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ABSTRACT. This paper concerns the existence and uniqueness of equilibrium states of a beam-

column with hinged ends which is acted upon by axial compression and lateral forces and is in

contact with a semi-infinite medium acting as a foundation. The problem is formulated as a fourth-
order nonlinear boundary value problem in which the source of the nonlinearity comes from the

lateral constraint (the foundation). Treating the equation of equilibrium as a nonlinear eigenvalue

problem we prove the existence of a pair of eigenvalue/eigenfunction for each arbitrary prescribed

energy level. Treating the equilibrium equation as a nonlinear boundary value problem we prove

the existence and uniqueness of solution for a certain range of the acting axial compression force.
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1. INTRODUCTION
We are concerned in this note with the existence of equilibrium states of a beam-column, i.e.,

elastic beam under axial compressive forces. The source of the nonlinearity in the present study
comes from a nonlinear lateral constraint (foundation). We formulate the problem as a fourth-
order nonlinear boundary value problem and prove two theorems on the existence of solution of this

boundary value problem. The proofs are based upon a paper by Browder [1].
Existence of solutions of fourth-order boundary value problems arising in the study of

equilibrium states of elastic beams has been the subject of several recent papers. Among these are

the papers by Agarwal and Chow [2] and Gupta [3]. Both of these papers considered boundary
value problems different from the one formulated below. Furthermore, the methods of proofs used

there are likewise different from ours.
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We consider a uniform beam-column of length with hinged ends which is acted upon by axial

compression p and later force ’ (z) and is in contact with a semi-infinite elastic medium $ +" @
acting as a (nonlinear) foundation, (Figure 1). "The modulus of the foundation" is assumed to

be a given non-negative constant.

P
P

Figure

Neglecting geometric and material nonlinearities the governing equation may be taken as

d4y d2y
(E) --4 + _.=-+ +C

where ’ (z) denotes the lateral displacement and E! denotes the bending stiffness.

The boundary conditions for hinged ends are given by

d2y d2y
(0) (0) " () () 0.

Upon using the change of variables

z=, A= E--"/’ &= -ET’

y(z)--’ (z), g(y) T ()e4 ’ (z)e4
E’----’-’ f(v)-- El

(1.1)

(1.2)

the governing equation (1.1) and the boundary conditions (1.2) become

/(0) y"(O) y(1) y"(1) 0

(1.3)

(1.4)

where primes in (1.3) and (1.4) signify differentiations with respect to .
In this paper, we are concerned with the question of existence of solution of the fourth-order

boundary value problem (1.3), (1.4). We will denote by U the space W2,2([0,1])tnw,l ([0,1]).
Under the assumptions.
HI: 1" e L2([0,1]),
H2: there exists h such that h’(u) g(u),h(u) LI([0,1]) for all H and

(i) For any C > 0 there exist numbers a,,c, _> 0 and 0 _< < 2, such that

o

for all u H for which u’ 2L2 C,
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(ii) For any bounded subset B of H there exists A > 0 such that

195

h(y) h(z)II L _< A y for all y,z c: B,

it is shown in Section 2 that for any C > 0 there exists a solution (,,y) of the nonlinear eigenvalue
C. Under the same assumptions butproblem (1.3) (1.4) which satisfies the condition y’ 2L2

with a and fl in H2(i) being independent of C it is shown in Section 3 that for each ,X < r2 the

nonlinear boundary value problem (1.3), (1.4) has at least one solution and if the nonlinearity

satisfies the additional condition

0, for all HYl,Y2
0

then the solution is unique. Some discussions are given in Section 4.

2. EXISTENCE OF SOLUTION WITH ARBITRARY ENERGY LEVEL y’ 12.
In this section, we prove that for each C > 0 there exists y e H and A e I such that

y’ 12 c (2.1)

and

/
0 0 0 0

for all v H, i.e., (A,) is a weak solution for the nonlinear eigenvalue problem (1.3), (1.4) which

satisfies (2.1). The regularity theory of [4] then implies that (A,) is a classical solution of (1.3),
(1.4).

For v, y H we define the functionals

0 0 0

E(y) (, y),

gl(y / [y,]2 dz.

0

Some properties of the functionals ,E, and gl are given in the following Lemmas. These

properties enable us to use Theorem 1 of [1] in the proof of the main theorem of this section.

LEMMA 2.1. is a differentiable and semi-convex on// U.

PROOF. The differentiability of as we]] as the convexity and continuity of 4,(. ,y), for fixed

y, are clear. Furthermore, if yj-Xy in H for some {yj} then there exist subsequence yjky in

el([0,1]) and hence for fixed v it follows by H2(ii) and HSlder’s inequality that there exists

constant D such that

I’(v, yjk)-’(v,y)l <_ DllYjk-Yll + II111 L2 Ilyj.-yll L2

which tends to zero as koo. This proves that (v, yj),(v,y) for each fixed v and completes the

proof for the semi-convexity of .
LEMMA 2.2. E is differentiable on//and E(y).-,oo as Y l[-o0 on the set

S {y e H: y’ 2 c}.

