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ABSTRACT. A lattice space is defined to be an ordered pair whose first component

is an arbitrary set X and whose second component is an arbitrary lattice [ of sub-

sets of X. A lattice space is a generalization of a topological space. The concept

of lattice normality plays an important role in the study of lattice spaces.

The present work establishes various relationships between normality of

lattices of subsets of X and certain "outer measures" induced by measures associ-

ated with the algebras of subsets of X generated by these lattices.
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i. INTRODUCTION.

It is our aim in this paper to establish various relationships between normal-

ity of lattices on an arbitrary set and certain "outer measures" induced by meas-

ures on the algebras generated by these lattices.

More specifically, consider any set X and any lattice on’X, [. The algebra

on X generated by [ is denoted by A(i).

In Section 3, a finitely subadditive "outer measure" is associated with an

arbitrary (0-1)-valued measure on A([). The behavior of "outer measures" of this

type on i can be used effectively to characterize normal lattices, and this is

investigated in Section 3. Also in Section 3, a notion of weak regularity of

measures is introduced in terms of the associated finitely subadditive "outer

measures" and it is shown that if [ is normal, then this notion coincides with

regularity.

In Section 4, a countably subadditive "outer measure" is associated with an

arbitrary (0-1)-valued measure on A(i)o The relationship between this "outer

measure" and the associated (0-1)-valued measure is considered in the presence of

smoothness. Also in Section 4, the equality of certain of these measures and

"outer measures" on [ or [’ the complementary lattice of i is considered,

in particular in the case where [ is normal and countably paracompact or [ is
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normal and . In addition, conditions on 6 are given, including normality, which

automatically imply regularity of certain smooth measures.

Typical applications are given throughout the paper in the case of topological

lattices; it is clear that many more such application could be given. It is also

clear that certain of our results extend to arbitrary measures, but we will pursue

this matter elsewhere.

We adhere to standard by now lattice terminology and notation, which can be

found, for example, in [1,2,6,7] and, for convenience, we review some of the more

important terminology and notation used throughout the paper.

2o TERMINOLOGY AND NOTATION.

(a) Consider any set X and any lattice on X, 6. We shall assume that @, X E 6,

without loss of generality for our purposes.

Now, consider any topological space X and denote the class of open sets by U,
the class of closed sets by F, the class of clopen sets by C, and the class of zero

sets by Z. Note each of the classes U, F, C, Z is a lattice of the prescribed type.

Recall is also referred to as the topology on X and the topological space X is

defined to be (X,O). Thus (X,6) is a generalization of a topological space. For

this reason, we shall refer to X,6 as a lattice space. In topological measure

theory, it is convenient to regard as the topology on X and (X,) as the topo-

logical space.

6 is said to be complement generated iff for every element of 6, L, there

exists a sequence in 6, (.n), such that L _%’n" 6 is said to be normal iff for

every two elements of 6, A, B, if A N B , then there exist two elements of

6, C, D, such that A C C’ and B C D’ and C’ N D’ @. 6 is said to be countably

paracompact iff for every sequence in 6, (An), if (An) is decreasing and limnAn=’
then there exists a sequence in 6, (B), such that for every n, A C B’ and (B’)

n n n n
is decreasing and lim B’=.n n

(b) The algebra on X generated by 6 is denoted by A(6). Consider any algebra

on X, A. A measure on A is defined to be a function U from A to R such that is

finitely additive and bounded. (See [I], p. 567.) The szt whose general element

is a measure on A(6) is denoted by M(6). An element of M(6), , is said to be

6-regular iff for every element of A(6), E, for every positive number , there

exists an element of 6, L, such that L C E and I(E)- (L) < e. The set whose

general element is an element of M(6) which is 6-regular is denoted by MR(6). An

element of M(6), , is said to be 6-(o-smooth) iff for every sequence in A(6),
(A), if (A) is decreasing and lim A , then lim (A 0o The set whose

n n n n n n
general element is an element of M(6) which is 6-(o-smooth) is denoted by M(6).
The set whose general element is an element of M(6) which is 6-(o-smooth) just for

(A) in 6 is denoted by M (6).
n o
The set whose general element is an element of M(6), , such that (A (6) )={0,1}

that is, the set whose general element is a (0-1)-valued measure on A(6) is denoted

by I (6).

