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ABSTRACT. A lattice space is defined to be an ordered pair whose first component
is an arbitrary set X and whose second component is an Arbitrary lattice L of sub-
sets of X. A lattice space is a generalization of a topological space. The concept
of lattice normality plays an important role in the study of lattice spaces.

The present work establishes various relationships between normality of
lattices of subsets of X and certain “"outer measures" induced by measures associ-

ated with the algebras of subsets of X generated by these lattices.
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1. INTRODUCTION.

It is our aim in this paper to establish various relationships between normal-
ity of lattices on an arbitrary set and certain "outer measures" induced by meas-
ures on the algebras generated by these lattices.

More specifically, consider any set X and any lattice on'x, L. The algebra
on X generated by L is denoted by A(L).

1n Section 3, a finitely subadditive "outer measure" is associated with an
arbitrary (0-1)-valued measure on A(L). The behavior of "outer measures" of this
type on L can be used effectively to characterize normal lattices, and this is
investigated in Section 3. Also in Section 3, a notion of weak regularity of
measures is introduced in terms of the associated finitely subadditive "outer
measures” and it is shown that if L is normal, then this notion coincides with
regularity.

In Section 4, a countably subadditive "outer measure" is associated with an
arbitrary (0-1)-valued measure on A(L). The relationship between this "outer
measure" and the associated (0-1)-valued measure is considered in the presence of
smoothness. Also in Section 4, the equality of certain of these mcasures and
"outer measures" on L or L' — the complementary lattice of L — is considered,

in particular in the case where L is normal and countably paracompact or L is
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normal and 6. In addition, conditions on L are given, including normality, which
automatically imply regularity of certain smooth measures.

Typical applications are given throughout the paper in the case of topological
lattices; it is clear that many more such applications could be given. It is also
clear that certain of our results extend to arbitrary measures, but we will pursue
this matter elsewhere.

We adhere to standard by now lattice terminology and notation, which can be
found, for example, in [1,2,6,7] and, for convenience, we review somec of the morec
important terminology and notation used throughout the paper.

2. TERMINOLOGY AND NOTATION.

(a) Consider any set X and any lattice on X, L. We shall assume that g, X € L,
without loss of generality for our purposes.

Now, consider any topological space X and denote the class of open sets by U,
the class of closed sets by F, the class of clopen sets by C, and the class of zero
sets by Z. Note each of the classes U, F, C, Z is a lattice of the prescribed type.
Recall U is also referred to as the topology on X and the topological space X is
defined to be ( X,U). Thus (X,L) is a generalization of a topological space. For
this reason, we shall refer to {X,L ) as a lattice space. In topological measure
theory, it is convenient to regard F as the topology on X and ¢ X,F) as the topo-
logical space.

L is said to be complement generated iff for every element of L, L, there
exists a sequence in L, (in), such that L = nni;. L is said to be normal iff for
every two elements of L, A, B, if A N B = @, then there exist two elements of
L, c, D, such that ACC' and BC D' and C' N D' = g. L is said to be countably
paracompact iff for every sequence in L, (An), if (An) is decreasing and limnlﬁf¢:
then there exists a sequence in.L, (Bn), such that for every n, A [ BA and (B;)
is decreasing and 1imn B;=¢ .

(b) The algebra on X generated by L is denoted by A(L). Consider any algebra
on X, A. A measure on A is defined to be a function u from A to R such that u is
finitely additive and bounded. (See [1], p. 567.) The set whose general element
is a measure on A(L) is denoted by M(L). An element of M(L), u, is said to be
L-reqgular iff for every element of A(L), E, for every positive number €, there
exists an element of L, L, such that L C E and Iu(E)-u(L)l < €. The set whose
general element is an element of M(L) which is L-regular is denoted by MR(L). An
element of M(L), u, is said to be L-(o-smooth) iff for every sequence in A(lL),
(An), if (An) is decreasing and limn An= @, then limn u(An) = 0. The set whose
general element is an element of M(L) which is L-(o-smooth) is denoted by MO(L).
The set whose general element is an element of M(L) which is L-(o-smooth) just for
(An) in L is denoted by MO(L).

The set whose general element is an element of M(L), u, such that u(A(L))={0,1},
that is, the set whose general element is a (0-1)-valued measure on A(L) is denoted
by I(L).

