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ABSTRACT . Let X be an abstract set and L a lattice of subsets of X. I(L) denotes the non-trivial zero
one valued finitely additive measures on A(L) , the algebra generated by L , and IR(L) those elements of
I(L) that are L-regular . It is known that I(L)=IR(L) if and only if L is an algebra. We first give several
new proofs of this fact and a number of characterizations of this in topologicial terms.

Next we consider , I(o*,L) the elements of I(L) that are 6—smooth on L , and IR(o,L) those
elements of I(o*,L) that are L-regular. We then obtain necessary and sufficent conditions for
I(o*,L)=IR(o,L) , and in particuliar ,we obtain conditions in terms of topologicial demands on associated
Wallman spaces of the lattice.
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lattices, T2 lattices, countably paracompact and countably bounded,separation and semi-separation of
lattices,pre-measures,I-lattice , etc.
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1. INTRODUCTION

In this paper we wish to determine when certain classes of measures are equal, and to obtain
necessary and sufficent conditions for such equality to hold,emphazing topologicial characterizations.

To be specific let X be an abstract set,L a lattice of subsets of X.Let A(L) denote the algebra
generated by the lattice L,and I(L) the collection of non-trivial zero-one valued fintely additive measures
on A(L).IR(L) will denote measures in I(L) that are L-regular on A(L),i.e. if ueIR(L) and BEA(L) then
there exists a LeL st BoL and p(B)=p(L).I(o+*,L) will denote those elements of I(L) that are sigma-
smooth on L,i.e. if LpeL n=1,2,....c and L;l@ then for pel(o*,L), limu(L,)=0.IR(0,L) will denote
those measures in I(o*,L) that are L-regular.
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The first area of concern is when I(L)=IR(L).It is well known that this is true iff L is an
algebra .We give several proofs of this,highlighting topologicial considerations ,to be more precise
I(L)=IR(L) is equivalent to the following:

a) The lattice V(L) (see below for definitions) in the space I(L) is regular.
b) The topology of closed sets TV(L) in I(L) is Tj.
¢) The lattice of sets V(L) in I(L) is disjunctive.

The second main area of concern is determining conditions for I(o*,L)=IR(0o,L),and conversely
what this implies for the lattice. We show (see below for definitions) that I(o*,L)=IR(o,L) is equivalent
to: The lattice V(o,L) in the space I(o+,L) is regular.We also show that if L is disjunctive and W(o L) is
prime complete or L is normal and countably compact and if I(o*,L),V(o,L) is Ty then
I(c*,L)=IR(o,L).Also suppose TLoEDA(L)oL then if 7L is L cb or more generally if E (and thus A(L))
is L cb and a) Either S(L)2o(L) (Where S(L) are the lattice Souslin derived sets.In particuliar if
p(L)=o(L) .) and L is delta or b) If L is complement generated (and not necessarily delta) then
IR(o,L)=I(o*,L).

2. BACKROUND AND NOTATION

We begin by reviewing some notation and terminology which is fairly standard (see Alexandroff
[1],Frolik [4],andSzeto [7] ).We supply backround material for the readers convenience.

Let X be abstract set,and L a lattice of subsets of X st X,@€L.A delta lattice is one that is closed
under countable intersections,and the delta lattice generated by L is denoted 8(L).In addition L is
complement generated iff for every element LeL there exists a sequence of subsets AjeL i=1,2... and
L=NAj' i=1,2....0 (where ' denotes complement ) .L is countably paracompact if for every sequence
LpeL and Lnlﬂ there exists Bp'eL' st Bn'\@ and By'DLnp for every n. A tau lattice is one that is closed
under arbitrary intersections,and the tau lattice generated by L is denoted by TL.A(L) will denote the
algebra generated by the lattice L.

Let L1,L2 be two lattices st LooL1,then L1 semi-separates (ss) L7 if for L1eL1,L2¢el7 and
L1NL)=@, then there exists an A1eL1, A12L2 such that AjNL1=@.

Let I(L) denote the set of non-trivial two valued {0,1) finitely additive measures on the algebra
generated by L,and let I(c*,L) denote those elements of I(L) that are sigma-smooth on Li.e. if {Ly}eL,
Lnl(b and pel(o*,L),limp(Ly)=0 n—eo.I(o,L) denotes those elements of I(L) that are sigma-smooth on
A(L),i.e. if {Ap)eA(L), Anlﬁ,and pel(o,L) limp(A,)=0 as n—eo.This is equivalent to countably
additivity on A(L).IR(L) will stand for the measures on A(L) that are L-reg}llar on A(L),i.e. peIR(L)
W(A)=supp(L) LeL ADL and AeA(L).This is equivalent to being L-regular on L'.IR(c,L) denotes the set
of peIR(L) that are 6-smooth on L.The obvious relations hold,I(L)2I(c*,L)2I(o,L)2IR(o,L) and
I(L)2IR(L).The support of a measure S(u),uel(L) is defined as S(u)=n{LeL | p(L)=1}.