NOTE Since every element of M(6) is expressible as the difference of nonneg-

ative elements of M(6), we shall work with nonnegative elements of M(6), witho.
loss of generality. (Related matters can be found, for example, in [3,4,5,8].)
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(c) A finitely subadditive outer measure is defined to be a function from

P(X) to R such that () 0 and is nonnegative, increasing, and finitely sub-

additive.

A countably subadditive outer measure is defined to be a function from P(x)

to R such that (} 0 and is nonnegative, increasing, and countably subadditiveo

3. LATTICE NORMALITY AND FINITELY SUBADDITIVE OUTER MEASURE.

In this section, we work with an arbitrary set X and an arbitrary lattice on

X, t. We introduce a certain finitely subadditive outer measure on P(x) and use

it to obtain conditions for L to be normal.

DEFINITION 3.1. Consider any lattice space (X,L)o Nqw, consider any element

of M(t), , and the function ’ on P(X} determined by ’ (A) inf{(L’)IL e L and

L’ DA}.

PROPOSITION 3.2. (i) ’ is a finitely subadditive outer measure.

(ii) ’ on i’.
(iii) < ’ and ’ iff is i-regular.

(iv) If , e I(i), then ’ (P(X)) {O,1}.

(Proof omitted.

The following theorem gives "a characterization of normality of L in terms of

finitely subadditive outer measures of the type introduced by the preceding

definition.

LEMMA 3.3. L is normal iff for every element of I (L), , for every two

elements of IR(L), Ul’ u2" such that < I’ u2 on L, i 2" (Known.)

THEOREM 3.4. The following statements are equivalent:

(a) [ is normal.

(b) For every element of IR(L’) , for every element of IR(L), , such that

< v on L, ’ v’ on L.
(c) For every , and v, as in (b), for every element of L, A, such that

there exists an element of L, B, such that B C A’ and (B) i.

PROOF. (a) implies (b). Assume (a) and show (b). Consider any element of

IR(L’), ,, and any element of IR(/), v, such that _< v on L and show ’ v’ on

L. Note since for every element of P(X), A, ’ (A) inf{(L’)ILEL and L’ D A} and

u’ (A) inf{V(L’)IL E L and L’ D A} by definition and < on L’ because

on L by assumption, v’ < ’. Hence to show ’ v’ on L, it suffices to show for

every element of L, A,V’(A) / ’ (A). Assume the contrary. Then there exists an

element of L, A, such that v’ (A) < ’ (A). Consider any such A. Then since, I(l), v’ (A) 0 and ’ (A} i. Now, note since v is L-regular by assumption,

v ’. Consequently V(A) 0. Hence since v e IR(L), there exists an element of

L, L, such that L’ D A and V(L’) 0. Consider any such L. Then since L is normal

by assumption, there exist two elements of L, C, D, such that A C C’ C D C L’.
Consider any such C, D. Then IJ(C’)< IJ(D) < V(D) < V(L’} O. llcncc li(C’) O.

Consequently ’ (A} 0. Thus a contradiction has been reached. Therefore, the

assumption is wrong. Consoquontly ’ u’ on L. (Note the L’-regularity of

was not needed in the proof.

(b) implies (a). Assume (b) and show (a). For this, use Lemma 3.3, namely,
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consider any element of I (6), p, and any two elements of IR(6}, uI, u2, such that

P < Ul’ u2 on 6 and show u
I

u
2. Note since D 6 I([) (= I(6’)) by assumption,

there exists an element of IR(6’), P, such that D < p on 6’. Consider any such .
Then B < P on 6. Hence since p < uI, u

2
on i by assumption, <ul, u

2
on 6. Thus

6 iR(6’)and Ul,U2 6 IR(6) and , < Ul’ 92 on 6. Hence since (b) is true by

’ on 6 Further, note since uI, 2 are [-regular, u
Iassumption, ’ I’ 2 Ul

and u2 u2" Consequently, i 2" Then by Lemma 3.3, 6 is normal.