NOTE. Since every element of M(L) is expressible as the difference of nonneg-
ative elements of M(L), we shall work with nonnegative elements of M(L), withogf

loss of generality. (Related matters can be found, for example, in [3,4,5,8].)
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(c) A finitely subadditive outer measure is defined to be a function ¢ from
P(X) to R such that ¢(®) = 0 and ¢ is nonnegative, increasing, and finitely sub-
additive. .

A countably subadditive outer measure is defined Eo be a function ¢ from P(X)
to R such that ¢(@) = 0 and ¢ is nonnegative, increasing, and countably subadditive.
3. LATTICE NORMALITY AND FINITELY SUBADDITIVE OUTER MEASURE.

In this section, we work with an arbitrary set X and an arbitrary lattice on
X, L. We introduce a certain finitely subadditive outer measure on P(X) and use
it to obtain conditions for L to be normal.

DEFINITION 3.1. Consider any lattice space (X,L). Now, consider any element
of M(L), u, and the function u' on P(X) determined by u'(A) = inf{u(L')|L € L and
L' D A},

PROPOSITION 3.2. (i) u' is a finitely subadditive outer measure.

(i1) w=wu'on L',

(iii) w < u* and u = u' iff u is L-regular.
(iv) If w € 1(L), then ' (P(x)) = {o0,1}.
(Proof omitted.)

The following theorem gives ‘a characterization of normality of L in terms of
finitely subadditive outer measures of the type introduced by the preceding
definition.

LEMMA 3.3. L is normal iff for every element of I(L), u, for every two

onl, v. = v (Known.)

1 2 2 1 2°
THEOREM 3.4. The following statements are equivalent:

elements of IR(L), V., V., such that u 2ve v

(a) L is noxmal.

(b) For every element of IR(L') U, for every element of IR(L), v, such that
Ww<vonl, u* =v' onl.

(c) For every M and V, as in (b), for every element of L, A, such that V(A')=l,
there exists an element of L, B, such that B C A' and u(B) = 1.

PROOF. (a) implies (b). Assume (a) and show (b). Consider any element of
IR(L'), M, and any element of IR(L), v, such that 4 < v on L and show u' = V' on
L. Note since for every element of P(X), A, u'(A) = inf{u(L')|LEL and L' D A} and
v'(a) = inf{v(L')|L € L and L' O A} by definition and Vv < 4 on L' because u < v
on L by assumption, V' < u'. Hence to show u' = v' on L, it suffices to show for
every element of L, A,v'(A) £ u'(A). Assume the contrary. Then there exists an
element of L, A, such that v'(a) < u'(A). Consider any such A. Then since
u,v € I(l), v'(aA) = 0 and u'(a) = 1. Now, note since v is l-regular by assumption,
Vv = v', Consequently V(A) = 0. Hence since V € IR(L), there exists an element of
L, L, such that L' D A and V(L') = 0. Consider any such L. Then since L is normal
by assumption, there exist two elements of L, C, D, such that ACCc' CcDCL'.
Consider any such C, D. Then u(C')< u(p) < v(D) < V(L') = 0. Hence n(C') = O.
Consequently u'(A) = 0. Thus a contradiction has been reached. Therefore, the
assumption is wrong. Conscquently u' = v' on L. (Note the L'-regularity of u
was not needed in the proof.)

(b) implies (a). Assume (b) and show (a). For this, use Lemma 3.3, namely,
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consider any element of I(L), p, and any two elements of IR(L)' Vi Voo such that

1

1 Yy on L and show v, = Vv,. Note since p € I(L) (= 1(L')) by assumption,

there exists an element of IR(L'), ¥, such that p < u on L'. cConsider any such u.

PV

s Vv, on L by assuhption, uf_vl, v_. on L. Thus

1 2 2

17V, € Ig(l) and w < v, v, on L. Hence since (b) is true by

assumption, u' = vi, vé on L. Further, note since vl' v2

and v, = “5' Consequently, vl =v,. Then by Lemma 3.3, L is normal.

(b) is equivalent to (c). [Proof omitted. (Again it should be noted that the

Then u < p on L. Hence since p < v
w€ I (LYand v ,v

are L-regular, vl = vi

L'-regularity of U is not needed in the proof of (b) implies (c).)]

