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Abstract. A study is made of the Lamb plane problem in an infinite thermo-visco-elastic micropolar

medium with the effect of gravity. The visco-elasticity is characterized by the rate dependent theory of

micro-visco-elasticity generalizing the classical Kelvin-Voigt theory. The action oftime harmonic loading
is treated in detail. The solutions for the displacement fields, couple stresses and the temperature field are

obtained in general and particular cases.
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1. INTROI)IJCTION. Eringen [1-4] has developed a general theory of linear micropolar continuous

media and of linear micropolar visco-elastic media. The classical Lamb problem in an elastic medium has

received considerable attention in various elastic media with different kinds ofloading. A selected reference

including Sengupta and his associates [5-7], Chadha et ah [8], Rajneesh Kumar et ah [9] is cited for the

reader.

The purpose of this paper is to study the effect of gravity on Lamb’s plane problem in a micropolar
thermo-visco-elastic medium. As far as we know, this problem has not yet received any attention.

2. FORMULATION OF THE PROBLEM. We consider a homogeneous micropolar thermo-visco-

elastic semi-infinite medium with the influence of gravity under the action of loading g(xl, t) free plane
boundary x3- 0. It is assumed that the medium is free to exchange heat with the material in the region
x > 0. It is everywhere at the constant absolute temperature To prior to the appearance of any disturbance.
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Since we consider the plane problem, we assume that the displacement u-(ul,0,u3) and rotation

to (0, oh, O) which are functions of (x,x3,t). The displacements are related to the displacement potentials

(xl,x3, and p(x,xa, as follows:

u--V,,, u3-.,+p (2.lab)

so that

where

e V2#, V- Ou Ou
8x3 Ox

(2.2ab)

-+ and -+ (2.3ab)e
Ox Ox, Ox?

The basic dynamical equations of motion in a mierolar-vis-elastie lid medium dere influence

of mpemmre are

( + %) +( +at) V+ (N + %) +( + a) addiv

+ 2 % +a rot- (3 +2) + (3N +2) ad 0 p (2.4)

( (
where re e me elfie ns wile are e ther material constants,,,,,, re e mee representing e effec of viscosity. s ese elastic moduli

and seifies ,,a,,,ee subjected m e following restctins

3+2+a, 03+, 0, -e, 0, 0 (2.6)

and eeienflinearepansifmlip edecry, T T(absolute temperature-initial

ablute empemre), and J e mtfial ineh.

Fre presem smd, R is nveniem mre euafins (2.4)-(2.5) s

+ 2 + (3 +)+(3 + 2)o PL" Pa
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The temperature 0 satisfies the Fourier’s law of heat conduction

V20 pC,- + TO (3 +2) + (3X + 21Lq)t Ct,

where is the theal conductivity and C is e specific heat at constant strain.

Substituting (2.2ab) into (2.7)-(2.9) gives

- ,-g+ p+p’g =0
1

[(C:V2-)Io-r(p+p,’2)(V20’ =0
where

Ci
+21ao ,2 .l+2l +Cto l+cq"- C1 C2=’, C2’2=

P P P P

C
t )’o + eo ’t + el 4Cto 4ctt

oc.’ c- j
c,’=

j c--7-, c;- 7-
(3X0 + 2t.t0)ett (3L + 21x)et, ._, 2eh To

Pi p Pi’-= p P2- P2’2=--, r=c’-,

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

BOUNDARY CONDITIONS.
The stress-strain relations in considered medium are

% [( + Cto) + (t +c0o + ( %) +( ) V,

, (o + o) + (, + ’)7 x + (o + o) + (, ’)7 + o.+ I,7 x%
in which

ei is the unit antisymmetric tensor, and oq is the Kronecker delta.

Hence the boundary conditions are

033 -/(x, t), o31 0, 2 0 on

where - [*,33--1),13 + + LI" V2

-(3o + 2) + (3X, + 21a,) ]ct,O.

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)
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The thermal condition is

00
+hO-O on x-OOx

(3.6)

(3.7)

(3.8)

4. SOLUTION OF THE PROBLEM. We introduce Fourier’s double integral transform pair

defined by (see Debnath and Myint-U [10])

x,,n) - x.x, )e""at

x,,,t) ,,n)""/"aan (4.lab)

and similarly for ,c, 0.