(b) is equivalent to (c). [Proof omitted. (Again it should be noted that the

6’-regularity of p is not needed in the proof of (b) implies (c).)]

APPLICATION 3.5. Consider any topological space X. Then according to Theorem

3.4, the following statements are equivalent: (a) X is normal. (b) For every

element of IR(U), , for every element of IR(F), u, such that u on F, B’
on o (c) For every , and , as in (b), for every element of U, U such that

(U) i, there exists an element of [, P, such that I." C U a,,d (F) i.

APPLICATION 3.6. Consider any topological space X such that X is T3. Then

since Z is normal, according to Theorem 3.4, the following statements are true:

(b). For every element of I(Z), p, for every element of IR(Z), u, such that u

on Z, ’ u’ on Z. (c) For every and u, as in (b), for every element of Z, Z,

such that u(Z’) i, there exists an element of Z, ., such that . C Z’ and (.)=i.
THEOREM 3.7. If 6 is normal, then for every element of I0(6), , for every

element of IR(L), u, such that _< on [, 6 Io([’ ).

PROF. Asse [ is noal. Consider y element of Io([), , and any elent

of IR(i), , such at u on i. To show u 6 Io(i’), asse the contrary. Then

by the relevt definition, there exists a sequence in [, (L such that (L’)n is

decreasing d lim L’ @ and lim U(L:) # 0. Consider any such (L). Then since
n n n n

u 6 I([) by assption, for every n, V(L’) i. Hence for every n, since 6 I([’)
n

d u 6 IR([) and u on i and [ is noal by assption, by Theorem 3.4, there

exists an element of L, {. r;ucl, tl,at {. C L’ a,,d I,( I; co,nid,r any sucl
n n

Now, for eve n consider =i k; note =I k i; set 1% Further
n

nsider (). Note () is in [ and for every n, ,(in) I and C L’ and (i)
n n n n n

is decreasing and since (L’) is decreasing and lim L’ , i . Hence
n n n n n

since M 6 lu(/) by assumption, lim
n M(n 0. Thus a contradiction has been

reached. Therefore the assption is wrong. Consequently u I(i’).
APPLICATION 3.8. Consider any tological sacc X such that X is noal.

en since is noal, according to Theorem 3.7, the following statement is true:

For every element of I(), ,, for every element of IR(), u, such that u on

F, v e I(U).
COLY 3.9. If L is countably paracompact and noal, then for every

(L).element of I(L), P, for every element of IR(L), u, such that u on L, uI
R

PROF. Asse L is countably paracompact and noal. Consider any element of

Io(L) p, and any element of IR(L), u, such that p < on L. Then since L is

normal by assumption, by Theorem 3.7, E Iu(L’). Further, note since L is

countably paracompact by assumption, I(L’) C I(L). Consequently E I(L). Then

since is L-regular, e IR(L)
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COROLLARY 3.10. If [ is countably paracompact and normal, then for every

element of Is(t), i’ for every element of I(/), 2’ for every element of

v, such that I < 2 < v on [, 2 6 Is(1).
APPLICATION 3.11. Consider any topological space’X such that X is countably

paracompact and normal. Then since. F is countabiy paracom[act and nozTnal,

according to Corollary 3.9, the following statement is true: For every element

of Is(F), V, for every element of IR(F), u, such that < 9 on F, u6 I
R

APPLICATION 3.12. Consider any topological space X such that X is T
3 . Then

since Z is countably paracompact and normal, according to Corollary 3.9, the

following statement is true: For every element of Is(Z), , for every element

of IR(Z), u, such that _< u on Z, v 6 I(Z).
DEFINITION 3.13. Consider any element of I([), , such that has the follow-

ing property:

