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ABSTRACT. The general solution of a conditional Cauchy functional equation of
several variables is obtained and its applications to the characterizations of
multivariate stable distributions are studied.
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1. INTRODUCTION.
The purpose of this note is to solve the conditional Cauchy functional equation of
several variables

flax) = a%f(x), Vx e R", (1)
for a continuous function f on R", where a>0 and a =2,3.

We apply solutions of the equation (1.1) to problems of characterization of
multivariate stable distributions, and generalize a result of Eaton [1] on
characterization of univariate stable distributions based on a functional equation.

2. MULTIVARIATE STABLE DISTRIBUTIONS

A random variable with distribution function F is said to have univariate stable

distribution if for every bj,b2 >0, c1,c2 € R, there corresponda b >0 and ce€ R such

that
FCLl;lﬂ).p ;2"2)=F(y-l;—c), Vye R,

where * denotes the convolution operator of distribution functions. Lévy (4] showed
that a univariate stable distribution has characteristic function ¢(t) of the form

!n¢(t)=iul-yltl“[l +iﬁT:—|w(lt|,a)], vte R, @1)

where the constants 7, f, a satisfy the conditions y20, 181 <1, 0< @ <2, and where
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4 is areal number. The function w(itl,a) is given by

) .
tan(—z) if a1,
w(ltl,a) =
2 .
u!nltl, if a=1.

Multivariate generalizations of univariate stable distributions were introduced by
Lévy [5] and Feldheim [2]. Let x denotean nx 1 vector. A multivariate distribution
G(x) is said to be multivariate stable if to every pair of scalars by,by >0, and real
vectors c1,c2 € R", there corresponds a scalar b >0 and a real vector c € R* such

that
xX-a X-€Q\_~(X-C

It has been shown that the characteristic function ¢(t) of a multivariate stable

distribution has canonical representation

a
Ln @D = ip't - (£')2 [31 (ﬁ“)+ i2 (m)] Vte Rn, 2.2)

where 0 <a<2, pe R" g) and g2 are continuous functions on R" given by

integral representations (Lévy [5]). We remark that the explicit algebraic
representations of g1 and g for multivariate stable distributions obtained by Press [7]
is not for all multivariate distributions. It is complemented by examples in
Paulauskas [6], indicating that the closed expressions of g1 and g2, analogous to
univariate case, are still unknown.
3. THE SOLUTIONS OF A CONDITIONAL CAUCHY FUNCTIONAL EQUATION

OF SEVERAL VARIABLES.

In this section, we will derive the general solution f of the Cauchy-type functional
equation (1.1), where a >0 is given, and a =2,3.

Let S=(se Rn| “s" =1). Foreach se S, define Gg = (rs!r >0). Then R" is

partitioned into disjoint union of G, se€ S, and (0), i.e.
Rn = (U G,)u (0.
seS
Let f: R* 5 R be continuous solution of the equation (1.1). ,On each G, we have

flars) = a%f(rs), Vr>0,
where a>0, and a=223. By letting f(r) = f(rs), from Eaton (1966) and Gupta et al.
(1988) on solutions of a Cauchy equation of one variable, we get fy(r) = f(1)r®, Vr > 0.
It follows that for x € R, x #0,

fo) = f(ﬂllxl J e =s, (1)|Ix||a
R I

If we let g(s) = fs(1) where s is an element of S, then g is a continuous function on
S and

flx) = g(ﬂ)ﬂx“" Vx e R~

We obtained the general solution of the equation (1.1).
THEOREM 3.1. The general continuous solution f of the conditional Cauchy
functional equation (1.1) is of the form

fix) = s(ﬂ)ll x|e, vxe Rn,
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where g is an arbitrary continuous function on S.
An equivalent form of Theorem 3.1 is
THEOREM 3.1'. The general continuous solution f of the conditional Cauchy

functional equation
1

f(a“ x) =af (x), Vxe R",
where a>0, and a = 2,3, is given by

fx)=g U,f,[) “x““, Vx e R",

where g is a continuous function on S.
4. A CHARACTERIZATION OF MULTIVARIATE STABLE DISTRIBUTIONS

Applying Theorem 3.1', we get the following characterization of multivariate
stable distributions.

