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ABSTRACT. The eigenvalue problem in difference equations, (--1)n-kAny(t) A -l:,=o p()’,(),
with y(0) 0, 0 < < k, Ak+iy(T + 1) 0, 0 _< < n k, is examined. Under suitable conditions

on the coefficients Pi, it is shown that the smallest positive eigenvalue is a decreasing function of

T. As a consequence, results concerning the first focal point for the boundary value problem with

A are obtained.
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1. INTRODUCTION

Let k and n be integers with <_ k < n. For functions y defined on an interval of integers, define

the difference operator A by Ay y, Ay(t) y(t + 1) y(t), and zy A(Z-ly) for > 1. We

shall be concerned first with the eigenvalue problem for difference equations

k-I

(--1)"-kA"y(t) A ’pi(t)Zy(t), 0 < < T, (1.1)
i=0

Aiy(0)=0, 0_<i_<k-1,
(1.2)

A+iy(T + 1) 0, 0 < < n k- 1,

where T is a nonnegative integer. Throughout this paper, the interval notation in expressions such

as (1.1) denote intervals of integers; for example, [0,T] {0,1,..., T}. Under suitable conditions

on the coefficients pi, we show that the smallest positive eigenvalue is a decreasing function of T.

Next, we will consider the boundary value problem (1.2),

k-1

(--1)"-A"y(t) -pi(t)Aiy(t), 0 <_ <_ T. (1.3)
i=0

If there is a nontrivial solution of (1.3), (1.2), then T is said to be a (k,n k)-focal point of (1.3).
The smallest such T is called the first (k,n k)-focal point, or, more briefly, the first focal point.

The results concerning the monotonicity of the eigenvalue will be used to investigate relationships
between the existence of first (k, n k)-focal points of (1.3) and the existence of solutions of (1.3),
(1.2) that are positive with respect to a cone in a suitable Banach space.
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It can be shown that the Green’s function GT(t,s) for the focal boundary value problem

(-1)’-:A"/(t)
/x,y(o) o, o _< _< ,
A:+’z/(T + 1)= 0, O<i<n-k-1,

(1.4)

exists. Extensive discussions concerning Green’s functions for difference equations can be found in

nartman [1] and Kelley and Peterson [2]; see also [3]. In particular, if /(t) is a solution of (1.3),
(1.2) on [0, T + HI, then /(t) solves the equation

T k-I

y(t) GT(t,s) pi(s)Aiy(s), e [0, T + n].
s=0 i=0

As a consequence, if sign conditions on Gr(t,s) are known and certain positivity conditions are

placed on the pi’s, then questions concerning the eigenvalue of (1.1), (1.2) and the existence of focal

points for (1.3), (1.2) can be examined in terms of a family of linear operators that depend on T.

Many authors have applied the theory of cones in a Banach space and positive operators either

to demonstrate the existence of smallest positive eigenvalues, to compare these eigenvalues, or to

establish the existence of first conjugate points or first focal points of boundary value problems for

linear equations; see, for example, Eloe and Henderson [4, 5], Gentry and Travis [6], Hankerson and

Henderson [7], nankerson and Peterson [8, 91, Keener and Travis [10], Tomastik [11, 21, and Travis

[13]. We also mention papers by Eloe [14] and Eloe and Henderson [151 which examine criteria

for disfocality of difference equations, two papers by Henderson [16, 17] on focal boundary value

problems for nonlinear difference equations, and a paper by Henderson and Lee [18] on continuous

dependence and differentiation of solutions of difference equations. Much of our motivation for this

study are the works of Keener and Travis [19], Schmitt and Smith [20], and Tomastik [21].
In section 2, we include preliminary notation, and fundamental results from the theory of cones

in a Banach space. In section 3, we show, under suitable assumptions on the coefficients Pi, that

the smallest positive eigenvalue of (1.1), (1.2) decreases with T. This will lead to results concerning

the first focal point of (1.3), (1.2).

2. PRELIMINARIES
In this section, we give definitions and auxiliary results from cone theory. Much of the discussion

in this section involving the theory of cones in a Banach space arises from results in Krasnosel’skii"s

book [22]. Other good references include Kren and Rutman [23], and Deimling [24].
Let B be a Banach space. A closed subset K of B is said to be a cone provided: (i) if u, v E K

thencu+v E Kforallcr,/ > 0, and (ii) ifu,-u K thenu 0. A cone K is said to be

reproducing provided every z B can be written as z u v for some u, v fi K. If K is a cone

and u, v B, then we write u < v (with respect to K) provided v- u E K. If L and M are linear

operators on B, then L < M (with respect to K) provided LZ/< My for all /5 K. Finally, given

a bounded linear operator L on B, we say that L is positive if L(K) C_ K, and we say that L is

uo-positive if given any nonzero u K, there exist kl, k2 > 0, such that kluo < Lu < k2uo. If

L B B is a bounded linear operator, we shall use r(L) to denote the spectral radius of L.