For every element of [, A, such thau (A’) i, there exists an element of /,

B, such that B C A’ and ’ (B) i. (*)

Note if 6 IR(/-), then U has Property (*). For this reason, U is said to be

weakly regular and { 6 I([) has Property (*)} is denoted by Iw(/)o Thus

’IR(/) C lw(/).
THEOREM 3.14. If [ is normal, then Iw(t) C IR([
PROOF Assume t is nornl Now, assume IW(t) @ and consider any element

of IW([), . Then there exists an element of IR(t), , such that < on /.

Consider any such u. Note to show 6 IR(t), it suffices to show . Further,

note for this, it suffices to show on [. Assume the contrary. Then there

exists an element of t, A, such that (A) < U(A). Consider any such A Then

(A) 0 and U(A) i. Hence (A’) i. Hence since IW(t) by assumption,

there exists an element of [, B, such that B C A’ and ’ (B) I, by the definition

of Iw(t). Consider any such B. Now, note since 6 I(/’) and IR(t) and

on t and t is normal by assumption, ’ v’ on t by Theorem 3.4. Further, note

since 9 E IR(t), 9 9’. Consequently ’ 9 on t. Hence since ’ (B) i,

(B) I. Hence since B C A’, U(A’) i. Hence u(A) 0. Thus a contradiction

has been reached. Therefore the assumption is wrong. Consequently on t.

Consequently 6 IR(t). Thus IW(I) C IR(t).
REMARK. The converse is false.

COUNTEREXAMPLE. Consider any set X such that X has at least three elements.

Now, consider any two elements of P(X), A, B, such that A and B , AB=

and A U B X. Further, consider the lattice [ described by [ [,A,B,AL)B,X).

Next, consider the prime t-filter F described by F {X), then consider the

element of I([) determined by F and denote it by . Further, consider the two

t-ultrafilters G1 G2
described by G1 {,A,A U B,X} and G2= {,B,A B,X),

then consider the elements of IR(t) determined by G1 G
2

and denote them by

Vl u2 respectively. Note I([) {,uI,2)" Show Iw(t) C IR(/). Note

IR(t). Consequently to show Iw(t) C IR([), it suffices to show IW(I)-
Accordingly, note since (A t) B) 0, (A’ B’) i. Further, note the only

subset of A’ B’ is and ’ () 0. Hence by the definition of IW(I),
V IW(L). Consequently IW(i) C IR(L).
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Finally, note [ is not normal.

Thus IW([) C IR([) and [ is not normal.

An alternative proof of the equivalnce of parts ,a) and (c) of Theorem 3.4

will be given, which does not involve an outer measu’e. This proof will be

based o** a characterization of normality of i in terms of certain i-ultrafilters.

Consider any lattice space (X,[). Now, consider any element of I(1), .
Further, consider {L E i for every element of [, A, such that (A) I, L O A

M } and denote it by %.
LEMMA 3.15. i is normal iff for evezy element of I([), , G is an k-ultra-

filter.

PROOF. (a) Assume [ is norl and show for every element of I(1), , % is

an i-ultrafilter.

(s) Show G is an [-filter

(i Note 9 %.
(ii) Show for every two elements of G, LI, L2, L

1
O L

2
E G. Consider any

two elements of %, LI, L2. Assume L
1

L
2 G. Then by the definition of G,

there exists an element of i, A, such that (A) 1 and (L
1

L2) 6 A . Consider

any such A. Then A C (L
1 L2)’ L t) L2. Hence since i is nokai by assumption,

there exist two elements of i, A
1

A2, such that A A
1

t) A
2

and A
1
C L and

A
2
C L. Consider any such AI, A2. Note since L

i G, and L
i
( A

i
, by the

definition of G, "(Ai) 0 (i= 1,2). Hence since A A
1
U A2, ,(A) 0. Thus a

contradiction has been reached. Therefore the assumption is wrong. Consequently,

L
1

L
2
6 %.