APPLICATION 3.5. Consider any topological space X. Then according to Theorem
3.4, the following statements are equivalent: (a) X is normal. (b) For every
element of IR(U), u, for every element of IR(F)' v, such that u < von F, u' = v'
on F, (c) For every B and v, as in (b), for every element of U, U such that
v(U) = 1, therc cxists an clement of T, F, such that ' C U and p(F) = 1.

APPLICATION 3.6. Consider any topological space X such that X is ng' Then
since Z is normal, according to Theorem 3.4, the following statements are true:
(?) For every element of I(Z), u, for every element of IR(Z), v, such that u < v
on Z, u' = v' on Z. (c) For every u and v, as in (b), for every element of Z, 2,
such that v(2') = 1, there exists an element of Z, %, such that Z C 2' and u(z)=1.

THEOREM 3.7. If L is normal, then for every element of Io(L)’ u, for every
element of IR(L), v, such that ¥ <vonl, vE IO(L').

PROOF. Assume L is normal. Consider any element of Io(L)' U, and any element
of IR(L)' v, such that W < von L. To show v € IO(L'), assume the contrary. Then
by the relevant definition, there exists a sequence in L, (113 , such that (Lﬁ) is
decreasing and limn L; = @ and 1imn v(L;) # 0. Consider any such (Ln)' Then since
v € 1(L) by assumption, for every n, v(L;) = 1. Hence for every n, since b€ I(L')
and vV € IR(L) and ¥ < von L and L is normal by assumption, by Theorem 3.4, there
cxists an clement of L, ﬁn' such that ﬁn C I% and "(ﬂn) = 1; consider any such ﬁn.
Now, for every n, consider F£=1 ﬁk; note n£=1 ik € L; set n:=1 ik = in. Further,
consider (in). Note (ﬁn) is in L and for every n, u(in) =1 and in C L' and (in)
is decreasing and since (L;) is decreasing and limn L; =@, limn in = @. Hence
since u € Io(L) by assumption, limn u(in) = 0. Thus a contradiction has been
reached. Therefore the assumption is wrong. Consequently v € Io(L').

APPLICATION 3.8. Consider any topological spacce X such that X is normal.

Then since F is normal, according to Theorem 3.7, the following statement is true:
For every element of Io(F)’ v, for every element of IR(F), v, such that ¥ < v on
F,ver .

COROLLARY 3.9. If [ is countably paracompact and normal, then for every
element of Io(L)' u, for every element of IR(L), vV, such that u < v on L,VGI:(L).

PROOF. Assume | is countably paracompact and normal. Consider any element of
Ia(L)' M, and any element of IR(L), Vv, such that ¥ < von L. Then since L is
normal by assumption, by Theorem 3.7, v € IO(L'). Further, note since [ is
countably paracompact by assumption, Ia(L') C Io(L)’ Consequently Vv € Ia(L)‘ Then

since v is L-reqgular, v € I:(L).
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COROLLARY 3.10. If L is countably paracompact and normal, then for every

for every element of I(L), u_,, for every element of IR(L),

element of IO(L), u 2

ll
v, such that ul < u2

<vonl, u, € Io(L)’ i

APPLICATION 3.11. Consider any topological space’X such that X is countably
paracompact and normal. Then since F is countably paracompact and normal,
according to Corollary 3.9, the following statement is true: For every element
of Io(F)’ u, for every element of IR(F), v, such that u <vonF, ve I:(F).

APPLICATION 3.12. Consider any topological space X such that X is TB%’ Then
since Z is countably paracompact and normal, according to Corollary 3.9, the
following statement is true: For every element of IU(Z), #, for every element
of I,(Z), v, such that u < vonZ, v € 17(D).

DEFINITION 3.13. Consider any element of I(L), u, such that u has the follow-
ing property:

For every element of L, A, such that u(A') = 1, therc exists an elcment of L,
B, such that B C A' and p'(B) = 1. (*)

Note if p € IR(L), then u has Property (*). For this reason, u is said to be
weakly regular and {p € I(L) | u has Property (*)} is denoted by Iw(L). Thus
’IR(L) C IW(L)'

THEOREM 3.14. If L is normal, then Iw(L) C IR(L).