THEOREM 2.1 Let L be a positive compact linear operator with respect to a reproducing cone

K and let r(L) > O. Then r(L) is an eigenvalue of L with correspondin# eiaenvector in K.
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THEOREM 2.2 IlL and M are compact linear positive operators such that L < M, then r(L) <

r(M).

THEOREM 2.3 Let L be a compact linear positive operator, and suppose Lx >_ px for some

p > 0 andx E B with-x K andx u-vforsomeu, v K. Then L has an eigenvector

xo K corresponding to an eigenvalue ,o >_ P.

Theorems 2.5, 2.10, 2.11, and 2.13 of Krasnosel’skii give the following theorem.

THEOREM 2.4 Let K be a reproducing cone. If L is a compact uo-positive linear operator then

L has an essentially unique eigenvector in K and the corresponding eigenvalue is simple, positive,

and larger than the modulus of any other eigenvalue.

The following theorem appears in Keener and Travis [19, Theorem 2.3] and is a generalization

of Travis [13, Theorem 2.3].

THEOREM 2.5 Let L and M be bounded linear operators and assume that at least one of the

operators is Uo-positive. Assume L < M and there ezist nonzero vectors ul, u2,

_
K and scalars

,1,2 > 0 such that Lul > Alui and Mu2 < A2u2. Then < ,2. If , , then ut is a scalar

multiple of u2.

3. EIGENVALUES AND FOCAL POINTS

Our main objective in this section is to describe how the smallest positive eigenvalue of (1.1),
(1.2) changes with T. We will transform these questions about the eigenvalue into questions about

the spectral radius of certain operators on a Banach space, and then apply the cone theory.

First, let (c)(i) denote the factorial polynomial defined by (c){0 c(c- 1).-. (c- + 1). If

Gr(t,s) is the Green’s function for (1.4), then

mi.{,-l,,) (t r 1)(k-j-l) (-r + s + n k 1)zGr(t,,)
(k- j- 1) (n- k- 1)!1"-’0

for j < k, and

Ak+JGT(t,s (n-k-l-j)! -;< s

O, t>s

for 0 < j < n k 1. The Green’s function can be found with the aid of [25, Lemma 1].
Next, let B {y" [0, c) R ly is bodd nd ZU(0) 0, 0 _< < k}. Then B is a Banada

space under the sup norm. Define Lr B ---} B by

E GT(t, s) pi(s)Aiy(s), 0 < < T -t- n,
LTy(t) ,=o =

O, T+n < t.
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We assume that p,(t) > 0 for > 0, 0 < < k 1.

Remark. Note that LTy depends only on the values of y on [0, T + k 1]. Hence, if T > T

and BT {y’[0, T1 + k- 1] R IA’y(0) 0, 0 < < k 1}, then we can regard LT as a map

BT B. We can then define the map MT’BT B. by MTZ Lrzlto,r,+k_1.
Now, if (A,z) is an eigenpair for MT, then we can extend z to a function in B by setting

y(t) z(t) for 0 < < TI + k- and Ay(t) Lrz(t) for > T + k; then (A,y) is an eigenpair

for LT. Conversely, if (A,y) is an eigenpair for Lr with A 0, then z Ylt0m,+k-l 0 (otherwise
LTy 0 and A 0) and (A, z) is an eigenpair for MT.

In addition, for any function x(t) defined on [0, T + k- 1], the expression Lrx makes sense and

we will allow this slight abuse of notation. Then if y(t) LTx(t), it follows that y(t) is a solution

of the boundary value problem (1.2),

k-1

(--1)’-kA’y(t) -pi(t)Zx(t).

If (A,x) is an eigenpair for Lr with A 0, then (1/A,x)is an eigenpair for (1.1), (1.2), and

cqnversely. Note also that A 0 is not an eigenvalue of (1.1), (1.2).

To begin with, we wish to examine, under suitable conditions, what happens to the spectral

radius of Lr as T increases. Our first result will play a key role in subsequent work.

THEOREM :3.1 The spectral radius r(Lr) is a nondecreasing function ofT. Morever, ifpio(T) >
0 for some T > k io, then r(LT_) < r(Lr).

PROOF. Define the cone KT in BT by

KT {y 6- Brlmiy(t) >_ O, 6- [0, T + k- i], 0 < < k- 1}.