(iii) Note for every element of G, L, for every element of [, S, such that

LC S, S G..
Consequently % is an [-filter.

(8) Show G is an i-ultrafilter.

Consider any [-filtez H such that H D G and H M G. Then there exists an

element of H, H, such that H G Consider any such H. Then by the definition

of %, there exists an element of [, A, such that (A) 1 and H A . Consi-

der any such A. Then by the definition of %, A G. Consequently A 6 H. Thus

H E H and A q H and H is a filter. Hence H A M . Thus a contradiction has

been reached. Therefore the assumption is wrong. Consequently is an i-ultra-

filter.

OBSERVATION. Consider the element of IR([) determined by G and denote it by

u. Note , < 9 on [.

(b) Assume for every element of I([), , Gis an [-ultrafilter and show i is

normal. For this, use Lemma 3.3, .namely, consider any element of I([), , and any

two elements of IR(1), Ul’ 2’ such that I’ 2 on i and show I 2" Note

since Ul,U2 on i, GvI, Gu2 c G by the relevant definition. Hence since

i and G92 .are i-ultrafilters and G is an k-filter by the assumption, GVl,GV2
%. Hence %1 Gu2" Further, note since Gvi D {A i Ui(A) I} and

{A i ui (A) I} is an i-ultrafilter since ui IR(i) and Gui is an [-filter,

{A i ui(A) I} Gui (i= 1,2). Hence since i Gu2 {A i uI(A) I}
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{A 6 t V2(A) i}. Thus V
1

U
2
on t. Hence u

I u2" Consequently t is

normal.

The alternative proof of the equivalence of parts ,a) and (c) of Theorem 3.4

is now given.

(Recall statements (a) and (c) of Theorem 3.4:

(a) i is normal. (c) For every element of IR([’), , for every element of

IR([), , such that _< on [, for every element of [, A, such that U(A’) i,

there exists an element of [, B, such that B C A’ and (B) l.)

(i) Assume (a) and show (c). Consider any element of IR([’) , any element

of IR(1), u, such that _< on [, and any element of [, A, such that u(A’) i.

Show there exists an element of [, B, such that B C A’ and (B) i. Note

e I(1). Consider G. Note G {L 6 [ for every element of [, A, such that

(A) i, L N A } by definition. Further, note since [ is normal by assump-

tion, by (Lemma 3.15, (a)), G is an [-ultrafilter. Consider the element of

IR() determined by G and denote it by p. Note < p on [. Thus U 6 I([) and

, 6 IR([) and < , D on [. Hence since i is normal, u D. Then since

U(A’) i, D(A’) I. Hence p(A) 0. Therefore A G (Property of D.) Hence

by the definition of G, there exists an element of [, B, such that (B) 1 and

A N B @. Consider any such B. Then B [ and B

(ii) Assume (c) and show (a). For this, assume the contrary. Then there

exist two elements of [, A, B, such that A B and for evez two elements of

[, C, D, such that C’ D A and D’ D B, C’ D’ . Consider any such A, B. Now,

consider {L’ e [’ L’ A or L’ D B} and denote it by

Consequently has the Finite Intersection Property. Hence there exists an element

of IR([’), , such that for every element of , L’, (L’) I. Consider any such. Further, consider any element of IR([), , such that U < on [. Now, note

since 9 I([) and A ,q B @, (A) 0 or 9(B) 0. Assume U(A) 0 (without loss

of generality). Then U(A’) i. Thus 6 IR([’), 6 IR([) and <_ on [, and

A 6 i and 9(A’) I. Hence since (c) is true by assumption, there exists an

element of i, C, such that C C A’ an@ (C) i. Consider any such C. Then C’

and (C’) 0. Thus a contradiction has been reached. Ther6fore the assumption

is wrong. Consequently [ is normal.

