set of functions from D to S. For $\gamma \in S^D$ define $g\gamma \in S^D$ by $g\gamma(d) = \gamma(g^{-1}d)$. For a subgroup K of G let Δ_K be a set of representatives for the orbits of K in S^D . Let \mathfrak{K} be a Hilbert space with orthonormal basis $\{e_{\gamma}: \gamma \in S^D\}$ and inner product \langle , \rangle . Define a unitary representation of G on \mathfrak{K} by $\pi(g)e_{\gamma} = e_{g\gamma}$.

The number of orbits of G in S^{D} is denoted by $|\Delta_{G}|$. For finite G and D this can be counted by the Pólya enumeration theorem. Specifically, for each $g \in G$, let $c_{i}(g)$ be the number of cycles of length *i* in the representation of g as a product of disjoint cycles in D and let $M(g)=y_{1}^{c_{1}(g)}\cdots y_{n}^{c_{n}(g)}$, where n=|D|. The cycle index of G on D is the polynomial $P_{G}=\frac{1}{|G|}\sum_{g \in G} M(g)$. Denote by σP_{G} the value P_{G} at $y_{i}=N$, i=1 to n. Pólya's enumeration theorem,

see Pólya [1], says that $|\Delta_G| = \sigma P_G$.

Define the operator T_G on \mathfrak{K} by $T_G = \frac{1}{|G|} \sum_{g \in G} \pi(g)$. Then it can also be shown, see Williamson [2], that $|\Delta_G| = trace(T_G \text{ on } \mathfrak{K})$. It is these two ways of measuring a set of representatives for orbits that we extend to infinite G and D.

2. THE MAIN RESULTS.

If we view S as a finite group with the discrete topology, then S^D is a compact group in the product topology. Let μ be normalized Haar measure on S^D .

For $g \in G$ and $\gamma \in S^D$ define $f(\gamma) = \langle \pi(g)e_{\gamma}, e_{\gamma} \rangle$. Then $f(\gamma) = \begin{cases} 1 & \text{if } g\gamma = \gamma \\ 0 & otherwise. \end{cases}$

LEMMA 1. f is measurable.

PROOF. Let
$$f_i(\gamma(d_n)) = \begin{cases} 1 & \text{if } \gamma(g^{-1}d_n) = \gamma(d_n) \\ 0 & \text{otherwise} \end{cases}$$
 and $h_n(\gamma) = \prod_{i=1}^n f_i(\gamma(d_n))$.

Then h_n is measurable for all *n*. Now $g\gamma = \gamma$ if and only if γ is constant on the orbits of **g**. But this happens if and only if $\gamma(g^{-1}d) = \gamma(d)$ for all $d \in D$. Therefore $f(\gamma) = 1$ if and only if $f_i(\gamma(d_n)) = 1$

R.A. BEKES

for all *i*. This shows that $f(\gamma) = \lim_{n \to \infty} h_n(\gamma)$ and therefore measurable by Hewett and Stromberg [3, 22.24b].

We write $D = \{d_1, d_2, d_3, ...\}$ and let $D_n = \{d_1, ..., d_n\}$. Let $\langle g \rangle$ be the subgroup generated by g and $\langle g \rangle d$ the orbit of d under $\langle g \rangle$. For each n and each $k \leq n$ let $c_k^n(g)$ be the number of distinct cycles of g such that $|\langle g \rangle d \cap D_n| = k$. Form the monomial $M^n(g) = \frac{1}{N^n} y_1^{c_1^{n}(g)} y_2^{c_2^{n}(g)} \dots y_n^{c_n^{n}(g)}$.

LEMMA 2.
$$\int_{S^D} \langle \pi(g) e_{\gamma}, e_{\gamma} \rangle d\mu(\gamma) = \lim_{n \to \infty} \sigma M^n(g)$$

PROOF. From the proof of Lemma 1 we saw that $\langle \pi(g)e_{\gamma}, e_{\gamma} \rangle = \lim_{n \to \infty} h_n(\gamma)$. So by the dominated convergence theorem, $\int_{S^D} \langle \pi(g)e_{\gamma}, e_{\gamma} \rangle d\mu(\gamma) = \lim_{n \to \infty} \int_{S^D} h_n(\gamma)d\mu(\gamma)$. But now $h_n(\gamma) = 1$ if and only if γ is constant on the intersection of the orbits of g with D_n otherwise $h_n(\gamma)=0$. Let $B_n = \{\gamma: \gamma \text{ is constant on the intersection of the orbits of } g \text{ with } D_n\}$. Then $\int_{S^D} h_n(\gamma)d\mu(\gamma) = \mu(B_n)$. Since there are N choices for the value of γ on each orbit meeting D_n and no restrictions

on γ outside D_n , we get $\mu(B_n) = \frac{1}{N^n} N^{c_1^{n}(g)} \cdots N^{c_n^{n}(g)} = \sigma M^n(g)$.