Application of this transform reduces (2.10)-(2.13) into the form

[(C-iC,’2)(d-2) +21,_i,-1-i1’2 .0 (4.2)

(Cf inC2’2) 2 + n2 +i f i2’2 0 (4.3)

d _n2)]_ 1CC inC4’2)(-2) -CC inCs’2 (C inCs’2)( d2- 2)* O (4.4)

C( d i,,2) ( d
provided that in the case of exponential solutions of the equation the following conditions are satisfied

,,00, as

erefore the lutions of the equations (4.2)-(4.5) ven by

=Ae-+Be-+ Ce-+De- (4.6)

-Ae-+Be-+Ce-+Die-’ (4.7)

2 A:-’ +B:-+C:-’ +D:-’ (4.8)

=A3e- +B3e-+ Cse-+D3e- (4.9)

where ] (j 1, 2, 3, 4), are the roots of the equation
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{(C iriC,’2)(2- 2) + rie} [{(C- iriC2’2)(2- =) + ri2} {(C- iriC4’2)( )

-(C; irlCs’ q2)} C(2 :,) + iq (p= irlp2’2)(C iriCsa) (-z ) C(2 ,.) + iq

-g:{(c- inc;:)(’-- )-(c- i,c,"-- n)} {c(’-- ’) + in}

,rip, ") {(C iriC=’:’)(:’ 2) + ri2}

x{(C iqC,’2)( ) (Cs inc,’= n=)} {rivl(p ivlp,’=)(

12 ,rm, )(= ’-)= o+-.riri(Cs iriCs’)(p ’:’

and the constants A,B,C,D, AI,B, CI,D etc. are related by

c, tic, c=- c,-
D,=<D, D,-V>

where

1

iripl’:’)y]%

g
(c: inG’= ( =)- (c=, -inc,’= n

riri(2 irlp,a)(= i)

Substitution of (4.6)-(4.9), (4.lab) into (3.4) yields

pr4 + pz,B +psC +pD -](, rl)

qe4 +q + qsC + q,,D 0

where

rtA + r2B + rsC + rD -0

s3 + s2B + ssC + s,D 0

0-1,2,3,4)

Solving the equations (4.15abcd), we obtain

A, Aa -.f, B =--f,
where

-{(3X + 21.to)- iri(3L, +

q (go irlt*0 [( + ")a) + 2i/+(%- irla,)[a)( =)- 21)],
(j 1,2,3,4)

A A
Cx --]’,

(4.10)

(4.11)

(4.12)

(4.14)

(4.15abcd)

(4.16)

(4.17)

(4.18ab)

(4.19abcd)
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Pi P, P3 P, -1 P2 P3 P,

A-
q’ q2 q q4

Al 7 q2 qa q4
(4.20)

r r r: r : r r: r

s h s4 s h s4Sl

Similarly, A2, A, A4 are obtained, eliminating second, third and fourth column ofA by the column (-1,0, 0, 0).

Inserting the values ofA,B,C,D and (4.6)-(4.9) and ing (4.1b) we obtain

" +a-+Ae-+

ctlA,e -’’’T’ + c.xe-’V + (Ae-’‘’v + (4.22)

(4.23)

o--S
We can now easily determine the components of displacement and the non-zero components of force stress

as well as couple stress tensor.

5. LOADING FUNCTION HARMONIC IN TIME
In this case, the boundary conditions (11) take the following forms

o33=-f(x)e -"’, o=0, 2=0 on x=0 (5.1)

The formula for displacements u,,u3 may be found by using the relations (2.lab) and the equations for #

and ap in (4.21)-(4.22). Therefore we have

u, [(i a......A,e-:v:x,) + (i .....__-,Vv,-)A.,e

+(i Va)Ae-’v’ + (i (llvr)A,e-’V]e-"+"ddrl, (5.2)

;SAf--."u3 - [(ict +)A,e-:v7 +(i +V)A,ze-v’

We also find

2 -((Y0 + eo)- iiICY, +e,)} [lVr A,e

(5.3)

+I;V2Aze-’,v’ + I;V3 A,e-’’v’ + 151A,e -’v’t;] e-"+’n)ddrl (5.4)
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](,,)-- fJf(x,e-’"e’" ""ax,at _.
vn o,)f’) (5.5)

where

]"()---f(x,)e.’dx, (5.6)

and b(x) is the Dirac delta function defined by

e"dt vr6(p) (5.7)

Substitution of (5.5) in (5.2)-(5.4) and in (4.24) gives, after integration,

-e-f[1..-at (i Ct.. _._Ate-v’)+(i ct)A.,e

+ (i t;V3)A3e-v + (i t:V)A’*e-V’} n-,,,f*()e -/’d, (5.8)

u3 - { (ict; + vr)A,e-’v + (i4 + Vrz)Aze-’v

+ + V )a,e / +

+;A-"+:A3e-" +:A’e-"} n--f’(’d, (5.10)

e -
In paicular, when the applied load is a horizontal concentrated forte’acting at the origin, that is

[(x)- Px) so that ff()- e. Hence solutions (5.8)-(5.11) aume simpler forms. e upshot of this

analysis is that solutions modified by avity, viscosity and temperature field.

6. CSG
With regard to the general character of the haonic loading function utilized as a disturbance in the

theo, it can be added as a concluding remark that the present analysis is sufficiently general, and in

addition, it incoorates other forms of harmonic disturbances of physical interest.
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