4. LATTICE NORMALITY AND COUNTABLY SUBADDITIVE OUTER MEASURE.

In this section we work with an arbitrary set X and an arbitrary lattice on X,

[. We introduce a certain countably subadditive outer measure on F(X) and use it

to obtain conditions for [ to be normal.

DEFINITION 4.1. Consider any lattice space (X,[). Now, consider any element

of M([), , and the function " on (X) determined by " (A) inf{Xk=1 (L)
6 [ for every k and t}

k
L
k
D A}.

PROPOSITION 4.2. (i) " is a countably subadditive outer measure.

(ii) " < ’.
(iii) If e I(i), then "(P(X)) C

(Proof omitted.

PROPOSITION 4.3. (i) If 6 I (1), then < " on [.

(ii) If I([) and (X) "(X), then e I ([).
o
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PROOF. (i) Assume , E Iu (L). To show , _< ," on L, assume the cntrary.

Then there exists an element of [, A, such that ,"(A) < P(A). Consider any

such A. Then since ,"(A) inf{k=l P() E [ .for every k and k D A}

by the definition of " there exists a sequence in t, (Lk), such that t)k D A

and 7.
k ,(L) < (A). Consider any such (). Then since , I(L), ,(A} 1

and for every k, ,(L) 0. Consequently (A N Lk) and for every k,
n

,(A N ) i. Now, for every natural number n, consider =I (A ). Note

(A N Lk) I; set n (.n)k=l
(A N ) . note , i. Consider (). Note

n n

(’n) is in L and (.n) is decreasing and limn n n ’n % (A ) . Hence

since , IO(L) by assumption, lim , (.) 0. Thus a contradiction has been
n n

reached. Therefore the assumption is wrong. Consequently , < ," on L.
(ii) (Proof omitted.)

NOTATION. Consider any lattice space (X,L). Now, consider any element of

I([), , such that , has the following property:

For every sequence in L, (L), such that L q L, ,(N L inf{,(L );
n n n n n n

n e N}. (**)

Note if , 6 I(L), then , has Property (**) and if , has Property (**), then

, 6 Io(L). Thus I(/) C {, 6 I(/) l, has Property (**)} c Io(/). set {, e l(t)

" has Property (**)} J{i). Thus I(L) C J(L) C Io([).
PROPOSITION 4.4. If ,EI(L), then , ," on i’ iff , J(i).

PROOF. Assume , q I(i).

(i) Assume P ," on i’ and show , J(L). Assume the contrary. Then by the

relevant definition, there exists a sequence in L, (L), such that L i and
n n n

Now, note since (L) is inP(% Ln) inf{,(Ln); n E N}. Consider any such (L
n n

L and Un L’n DUn L’,n by the definition of ," "(n L) --< n ,(L._’}. Now, note

since ,(% Ln) M inf{"(Ln}; n NI, ,( L < ihf{P(L ); n N}. Hence since
n n n, e I(L), ,(_ L 0 and for every n, ,(L 1. Hence fo every n, P(L_’) O.

n n
Consequently ,"(U L’) 0. Further, note since , ," on L’ by assumption and

n n
t) L’ i’ because L E i, ,(t L’) ," (t) L’). Consequently ,(t) L’) 0.n n n n n n n n n n
Hence ,( L i. Thus a contradiction has been reached. Therefore the assump-n n
tion is wrong. Consequently J(L).

(ii) (Proof omitted.)