Let G_o be the subgroup of G consisting of all those $g \in G$ having only a finite number of cycles in D of length greater than 1.

LEMMA 3.
$$\int_{S^D} \langle \pi(g) e_{\gamma}, e_{\gamma} \rangle d\mu(\gamma) = 0 \text{ for all } g \notin G_o$$

PROOF. Suppose $g \notin G_o$. Then there either exists k_o such that $c_{k_o}^{n}(g) \to \infty$ as $n \to \infty$ or there exists an increasing sequence $\{k_n\}$ such that $c_{k_n}^{n}(g) \ge 1$. In the first case, for $n \ge k_o$, $n - \sum_{i=1}^{n} c_i^{n}(g) = \sum_{i=1}^{n} (i-1)c_i^{n}(g) \le c_{k_o}^{n}(g)$. So with B_n as in the proof of Lemma 2, we get $0 \le \int_{i=1}^{n} \langle \pi(g)e_{\gamma}, e_{\gamma} > d\mu(\gamma) = \lim_{n \to \infty} \mu(B_n) \le \lim_{n \to \infty} N^{-c_{k_o}^{n}(g)} = 0$. In the second case we get $n - \sum_{i=1}^{n} c_i^{n}(g) \le k_n - 1$ and so $0 \le \int_{S^D} \langle \pi(g)e_{\gamma}, e_{\gamma} > d\mu(\gamma) = \lim_{n \to \infty} \mu(B_n) \le \lim_{n \to \infty} \mu(B_n) \le \lim_{n \to \infty} N^{-(k_n - 1)} = 0$.

For each k let $F_k = \{g \in G: gd_i = d_i \text{ for all } i > k\}$. Then $\{F_k\}$ is a nondecreasing sequence of subgroups with $\bigcup_{k=1}^{\infty} F_k = G_o$. Suppose $G = \{g_1, g_2, \dots\}$ and let $G_m = \{g_1, \dots, g_m\}$. Assume G is ordered in such a way that there exists a subsequence $\{m_k\}$ with $G_o \cap G_{m_k} = F_k$.

Let F be a finite subset of G. Define the n^{th} cycle index of F to be the polynomial $P_F^n = \frac{1}{|F|} \sum_{g \in F} M^n(g)$. Define the operator T_F on \mathcal{K} by $T_F = \frac{1}{|F|} \sum_{g \in F} \pi(g)$. Write P_m^n for $P_{G_m}^n$ and T_m for T_{G_m} .

THEOREM 4.
$$\Delta_{G_o}$$
 is closed and

$$\mu(\Delta_{G_o}) = \lim_{k \to \infty} \left\{ \frac{m_k}{|G_{m_k} \cap G_o|} \lim_{n \to \infty} \sigma P_{m_k}^n \right\} = \lim_{k \to \infty} \frac{m_k}{|G_{m_k} \cap G_o|} \int_{S^D} \langle T_{m_k} e_{\gamma}, e_{\gamma} \rangle d\mu(\gamma) .$$