Let L1 and L) be two lattices of sets of X st LooL1 then L2 is L] countably bounded (cb) if
for L2pel and L2, 1@, then there exists L1pel1,L1,40 and L1,2L2,,.

A lattice is said to be disjunctive_if for any xeX and LeL such that xe L there exists L~€L such
that xeL~ and LNL~=@.L is said to be regular if for xeX x¢ L LeL then there exists L1,L2eL xeL1'
L2'2L and Li'nL'=@.L is said to be normal if for L1,L2eL and L1NL2=@,there exist L3 L4eL st
L3'2L1 L4'2L2 and L3'nL4'=@.L is said to be coutably compact if for any {L,}eL and "\L,=0
n=1,2....0 ,then there exists a finite subindexing st NLn;=@ nj=1 to N.A lattice is said to be Ty if for
x,yeX there exist L1,L2eL st xeL1' ye L1'and yeL2' xe L)'

p(L) denotes the smallest collection of sets that is closed under countable unions and
intersections and contains L.o(L) will stand for the smallest o-algebra containing L.S(L) will stand for
the collection of Souslin sets generated by L.



REGULAR AND SIGMA-SMOOTH TWO VALUED MEASURES 35

Note: For p,p1€l(L),we write pu<pg (L) if p(L)<pq(L) for all LeL.
We now note some measure equivalences of topologicial properties:1) L is disjunctive iff for
all xeX pyeIR(o,L) where py is the point mass measure,i.e. Lyx(A)=1 if x€A ,ux(A)=0 if x¢ A
JAEA(L).2) L is regular iff p<pq (L) where ppel(L) implies S(u)=S(u1).3) L is normal iff pel(L) and
n1.u2€IR(L) implies that if p<pq (L) and p<ps (L) then py=p3.4) L is countably compact iff pel(L)
implies that pel(o*,L).The proofs are not difficult and thus we will only prove the third result for the sake
of completeness. Further facts about regular and normal lattices appear in Eid [3] and Grassi [5].
Theorem 2.1: L is normal iff pel(L) p,poeIR(L) and u<pq (L),u<py (L) implies py=py.
Proof: Let L be normal and let pel(L) p<pq (L) ,uspy (L) p,up€eIR(L),assume pyxpp.Then
there exists a LeL st p1(L)=1 pu2(L)=0 say,and since ppeIR(L) and pp(L')=1 there exists L~eL st
pa(L™)=1 and L'oL~,thus LNL~=@.But L is normal thus there exists L1,L2¢eL st L1'2L L2'2L~ and
L1'nL2'=@,which implies that p1(L1")=1 pa(L2")=1 or p1(L1)=0 p2(L2)=0 and thus
u(L1)=u(L2)=0.Also LjuLl2=X,and therefore p(X)=p(L1)+p(L2)-p(L1NL2)=0,a
contradiction.Therefore p1=}) and the condition holds.

Note: A fact we will use in the second part of the proof and in the proceeding parts of the paper is
that there exists a one-one correspondence between prime L-filters and elements of I(L),and a one-one
correspondence between L-ultrafilters and elements of IR(L).This correspondence is set up by letting
pel(L) and H={ LeL | p(L)=1}.Then H is a prime L-filter and conversely if H is a prime L-filter there
exists a measure Pel(L) associated with H st if LeH, pu(L)=1.A similiar correspondence holds for H and
UeIR(L) in which case H is an L-ultrafilter.

Now we return to the proof of the theorem,conversely,let pel(L) and p<pg (L),p1spp (L) for
n1,42€IR(L) imply pi=p3,.and assume L is not normal. Then there exists L1,L1~eL st L1nL1~=@ and
H={ LeL I L'oL] or L'oL]1~ } has the finite intersection property and thus there exists an associated
measure Pel(L') associated with the filter base H st W(L")=1 LeH.Now let L2eL and suppose that
H(L2"=0, then L2' does not contain L] thus L1NL2#@.Since the collection {L1NL2 | p(L2)=1 L2eL}
has the fip thus there exists a p1€IR(L) st p1(L1)=1 and p<p] (L).By similiar reasoning there exists a
poeIR(L) st p<pg (L) pa(L17)=1.By hypothesis py=py.Hence pi(L1)=p1(L1~)=1.Therefore
p1(L1NL17)=1.But LiNL]~=@ thus p1(L1NL1~)=0,a contradiction.Thus L must be normal.

We now prove a result that will be useful in the sequel.
Theorem 2.2: Let L be normal and countably paracompact ,then if pel(o*,L) there exists a unique
pielR(o,L) st p<py (L).

Proof: Let pel(o*,L) and p1€eIR(L) st p<pj (L).Then we must prove piel(o,L).Let Ajel
Apl@.Since L is countably paracompact there exists {Bp'}{@ ,BneL and By'DA[, for every n.Since
Bn'2Ap and L is normal and ApnB,=@,there exists Cp,Dpel st Cy'nAp and Dy'DB, st
Dp'NCp'=@.Then B'oDp2C'2A, and we can assume without loss of generality that these inclusions
hold with Dpd@.Then p1(An)<it1(Cn)SH(Cp))<p(Dp) and since By'{@ Dy @ plus the fact pel(o*,L)
imply that limp(Dp)=0 as n—eo.Then limyt1(Ap)=0 as n—oo,and p1€IR(0,L)).Uniqueness follows from
normality.