PROPOSITION 4.5. If i is complement generated, then J(i) C Iw().
PROOF. Assume L is 6omplement generated. Note since I

ff
(L) C j(L), J(i)

Consider any element of J([), ,. To show , e Iw([), use the relevant definition,

namely, consider any element of I, L, such that ,(L’) 1 and show there exists an

element of L, ., such that . C L’ and ,’ (.) I. Note since L 6 L and L is comple-

ment generated by assumption, there exists a sequence in [, (%), such that

L . Consider any such (). Then L’ t)
k %. Further, note since

by assumption, by Proposition 4.4, , ," on i’. Consequently 1 ,(L’)

P" (Ok ’k < [k "’’ (k)" Hence there exists a value of k, m, such that " (.m
i. Consider any such m. Then since " <_ ,’, ’ (.m) i. Thus Lm i and. C L’ and ,’ (m) I. Consequently , e Iw(i). Thus J(t) C IW(L)m

(L)THEOREM 4.6. If L is normal and complement generated, then J(L) I
R
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PROOF. Assume 6 is normal and complement generated.
o

() Show j(6) C IR(6). Note since 6 is complement generated, by Proposition

4.5, J(6)CIw(6). Further, note since 6 is normal, by’Theorem 3.14, IW(6) C IR([)-
Consequently J(6) C IR(6). Hence since J(6) C IO(6), J([) C I(6).

(8) Show I(6) C J(6). Note I(6) CI([ C J(6).

(7) Consequently J(6) I(6).
APPLICATION 4.7. Consider any topological space X such that X is perfectly

normal. Then since F is normal and complement generated by definition, by Theorem

46 J(F) IO().
R

APPLICATION 4.8. Consider any to[ological space X suc]l that X is T3. T|en

since Z is normal and complement generated, by Theorem 4.6, J(Z) IR(z)-
THEOREM 4.9. If 6 is normal and countably paracompact and E I(6), then

" ’ on 6.

PROOF Assume 6 is normal and countably paracompact and 6 Io(6). Note since

M 6 I(6) by assumption, there exists an element of IR(6), , such that M u on i.

Consider any such . Thus 6 I(6’) and 9 6 IR(6) and M < u on" 6. Hence since 6

is normal by assumption, by Theorem 3.4, M’ u’ on 6. Now, note since i is

cuntably paracompact and normal by assumption and M 6 Io(6) and E IR(1) and

M _< u on 6, by Corollary 3.9, 6 I(6). Further, note [since 6 Io(6), by

(Proposition 4.3, (ii), v < u" on 6] and ’. < u’ and since is 6-regular, u’= .
Hence 9’ v" on 6. Also, note since M < u on 6, u" < M" Consequently 9’ < "
on 6. Then since M" < M’, v’ < " < ’ on 6. Hence since ’ ’ on 6, D"’= M’
on 6.

APPLICATION 4.10. Consider any topological space X such that X is T3. Then

since Z is normal and countably paracompact, according to Theorem 4.9, the following

statement is true: If 6 Io(Z), then " ’ on Z.
APPLICATION 4.11. Consider any top61ogical space X such that X is T

1
and

0-dimensional. Then since C is normal and countably paracompact, according to

Theorem 4.9, the following statement is true: If 6 Is (C), then N" ’ on C.
THEOREM 4.12. If L is normal and 6 and’ ,6Is(L), then " ’ on L.
PROOF. Assume 6 is normal and 6 and 6I(6). Note to Show " ’ on L,

since " < ’, it suffices to show for every element of 6, L, U"(L) / ’ (L).

Assume the contrary. Then there exists an element of 6, A, such that U" (A)< ’ (A).

Consider any such Ao Then " (A) 0 and ’ (A) i. Now, note since "(A) 0,

^’ D A and [ ()= 0. Cons[-there exists a sequence in L, such that Uk Lk k

.k ^’ ( .k)’ and since 6 is by assumptionder any such Note A C Uk Lk
% % e 6. Set k ’k B. Then A C B’o Now, use the assumption that 6 is normal

and 6 I(6) to show U’ (A) 0, thus reaching a contradiction.

APPLICATION 4.13. Consider any topological space X such that X is normal. Then

since is normal and , according to Theorem 4.12, the following statement is true:

If 6 Io(), then " ’ on o
APPLICATION 4.14. Consider any tollogical space X such that X is T3. Then

since is normal and , according to Theorem 412, the following statement is true:

If 6 IO(Z), then " ’ on Z.
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