PROOF. Assume L is normal. Now, assume Iw(L) # ¢ and consider any element
of Iw(L), H. Then there exists an element of IR(L), v, such that u < v on L.
Consider any such v. Note to show u € IR(L), it suffices to show u = v, Further,
note for this, it suffices to show W = V on L. Assume the contrary. Then there
exists an element of L, A, such that u(A) < V(A). Consider any such A. Then
H(A) = 0 and V(A) = 1. Hence M(A') = 1. Hence since U € IW(L) by assumption,
there exists an element of L, B, such that B C A' and u'(B) = 1, by the definition
of Iw(L). Consider any such B. Now, note since w € I(L') and v € IR(L) and p <V
on L and L is normal by assumption, W' = V' on L by Theorem 3.4. Further, note
since V € IR(L), v = V', Consequently H' = Vv on L. Hence since u'(B) = 1,

V(B) = 1. Hence since B C A', V(A') = 1. Hence v(A) = 0. Thus a contradiction
has been reached. Therefore the assumption is wrong. Consequently W = v on L.
Consequently U € IR(L). Thus IW(L) C IR(L)°

REMARK. The converse is false.

COUNTEREXAMPLE. Consider any set X such that X has at least three elements.
Now, consider any two elements of P(X), A, B, such that A # ¢‘and B #@, ANB=¢g,
and A U B # X. Further, consider the lattice L described by L = {@,A,B,AU B,X}.

Next, consider the prime L-filter F described by F = {X}, then consider the
element of I(L) determined by F and denote it by M. Further, consider the two
L-ultrafilters Gl' Gz, described by G1 = {@#,A,A U B,X} and Gz= {#,B,AU B, X},
then consider the elements of IR(L) determined by Gl’ Gz, apd denote them by
R respectively. Note I(L) = {u,vl,vz}. Show Iw(L) c IR(L). Note
[T~ IR(L). Consequently to show Iw(L) C IR(L), it suffices to show u & IW(L)‘
Accordingly, note since w(A U B) = 0, u(A' N B') = 1., Further, note the only
subset of A' N B' is g and U' (@) = 0. Hence by the definition of Iw(L),
ue Iw(L). Consequently Iw(L) c IR(L).
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Finally, note L is not normal.

Thus Iw(’-) C IR(L) and L is not normal.

An alternative proof of the equivalence of parts ,{a) and (c¢) of Theorem 3.4
will be given, which does not involve an outer measure. This proof will be
based on a characterization of normality of L in terms of certain L-ultrafilters.

Consider any lattice space { X,L}, Now, consider any element of I(L), M.
Further, consider {L € L | for every element of L, A, such that u(A) = 1, LN A
# ¢} and denote it by Gu.

LEMMA 3.15. L is normal iff for every element of I{L), W, Gu is an L-ultra-
filter.

PROOF. (a) Assume L is normal and show for every element of I(L), M, Gu is
an L-ultrafilter.

(¢) Show Gu is an L-filter

(i) Note g & Gll'

(ii) Show for every two elements of Gu ’ L1 ’ L2 ’ L1 N L2 € Gu. Consider any
n L, & Gu’ Then by the definition of Gu ’

two elements of G , L, L Assume L

M 2° 1
there exists an element of L, A, such that u(A) = 1 and (Ll n L2) N A = @, Consider
any such A. Then A C (L1 n Lz)' = Li V] Li. Hence since L is normal by assumptiom,

there exist two elements of L, Al . Az , such that A = Al V) A2 and Al (o Li and

A, C L!. Consider any such Al, A Note since Li € Gu and L.i. n Ai = @, by the

dzfiniiion of G“| ' "(Ai) =0 (i= 132). Hence since A = Al U Az, M(A) = 0. Thus a
contradiction has been reached. Therefore the assumption is wrong. Consequently,
L, NL, € Gu' '

(iii) Note for every element of G‘l , L, for every element of L, S, such that
LCs, S€ Gu' )

Consequently Gu is an L-filter.

(B) Show Gu is an L-ultrafilter.

Consider any L-filter H such that H D Gu and H # Gu. Then there exists an
element of H, H, such that H & Gu. Consider any such H. Then by the definition
of Gll' there exists an element of L, A, such that u(a) = 1 and] HNA =¢g., Consi-
der any such A. Then by the definition of G‘l , AE Gu. Consequently A € H. Thus
HEH and A €EH and H is a filter. Hence HN A # P. Thus a contradiction has
been reached. Therefore the assumption is wrong. Consequently G'j is an L-ultra-
filter.

OBSERVATION. Consider the element of IR(L) determined by Gll and denote it by
V. Note u <von L.