THEOREM 4.1. Let X1,X5,X 3 be independent and identically distributed,
nondegenerate random vectors in R%. Then X; has a multivariate stable
distribution with g =0 in (2.2) if and only if there is an a, 0 < @ <2, such that
21/ax; and Xi + X3, 31/9X; and Xj + X2 + X3 are identically distributed,
respectively. In case a =1, all the univariate marginals of X; are Cauchy
distributed.

PROOF. We need only show the sufficiency. Let ¢ be the characteristic function
of Xj. We first show that ¢ (t)# 0, Vte R". Suppose thereis tge R” such that
¢(tp) = 0. Then the characteristic function of the univariate random variable toXq is
%xl(u) = ¢utg), with ¢t6x1(1) = ¢(tp) = 0. In the proof of Theorem 3.1 of Gupta et al.

- . _ -0 forall
(1988), it is shown that if ¢t(')x1 (1) =0 then ¢'(')X1(u) 0 for

-0 < U < o and then ¢(0) =0 which is a contradiction. Hence ¢ can be written as

h1(#)+ihx(¢)
¢(t) =e ! ’

or equivalently as,
An ) = hy(t) + iha(8),
where hi; and hy are real-valued continuous functions on R", the former is even

and the latter is odd.
The hypotheses imply that for some @, 0< a <2, hi(al/ot) = ahy(t) and
ha(al/et) = ahy(t), Vte R", a =23, and hence by Theorem 3.1', h; and hy are of the

R
Ln§p) = ||t||“[81 (ﬁ)* 82 (I:-[)] '

Therefore by (2.2) X; has a multivariate stable distribution with location parameter

and

vector u=0.

In the case @ =1 to show that all the univariate marginals of X7 are Cauchy
distributed, we are going to show that the first component of X; is Cauchy
distributed, the Cauchy distributed of the other components of X; are obtained by a
similar way.

Denoted by e1 a vector of R" having the first component equal to 1, and the
other components equal to zero. The characteristic function ¢; of the first
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component is obtained by giving t = we; in the characteristic function of Xj, for
every we R, thatis,

2n ¢1(w) = Ln Kwey) = ||we1 " [31 (m ig2 m)]
= lwl [g1 (T%,el)ﬂ'gz (Tzf,—le])].

By the fact that g; is an even function, g2 is an odd function in the sense that

81(-t) = g1(8), g2(-t) = -g2(t), respectively, for every te S, thenif w >0,

n ¢1(w) = wlgiler) + igaler)] = wgiler) + iwgaler), and if w <O,

in ¢1(w) = -wlg1(-e1) + iga(-e1)] = -wlg1(e1) - iga(er)] = -wg1(e1) + wga(er). Therefore for
any we R, in ¢1(w) = lw | gile1) + iwga(e1), and ¢ is the characteristic function of a
Cauchy distribution. As mentioned above, Press [7] showed that for any multivariate
stable distribution, the characteristic function defined by (2.2) can be given by a simple
explicit algebraic form, but Paulauska [6] pointed out that the form given by Press is
only true for a class of multivariate stable distributions, and that the closed forms of
g1 and g2 are still unknown, except for the case a =2, go(t) =0, and g1(t) =#'Zt for
some positive definite n xn matrix Z.

THEOREM 4.2. Let X1,X;,...,.X9 be independent and identically distributed
random vectors in R™.

(i) X1 has a multivariate normal distribution (possibly degenerate) with zero
location vector if and only if 2X; and X; + X2 + X3+ X4, 3X7 and Xj + X2 +... + X9
are identically distributed, respectively.

(ii) X1 has a multivariate stable distribution with Cauchy marginals if and only if
2X; and X7+ X3, 3X; and X; + X2 + X3 are identically distributed, respectively.

PROOF. The proof follows along the exact same lines as that of Theorem 4.1 by
using Theorem 3.1 with @ =1 or 2, instead of Theorem 3.1'".
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