Then Kr {y 6- Br zy(t) > O, 6- [k- i,T + k- i], 0 < < k- 11, and Kr is reproducing.

We will begin by showing r(Lr) is nondecreasing; that is, we will show r(Lr_) < r(Lr). Let

z 6_ KT and regard LT-I as an operator on BT. Then

T-1 (8 -" 1 k t)(n-k-l) -AkLT-’x(t)
(n k 1)! Pi(s)Aiz(s)

s=t i=0

r (s + n k t)(’--) k-

<
(n-k-l)!s=t i=0

AtLrx(t), O<t<T-1.

We can repeatedly sum both sides of ALr_Ix(t) <_ ALTx(t) and use the boundary conditions to

show that A’LT_z(t) < ALTZ(t) for 0 < < T + k- i, 0 < < k- 1. Then LT- < LT with

respect to KT and by Theorem 2.2, r(Lr_) < r(Lr).
Now suppose that pio(T) > 0 for some T > k- i0. We first show that r(Lr) > 0. Let

u(t) () 6- K.. Note that

T k-I

ZLTu(t) , zGr(t,s) -pi(s)zu(s) > ZGT(t,T)Pio(T)AiOu(T) > 0
s=0 =0
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for k j _< _< T + k j and 0 _< j _< k 1. Thus, Lru G Kyr. It follows that there exists an

e > 0 such that LTU

_
eu, and by Theorem 2.3 we have r(LT)

_
e > O.

Finally, we will show r(LT_) < r(Lr). Assume r(LT_) > 0. By Theorem 2.1, r(Lz_) is

an eigenvalue of LT- with corresponding eigenvector y G K:r_. We can use r(LT_)y L:r-y

to extend y to a function in Br. We claim that y G If.. To see this, since y is an eigenvector

corresponding to r(LT_), there exists So e [0, T- 1] such that -l,i=o p,(So)y(So) > O. Then

T-I k-I

,(L_)() G_,(,),
s=O i=0

k-I

GT-I(t’80) Z P’("qo)Y("qO) > O,
-0

for [k j, T + k j], 0 _< j _< k 1. It follows that y e K. Hence p,o(T)Aiy(T) > 0 and

T-I k-I

=0 i=0

T k-1

< ZAkGT(t’s) Z
s=O i=0

ALTy(t), O<_t<_T-1.

Using the boundary conditions at 0, we obtain LTy- LT-y G K. Hence, there exists an

e > 0 such that LTy LT-y >_ ey, or LTy

_
ey + LT-y (e + r(LT-1))y. By Theorem 2.3,

r(LT) > r(Lr_).

We obtain a corresponding result for the smallest positive eigenvalue, A0, of the eigenvalue

problem (1.1), (1.2).

COROLLARY 3.2 Assume pio(To) > 0 for some io, To such that To >_ k io. Then the smallest

positive eigenvalue, Ao(T), for the eigenvalue problem (1.1), (1.2) decreases for T > To. If, in

addition, there exist l, T such that T > min{k i, To + } and p (T) > O, then Ao(T) < Ao(T0).

PROOF. By Theorem 3.1, r(Lro) > 0 and r(Lr,) is an eigenvalue of LT,. From the correspon-

dence between eigenpairs of the eigenvalue problem and Lro, we see that 1/r(Lr,) is the smallest

positive eigenvalue of (1.1), (1.2). Since r(Lr) is increasing, it follows that Ao(T) 1/r(LT) is

decreasing for T > To. Finally, r(Lr_) < r(Lr) by the previous theorem, and hence A0(T0) >

A0(T, 1) > Ao(T).

We now shall concentrate on the characterization of the first focal point of the boundary value

problem and corresponding results.

THEOREM 3.3 Assume p,o(T) > 0 for some T )_ k- io. Suppose that the boundary value

problem (1.3), (1.2) has.a nontrivial solution y KT (again, we mean YI[0,T+-I] G KT). Then T

is the first focal point.

PROOF. Our first step will be to show r(LT) 1. Now LTy y implies r(LT) > 1. Let

u KT be an eigenvector corresponding to r(LT). We have shown in the proof of Theorem 3.1

that y K. Choose a maximal so that y > an. Then y LTy > aLTu ar(Lr)u. By the

maximality of c, r(Lr) < 1. Hence, r(LT)= 1.
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Finally, if the first focal point r/ < T, then r(L,) _> 1. But Theorem 3.1 shows that r(L,) <

r(LT), contradicting r(LT) 1. El

We are also interested in the uniqueness of the function corresponding to the first focal point. If

conditions can be placed on the p,’s so that LT is u0-positive with respect to KT, then Krasnosel’skii’s

Theorem 2.4 can be applied. In this direction, then, suppose that p_(t) > 0 for 6 [0, T].
Since K is nonempty, Kr is reproducing. To show Lr is u0-positive, it is sufficient to show

LT(KT\{O}) C_ K.
Let z E K\{0}. First A-z(t) > 0 for some E [0, T]; otherwise, z would be the trivial

solution. Then for some s0 fi [0, T],

T k-1 k-1

r(t) (t,,) p,(,)A’(,) >_ (t,,0) p,(,o)/’(,o) > o,
s=O i=0 i:0

for (/ [k- j,T + k- -j], 0 _< j _< k- 1. Therefore, LTZ K for all z KT\{0}, and LT is

u0-positive.