PROOF. Fix k and let $D_{k'}=\{d_{k+1}, d_{k+2}, \dots\}$. If $\alpha_1, \dots, \alpha_s$ are representatives for the orbits of F_k in S^{D_k} , then $\Delta_{F_k} = \{\alpha_1, \dots, \alpha_s\} \times S^{D_k'}$. Therefore Δ_{F_k} is closed and $\mu(\Delta_{F_k}) = \frac{s}{N^k}$. Let \mathfrak{K}_k be a Hilbert space with orthonormal basis $\{e_{\alpha}: \alpha \in S^{D_k}\}$. By Williamson [2], $s = trace(T_{F_k} \circ n \mathfrak{K}_k) = \sigma P_{F_k'}$, where P_{F_k} is the usual cycle index of F_k on D_k . Note that $\sigma P_{F_k} = N^k P_{F_k}^n$ for all $n \ge k$. By Lemma 3, $\frac{m_k}{|G_{m_k} \cap G_o|} \lim_{n \to \infty} \sigma P_{m_k}^n = \lim_{n \to \infty} \sigma P_{F_k}^n$. Therefore $\frac{m_k}{|G_{m_k} \cap G_o|} \lim_{n \to \infty} \sigma P_{m_k}^n = \frac{1}{N^k} \sigma P_{F_k}$. By Lemma 2, $\lim_{n \to \infty} \sigma P_{m_k}^n = \int_{S^D} \langle T_{m_k} e_{\gamma}, e_{\gamma} > d\mu(\gamma)$. So we get $\mu(\Delta_{F_k}) = \frac{m_k}{|G_{m_k} \cap G_o|} \lim_{n \to \infty} \sigma P_{m_k}^n = \frac{1}{S^D} \langle T_{m_k} e_{\gamma}, e_{\gamma} > d\mu(\gamma)$.

Since $F_k \subseteq G_o$ we can assume that $\Delta_{G_o} \subseteq \Delta_{F_k}$ for all k. Therefore $\Delta_{G_o} \subseteq \bigcap_{k=1}^{\infty} \Delta_{F_k}$. We claim that $\Delta_{G_o} = \bigcap_{k=1}^{\infty} \Delta_{F_k}$. To see this suppose that $\gamma \in \Delta_{F_k}$ for all k. Then there exists $\gamma \in \Delta_{G_o}$ and $g \in G_o$ such that $\gamma = g\gamma\gamma$. Since $G_o = \bigcup_{k=1}^{\infty} F_k$ there exists k_o such that $g \in F_{k_o}$. Therefore γ and $\gamma\gamma$ represent the same orbit of F_{k_o} in S^D . Since γ and $\gamma\gamma \in \Delta_{F_k}$ we get $\gamma = \gamma\gamma$. This proves the claim.

It follows that Δ_{G_o} is closed and hence measurable. Therefore $\mu(\Delta_{G_o}) = \lim_{k \to \infty} \mu(\Delta_{F_k})$. This completes the proof of the theorem.

Suppose now that G is in no particular order. We show how to compute $\mu(\Delta_{G_o})$. Let $A_m = G_m \cap G_o$ and let $T_{A_m,n} = (T_{A_m})^n$.

THEOREM 5.
$$\mu(\Delta_{G_o}) = \lim_{m \to \infty} \lim_{n \to \infty} \int_{S^D} \langle T_{A_m, n} e_{\gamma}, e_{\gamma} \rangle d\mu(\gamma)$$

PROOF. Exists m_o so that $l \in G_{m_o}$. Fix $m \ge m_o$ and let H_m be the subgroup of G_o generated by A_m . Define a probability measure ν on H_m by $\nu(g) = \frac{1}{|A_m|}$ if $g \in A_m$ and $\nu(g) = 0$ otherwise. Let ν^{*n} be the n-fold convolution of ν with itself and U the uniform probability measure on H_m . Then by Diaconis [4, pg23], $\|\nu^{*n} - U\| \to 0$ where $\|.\|$ is the total variation norm. If we extend the representation π , in the usual way, to the set of measures on H_m we get $\pi(\nu^{*n}) = (T_{A_m})^n = T_{A_m'^n}$ and $\pi(U) = T_{H_m}$. It follows, therefore, that $\lim_{n\to\infty} < T_{A_m,n} c_{\gamma}, c_{\gamma} > = < T_{H_m} c_{\gamma}, c_{\gamma} >$ for all $\gamma \in S^D$. By the dominated convergence theorem, $\lim_{n\to\infty} \int_{S^D} < T_{A_m,n} c_{\gamma}, c_{\gamma} > d\mu(\gamma) = \int_{S^D} < T_{H_m} c_{\gamma}, c_{\gamma} > d\mu(\gamma)$. Then as in the proof of Theorem 4, we get $\mu(\Delta_{H_m}) = \int_{S^D} < T_{H_m} c_{\gamma}, c_{\gamma} > d\mu(\gamma)$. The result follows since $G_o = \bigcup_{m=1}^{\infty} H_m$.