(b) Assume for every element of I(L), u, Gll is an L-ultrafilter and show [ is
normal. For this, use Lemma 3.3, .namely, consider any element of I(L), u, and any
two elements of IR(L), \’1’ v2, such that u < vl, v2 on [ and show vl = vz. Note
since u < VeV, on L, le, G\‘,2 c Gu by the relevant definition. Hence since
G\’l and G\'Z .are L-ultrafilters and 6, is an L-filter by the assumption, le,sz
= G,. Hence Gy, = Gy,- Further, note since G"i SD{ael | v;(n) =1} and
(aelL | v, () = 1} is an L-ultrafilter since v, € IR(L) and G"i is an L-filter,
el |v,m=1}= Gy, (i=1,2). Hence since G, =G, , (A€ L | v (a) =1)
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={ael| v,(a) = 1}. Thus v, = v, on L. Hence v, = v Consequently L is

1 2 1 2°
normal.

The alternative proof of the equivalence of parts }a) and (c) of Theorem 3.4
is now given.

(Recall statements (a) and (c) of Theorem 3.4:

(a) L is normal. (c) For every element of IR(L'), u, for every element of
IR(L), v, such that u < v on L, for every element of L, A, such that v(a') =1,
there exists an element of L, B, such that B C A' and p(B) = 1.)

(i) Assume (a) and show (c). Consider any element of IR(L'), M, any element
of IR(L)' Vv, such that u < v on L, and any element of L, A, such that v(A') = 1.
Show there exists an element of [, B, such that B C A' and u(B) = 1. Note
u € 1(L). Consider Gu. Note Gu = {L € L | for every element of L, A, such that
u(d) =1, LN A # @} by definition. Further, note since L is normal by assump-
tion, by (Lemma 3.15, (a)), Gu is an L-ultrafilter. Consider the element of
IR(L) determined by Gu and denote it by p. Note p < p on L. Thus u € I(L) and
v,p € IR(L) and B < v, p on L. Hence since L is normal, v = p. Then since
V(A') =1, p(A') = 1. Hence p(A) = 0. Therefore A & Gu' (Property of p.) Hence
by the definition of Gu, there exists an element of L, B, such that u(B) = 1 and
ANB =@, Consider any such B. Then B€ L and B C A' and u(B) = 1.

(ii) Assume (c) and show (a). For this, assume the contrary. Then there
exist two elements of L, A, B, such that AN B = @ and for every two elements of
L, ¢, b, such that C* DA and D' DB, C' N D' # g. Consider any such A, B. Now,
consider {L' € L' | L' J A or L' D B} and denote it by E. Note A # ¢ and B # .
Consequently E has the Finite Intersection Property. Hence there exists an element
of IR(L'), H, such that for every element of E, L', u(L') = 1. Consider any such
M. Further, consider any element of IR(L)’ V, such that u < v on L. Now, note
since v € I1(L) and AN B =@, v(A) = 0 or V(B) = 0. Assume V(A) = O (without loss
of generality). Then V(A') = 1. Thus u € IR(L'), v € IR(L) and U < von L, and
A €L and V(A') = 1. Hence since (c) is true by assumption, there exists an
element of L, C, such that C C A' and u(C) = 1. Consider any such C. Then Cc' € E
and u(C') = 0. Thus a contradiction has been reached. Therefore the assumption
is wrong. Consequently L is normal.

4. LATTICE NORMALITY AND COUNTABLY SUBADDITIVE OUTER MEASURE.

In this section we work with an arbitrary set X and an arbitrary lattice on X,
L. We introduce a certain countably subadditive outer measure on P(X) and use it
to obtain conditions for L to be normal.

DEFINITION 4.1. Consider any lattice space ( X,L). Now, consider any element
of M(L), u, and the function p" on P(X) determined by u"(A) = inf{Xz;l u(LL) [
L, € L for every k and v Lﬂ D al.

PROPOSITION 4.2. (i) u" is a countably subadditive outer measure.

(ii) w" <wu'.
(iii) If w € I(L), then " (P(X)) € {o,1}.
(Proof omitted.)
PROPOSITION 4.3. (i) If w € I (L), then w < u" on L.

(ii) If w € 1(L) and p(X) = p"(X), then u € IU(L ).