Now suppose, in addition, that (1.3), (1.2) has a nontrivial solution y E KT. Note that by

Theorem 3.3, T is the first focal point. An application of Theorem 2.4 shows that y is unique up

to scalar multiple.

Finally, the requirement that p_ be strictly positive can be replaced by other similar conditions.

For example, if pk_ is identically zero, we could require pk-2 > 0 and change our interval to

[0, T + k- 2] in the definition of

However, under weaker conditions we can be certain that nontrivial solutions in KT are actually

in K. This condition is the key to show uniqueness.

THEOREM 3.4 Let Pio(T) > 0 for some T >_ k- io and let y IfT be a nontrivial solution of
(1.3), (1.2). Then y is unique up to scalar multiple.

PROOF. Since y 6- KT is a solution to the boundary value problem (1.3), (1.2), then y LTy.

Let z also be a solution of the boundary value problem (1.3), (.2) and assume -z Kr. Choose

c maximal so that y >_ cz. We know that c > 0 since y 6- K, by earlier arguments. Suppose

y cz 0. From previous work we know that LTy aLz 6_ Kr. Then there is an > 0 so that

LTy cLTz >_ ez. Hence y cz >_ ez implies y >_ (a + e)z, which contradicts the maximality of

The next two theorems will examine conditions which guarantee that the first focal point of

equation (1.3) is greater than or equal to T.

THEOREM 3.5 Assume that pio(T) > 0 for some T >_ k-io. If the smallest positive eigenvalue

Ao(T) of (1.1), (1.2) satisfies A0(T) _> 1, then the first focal point ? >_ T.

PROOF. Suppose, on the contrary, that r/ < T. By Corollary 3.2, Ao(r/) > o(T). Then

o(rt) > 1 since o(T) >_ 1. This says r(Ln) 1/o(1) < 1. But for z, a solution of the boundary

value problem, Lnz z implies r(Ln) _> 1, which is a contradiction. Therefore,

THEOREM 3.6 Let v be a nontrivial function in KT such that

T k-1

GT(,),,(),,()-< "()
a---O i---O
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with respect to KT, where p_(t) > 0 for all E [0,T]. Then the first focal point > T.

PROOF. Under the given hypothesis, we get that LTV < Iv with respect to KT. Let Ao(T) be

the smallest positive eigenvalue of the eigenvalue problem (1.1), (1.2), and let z be a corresponding

eigenfunction in Ka". Then r(La")z Lrx (1/A0(T))z. By remarks preceding Theorem 3.4, LT is

u0-positive, and it follows by Theorem 2.5 that 1/,0(T) < 1. Therefore, by Theorem 3.5, the first

focal point q >_ T. 13

As in the discussion preceding Theorem 3.4, the result still holds if we require that the last

nontrivial coefficient function be strictly positive, and then modify the Banach space accordingly.

These conditions guaranteed that Lr was u0-positive and allowed the application of Theorem 2.5.

However, we can relax the requirement of u0-positivity, provided we add the condition Lrv O.

To see this, consider the situation in Theorem 2.5 where L < M and there are nonzero vectors

ul,u K and scalars A,A > 0 such that Lu > Alu and Mu < Auz. In the proof of Theorem

2.5, u0-positivity of L was used to show e0 sup{, L(u eul) > 0} > 0. In this case,

0 <_ L(u ,oU,) Lug. ,oLu, <_ Mu ,oA,U, <_ Au ,oA,u, A(u2 oU,).
Hnce L(u -,ou,) KT implies

Now suppose that pi0(T) > 0 for some T > k- i0, and that there is v Ka" such that Lrv is

nontrivial and Lrv < v. Using techniques similar to those in the proof of Theorem 3.1, it can be

shown that La"v K. If z q Ka- is an eigenfunction for (1.1), (1.2) corresponding to Ao(T), then

,o sup{, Lr(v- ,z) > 0} > 0. Hence, _< A0(T), and the first focal point r/> T from the same

arguments used at the end of the proof of Theorem 3.6.
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