PROOF. The differentiability of E follows from that of , since

E’(y) Ctl(y,y + 2(Y,Y)"
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Also from the definition of E is follows (by the properties of v //and H2(i)) that

for some 0,0 < 2 d some constt C > O. Now since 0 we have

Ey) > 1/2 y" 2 y" 2 c / y" II/-’2"
Thus E(y)--,oo as Y II--oo on S (since on S we have y II--oo if and only if y" II L2-"oo and B < 2).

LEMMA 2.3. gl is weakly continuous on H.

PROOF. Suppose that yjy in H. Then there exists a subsequence{yjt} such that YjF-"Y in

cl([0,1]) and hence gl(yfl).--,gl(y). Thus gl(Yj)--,gl(y).
THEOREM 2.4. For each C > 0 there exist some y H and , I satisfying (2.1) and (2.2).
PROOF. It follows from Lemma 2.3 that the set

=C}S {#E H: y’ 2
is weakly closed. From Lemmas :2.1 and 2.9, we see that 4" and E satisfy the conditions of Theorem
of [1]. It follows that E attains its minimum at some y $. From Lusternik’s Theorem it follows

that there exist A I such that A and y satisfy

which implies that for these and y equation (2.2) is satisfied for all ,+ H. Since y $ it follows

that satisfies (2.1).
3. EXISTENCE OF SOLUTION FOR FIXED X:

In this section, we consider the existence of solution of the fourth order nonlinear boundary
value problem (1.3), (1.4) with A being fixed. Under the same assumptions H1 and H2 but with a

and B in H2(i) being independent of C it is proved that for each A < r2,k > 0 there exists v H such
that

/,%,,
0 0 0 0

for all v e H, i.e., y is a weak solution of (1.3), (1.4). The proof is again based upon the variational
methods of [1].

We define the functionals 4, and E on H x H and H respectively by

0 0 0 0

E(y) (y, y),

and examine some of their properties in the following lemma.

LEMMA 3.1. The functionals 4" and E are differentiable, 4" is semi-convex and E is coercive,

i.e., E(V)-.oo as Y II--,oo, provided that > 0 and l < 2.
PROOF. Since 4" is clearly differentiable, continuous and convex with respect to v for each

fixed y and since the imbedding of//onto cl([0,1]) is compact it follows by H2(ii) and HSlder’s

inequality (as in Lemma 2.1) that it is semi-convex. The differentiability of E is also clear. Now
using/ > 0, H2(i) and the inequality

yn 2IIv’ll2t2_<11 L2’
it follows from the definition of E that
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,x ily,,ll2 ,lly,,llL2 11/’ll/21lyllt,2,E(y) > 1/2(- ,)

which implies (since/ < 2 and ,x < r2) that E is coercive.

THEOREM 3.2. For each k _>0 and ,X < r2 the boundary value problem has a solution.

Furthermore, if the nonlinearity g satisfies the additional condition

f [g(Yl) g(Y2)](Yl Y2)dz > 0 (3.2)
0

for all yl,y2

_
H with Yl # Y2, then the solution is unique.

PROOF. Lemma 3.1 enables us to apply Theorem of [1] which implies the existence of a

solution y of (3.1). The smoothness of y follows from the regularity theory of [4]. Finally, if (3.2)
holds it can be easily checked that (3.1) can have at most one solution for each k _> 0 and < r2.
4. DISCUSSIONS.

We remark that the parameters ,X and C of Theorem 2.4 represent the dimensionless axial

compression acting on the beam-column and a part of the total bending energy for the beam-
column respectively.

Many important nonlinearities g(y) encountered in practice satisfy the condition H2 which was

used in the proofs of Theorems 2.4 and 3.2. Among such g(y) are the polynomials. To see this we
r+lnote that if g(y)--yr, r > 2, where r is odd then h(y)=7----fy >0 and H2(i) holds trivially by

taking a 0. If r is even, then r + is odd and we have

However,

where C y’ 2" Thus

y2(z) 2 yy’ds _< 2 Y L2
y’ L2

0

< 2c1/2 v t2

C1/2 2C<2 y’ t._

If yr+ldxl _<C
0

for some constant C and hence g(y)= yr satisfies H2(i) for all r with =0. Condition H2(ii) is

clearly satisfied for g(y)= yr with r odd or even. Thus condition H2 is satisfied when g(y) is of
polynomial function of y. We also note that a and B are independent of the constant C when g(y) is
an odd power of y and that condition (3.2) of Theorem 3.2 is satisfied in this case. Thus if g(y) is an

odd power of y and ,x < r2, the nonlinear boundary value problem (1.3), (1.4) has a unique solution.
Finally, we remark that the number r2 is the smallest eigenvalue of the linear boundary value
problem

fm + Aytt + ky O,

y(0) y"(0) y(1) y"(1) 0

when k 0 and hence for ,X beyond r2 bifurcation of solution may take place. A bifurcation analysis
of the solution set in neighborhood of the first eigenvalue of (4.1), (4.2) will be given in a
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when t 0 and hence for , beyond 2 bifurcation of solution may take place. A bifurcation analysis
of the solution set in neighborhood of the first eigenvalue of (4.1), (4.2) will be given in a
forthcoming paper.
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