30 P.D. STRATIGOS

PROOF. (i) Assume M € IU(L). To show u < u" on L, assume the contrary.
Then there exists an element of L, A, such that - ¥"(A) < p(A). Consider any
such A. Then since Uu"(a) = inf{z;;l u(Ly) | L, € L for every k and Zk Ly 2 a}
by the definition of MW" , there exists a sequence in L, (Lk), such that UkLl'c oA
and Zk u(L)'() < u(A). Consider any such (Lk). Then since v € 1(L), M(A) =1
and for every k, W(Lg) = 0. Consequently ﬁk (AN Lk) = @ and for every k,
ul(‘A n Lk) = 1. Now, fornevery natural immber n, cc:nsider n:=l (AN Lki. Note
Ny BNL)E L; set Ny AN L) =L ; note u(L)) = 1. Consider (Ln). Note
(f.n) is in L and (f.n) is decreasing and 1:i.mn f'n = ﬂn f'n = nk (AN Lk) = @. Hence
since p € Io(") by assumption, lj.mn u(f.n) = 0. Thus a contradiction has been
reached. Therefore the assumption is wrong. Consequently u < u" on L.

(ii) (Proof omitted.)

NOTATION. Consider any lattice space ( X,L). Now, consider any element of
I(L), ¥, such that u has the following property:

For every sequence in L, (Ln), such that nn Ln elL, u(l’\n Ln) = inf{u (Ln):

n € N}. (*¥)

Note if u € IO(L), then u has Property (**) and if p has Property (**), then
weIr ). Thus 1°(L) ¢ {v € 1(L) | » has Property (**)} C 1,(L). set {n € 1(L)
| u has Property (**)} = J(L). Thus %) caw) c IO(L). ’

PROPOSITION 4.4. If MEI(L), then w = u" on L' iff u € J(L).

PROOF. Assume W € I(L).

(i) Assume U = U" on L' and show U € J(L). Assume the contrary. Then by the
relevant definition, there exists a sequence in L, \'Ln) + such that nn L, € L and
ll(nn Ln) # inf{u(Ln); n € N}. Consider any such (Ln) . Now, note since (Ln) is in
Land U 1! DU L!, by the definition of ", w*(U, L!) <[ wu(L!). Now, note
since (N L)) # inf{u(Ln); n € N}, BN L) < irif(u(Ln); n € N}. Hence since
u €I, u(nn Ln) = 0 and for every n, u(Ln) = 1. Hence for every n, u(Ll") = 0.
Consequently ll"(Un Lx'l) = 0. Further, note since ¥ = U" on L' by assumption and
uv L;n € L' because n T, €L, LICA L;j) = uv (Un L;.). Consequently u(Un L,'l) = 0,
Hence u(ﬂn Ln) = 1. Thus a contradiction has been reached. Therefore the assump-
tion is wrong. Consequently W € J(L).

(ii) (Proof omitted.)

PROPOSITION 4.5. If L is complement generated, then J(L) C IW(L).

PROOF. Assume L is complement generated. Note since 1° (L) caw), (L) # .
Consider any element of J(L), u. To show u € IW(L), use the relevant definition,
namely, consider any element of L, L, such that u(L') = 1 and show there exists an
element of L, ©, such that L. C L' and u'(f) = 1. Note since L € L and L is comple-
ment generated by assumption, there exists a sequence in L, (f.k), such that
L=n f‘l'(. Consider any such (f.k). Then L' = Uy f‘k' Further, note since u € J(L)
by assumption, by Proposition 4.4, u = u" on L'. Consequently 1 = u(L') = u"(L")
= u" (Uk f'k) < Zk u" (f.k). Hence there exists a value of k, m, such that u" (f.m)
= 1. Consider any such m. Then since u" < u', u'(f.m) = 1, Thus f‘m € L and
f‘m C L' and u'(f.m) = 1., Consequently u € I"(L). Thus J(L) c IW(L)'

THEOREM 4.6. If L is normal and complement generated, then J(L) = I:(L).
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PROOF. Assume L is normal and complement generated.

(@) show J(L) C I;(L). Note since [ is complement generated, by Proposition
4,5, J(L)CIW(L). Further, note since L is normal, by Theorem 3.14, IW(L) C IR(L)-
Consequently J(L) C IR(L). Hence since J(L) C I_(L), J(L) C I:(L).

(B) Show I.(L) € g(l). wNote Io(L) c1%(lyc a(l).

(Y) Consequently J(L) = I:(L).