3. EXAMPLE.

Suppose $D = \bigcup_{n=1}^{\infty} D_n$, where the D_n are disjoint and finite and that G sends D_n into itself. Then if G_n is G restricted to D_n , G is isomorphic to the product $\prod_{n=1}^{\infty} G_n$. In this case the product measure μ on S^D need no longer come from uniform measures on S.

Let $S = \{s_1, \dots, s_k\}$ and let the measure ν on S be defined by $\nu(s_i) = a_i$. If $|D_n| = m_n$ define the measure μ_n on S^{D_n} by $\mu_n = \prod_{i=1}^m \nu$. Let Δ_n be representatives for the orbits of G_n in S^{D_n} and P_{G_n} the cycle index. Then using the pattern inventory from Pólya's enumeration theorem, see Pólya and Read [1], we get $\mu_n(\Delta_n) = P_{G_n}\left(\sum_{i=1}^k a_i, \sum_{i=1}^k a_i^2, \dots, \sum_{i=1}^k a_i^n\right)$. Let $\mu = \prod_{n=1}^\infty \mu_n$ and let Δ be representatives for the orbits of G in R^D . Then, as in the proof of Theorem 4, we get that $\mu(\Delta) = \lim_{n \to \infty} \prod_{k=1}^n \mu_k(\Delta_k)$. Note that when $a_i = \frac{1}{k}$, $i = 1, \dots, k$ and $|D_n| = n$ we get $\mu_n(\Delta_n) = \sigma P_{G_n}$, which is the situation in Theorem 4.

Now consider the plane tiled by one unit square tiles with sides parallel to the axis and center the coordinates (m, n), m and n integers. We color the tiles black or white and compute the measure the orbits of two groups of symmetries acting on the set of such tilings. For m a a positive integer let $D_m = \{\text{tiles with centers } (\pm m, k) \text{ or } (k, \pm m): k = -m, -m+1, \cdots, m-1, m\}$. Let $G_n = \prod_{k=1}^{2n+1} \mathbb{Z}_2$ act on D_{n^2} by interchanging tiles with central coordinates $(\pm n^2, k)$, $k=-n^2, \cdots, n^2$ and let $H_n = \prod_{k=1}^{2n+1} \mathbb{Z}_2$ act on D_{n^2} by interchanging tiles with central coordinates $(\pm n^2, k)$, $k=-n^2, \cdots, n^2$ and let $H_n = \prod_{k=1}^{2n+1} \mathbb{Z}_2$ act on D_{n^2} by interchanging tiles with central coordinates $(\pm n^2, k)$, $k=-n, \cdots, n$. Now let $G = \prod_{n=1}^{\infty} G_n$ and $H = \prod_{n=1}^{\infty} H_n$. With $S=\{black, white\}$, we define probability measures μ_n on S^{D_n} by $\mu_n = \prod_{k=1}^{m} \gamma_n$, where $\nu_n(black) = \sqrt{\exp\{-\frac{1}{n(2\sqrt{n}+1)}\}} \cdot \frac{3}{4} + \frac{1}{2}$ and $\nu_n(white) = 1 - \nu_n(black)$. Let $\Delta(G_n)$ and $\Delta(H_n)$ be representatives for the orbits of G_n and H_n respectively on S^D . Then $\mu_n(\Delta(H_n)) = \exp(-1/n^2)$ and so $\mu(\Delta(H)) = \liminf_{m \to \infty}^{m} \prod_{n=1}^{m} \mu_n(\Delta(H_n)) > 0$. But $\mu_n(\Delta(G_n)) = \exp\{-\frac{2n^2+1}{2n^3+n^2}\}$ and so $\mu(\Delta(G)) = \liminf_{m \to \infty}^{m} \prod_{n=1}^{m} \mu_n(\Delta(G_n)) = 0$.

REFERENCES

 G. PÓLYA and R. C. READ, <u>Combinatorial Enumeration of Groups</u>, <u>Graphs</u>, and <u>Chemical Compounds</u>, Springer-Verlag, New York, 1987.

2. S. G. WILLIAMSON, Operator Theoretic Invariants and the Enumeration Theory of Pólya and de Bruijn, <u>Journal of Combinatorial Theory, 11</u> (1971), 122-138.

3. E. HEWETT and K. STROMBERG, <u>Real and Abstract Analysis</u> , Springer-Verlag, New York, 1965.

4. P. DIACONIS, <u>Group Representations in Probability and Statistics</u>, Institute of Mathematical Statistics, Hayward, California, 1988.