APPLICATION 4.7. Consider any topological space X such that X is perfectly
normal. Then since F is normal and complement generated by definition, by Theorem
4.6, J(F) = I;(F)-

APPLICATION 4.8, Consider any topological spacc X such that X is T3g. Then
100
THEOREM 4.9. If L is normal and countably paracompact and ¥ € IU(L). then

since Z is normal and complement gencrated, by Thcorem 4.6, J(Z7)

u" = u' onlL.

PROOF. Assume L is normal and countably paracompact and u € Ia(L). Note since
M € I(L) by assumption, there exists an element of IR(L), v, such that ¥ < von L.
Consider any such V. Thus u € I(L') and v € IR(L) and ¥ < von' L. Hence since L
is normal by assumption, by Theorem 3.4, u' = v' on L. Now, note since L is
céuntably paracompact and normal by assumption and u € Io(L) and v € IR(L) and
W <vonl, by Corollary 3.9, v € IU(L). Further, note [since v € Io(L)' by
(Proposition 4.3, (ii), v < v" on L] and v" < V' and since v is L-regular, v'=v,
Hence V' = V"' on L. Also, note since u <vonl, v" < u" . Consequently v'< u"
on L, Then since u" <u'y V' <p" <v' onl. Hence since u' = v' on L, pn =p"
on L,

APPLICATION 4.10. Consider any topological space X such that X is T3¥° Then
since I is normal and countably paracompact, according to Theorem 4.9, the following
statement is true: If M € Ia(Z)' then " = u' on Z.

APPLICATION 4.1l1. Consider any topdlogical space X such that X is Tl and
O-dimensional. Then since C is normal and countably paracompact, according to
Theorem 4.9, the following statement is true: If p € IO(C), then u" = u' on C.

THEOREM 4.12, If L is normal and Gand‘uEIo(L), then u" = u' on L.

PROOF., Assume L is normal and & and MEI_(L). Note to show u" =u' on L,
since MW" < u', it suffices to show for every element of L, L, u"(L) £ u'(L).
Assume the contrary. Then there exists an element of L, A, such that y"(A)< u'(a).
Consider any such A. Then p"(A) = 0 and U'(A) = 1. Now, note since u"(A) = 0,
there exists a sequence in L, (ik)’ such that U L' D A and Xk u(ﬁi) = 0. Consi-

deraany such (ik)' ANote AC Uk ££ = (nk ik)' ang s:nce L is & by assumption,
ﬂk Lk € L. set ﬂk Lk = B. Then A C B'. Now, use the assumption that L is normal
and 4 € Io(L) to show U’ (A) = 0, thus reaching a contradiction.

APPLICATION 4.13. Consider any topological space X such that X is normal. Then
since F is normal and §, according to Theorem 4.12, the following statement is true:
If u € IO(F), then u" = p' on F.

APPLICATION 4.14. Consider any topological space X such that X is T3%. Then
since Z is normal and 8, according to Theorem 4.12, the following statement is true:

If u € Io(Z)' then p" = u' on Z.



32

P.D. STRATIGOS

ACKNOWLEDGEMENT. The author wishes to cxpress his appreciation to Long Island

University for partial support of the present work through a grant of released

time from tcaching dutics.

2,

3.

4.

S.

6.

7.
8.

REFERENCES

ALEXANDROFF, A. D., Additive sct-functions in abstract spaces, Mat. Sb.
(N.S.) 9 (51) (1941), 563-628.

BACHMAN, G. and SULTAN, A., Regular lattice measures: mappings and spaces,
Pacific J. Math. 67, no. 2, (1976), 291-326.

, On regular extensions of measures, Pacific J. Math. 86, no. 2,

(1980), 389-395.

CAMACHO, J., On maximal measures with respect to a lattice, Internat. J. Math.
& Math. Sci., 14, No. 1 (1991), 93-98.

EID, G., On normal lattices and Wallman spaces, Internat., J. Math. & Math.
Sci. 13(1) (1990), 31-38.

FROLIK, Z., Prime filters with the C,I.P,, Comm. Math. Univ. Carolinae, 13,
(1972), 553-575.

NOBELING, G., Grundlagen der analytischen Topologie, Springer, Berlin, 1954.

SZETO, M., Measure repeletness and mapping preservations, J. Indian

Math. Soc. 43 (1979), 35-52.