Next we consider various sets of measures defined on the algebra generated by a lattice L.For
example consider I(L),I(o%,L),IR(L),or IR(c,L).Denote such sets by 1.Also consider the collection of
sets H (L) where H(L)={H (L) : LeL} and H(L)=(pel : u(L)=1).Then the following hold: a)
H(AUB)=H (A)UH(B) for A,BeL.b) H(A)NH(B)=H(ANB) A,BeL.c) H(A)=H(A") for AeL.d) If
ADB then H(A)DH.(B) A,Bel.e) If L is disjunctive (if necessary) and H(A)DH(B) then ADB A ,BeL.f)
The collection H(L) is a lattice and H(A(L))=AF(L)).
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We will assume in discussing H (L) for convenience,that L is disjunctive,although it will be clear
that this assumption is not always needed.

If pel(L) then define a measure on A(H (L)) pel(3 (L)) by p*(3H (A))=n(A) for
AgA(L).Conversely if pel(3 (L)) define a measure on A(L) pel(L) by p(A)=p"(3H (A))
H(A)eA(H(L)).Then the following hold:

Theorem 2.3_If L is disjunctive (if necessary) then there is a 1-1 correspondence between the sets
I(L) and I(3{(L)) given by pe>p” Further pel(L) is 6-smooth or regular iff p"eI(3(L)) is o—smooth or
H(L) regular.

If I=I(L) we let H(L)=V(L).

If I=I(o*,L) we let H(L)=V(o,L).
If I=IR(L) we let H(L)=W(L).

If I=IR(o,L) we let H(L)=W(o,L).

These sets are topologized by taking H(L) H(L)e3 (L) as a basis for the closed sets, and will be
referred to as generalized Wallman spaces

3 THE SPACES IR(L) AND I(L)

In this section we investigate a variety of conditions which are equivalent to IR(L)=I(L) both
abstractly and from a topologicial point of view with respect to the space I(L),1V(L).This will useful for
out subsequent analysis of I(o*,L),as well as being interesting in its own right.

Theorem 3.1: Let L be a lattice of subsets of X,then the following are equivalent: a)IR(L)=I(L)
b)IR(L")=IR(L)
¢) V(L) in the space I(L) is regular
d) The topology of closed sets TV(L) in I(L) is T}
¢) The lattice of sets V(L) in I(L) is disjunctive
f) L is an algebra.

Proof: We show first that IR(L)=I(L) iff IR(L")=IR(L).

If IR(L)=I(L) and if peIR(L"),then pel(L) and thus peIR(L).Also if peIR(L) then pel(L') and there
exists p1eIR(L") st p<pg (L).But pel(L)=IR(L) and therefore p=pjeIR(L") . Conversely if
IR(L")=IR(L) let pel(L),then there exists u1eIR(L) st p<pj (L) or pysp (LY).But pelR(L"),thus
p1=HeIR(L"Y=IR(L) and I(L)=IR(L).

Next we wish to show IR(L)=I(L) iff the lattice V(L) in the space I(L) is regular.

Let IR(L)=I(L) assume that V(L) is not regular then there exists then there exists V(L)eV(L) pel(L)
st ue V(L) H={ V(L™) | V(L~")2V(L) or ueV(L™")} has the finite intersection property and thus there
exists a 1 el(V(L") st 1 (V(L™))=1 V(L~)eH and u"<pu” (V(L").Projecting down p<p] (L"), and
since IR(L)=I(L) p=p. Then projecting upward pi”=p”, p*(V(L))=p1"(V(L))=1 and
1M V(L)=p1"(V(L))=1,a contradiction .

Conversely let V(L) be regular in I(L) let pel(L) ,LeL, and p(L')=1 . Therefore pe V(L).Since
V(L) is regular there exists V(L1'),V(L2")eV(L) st V(L1)NV(L2")=0 and peV(L}") and
V(L2)2V(L).But this implies that ueV(L2) and L'2L2 u(L2)=1 and pelR(L),therefore IR(L)2I(L) and
I(L)=IR(L).

Next we show IR(L)=I(L) iff the topology of closed sets TV(L) in I(L) is Ty.

tV(L) is Ty iff V(L) is T1.Assume that IR(L)=I(L) let pj,upel(L)=IR(L) and p1#u7.Then there
exists Lj,L2eL st pq(L1)=1,u9(L1)=0,p1(L2)=0,and pp(L2)=1,which implies that
H1EV(L2).upe V(L2).11€ V(L1),12eV(L1) ,ie. V(L) is Ty.
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Conversely let V(L) be T1 and let pel(L) . If e IR(L) then there exists veIR(L) and L1eL such that
MEV(L1), ve V(L1") and p<v (L) . Since V(L) is T1 there exists LoeL such that pe V(L2') and
veV(L2), i.e. p(L2)=1 and v(L2)=0, a contradiction.

Next we show IR(L)=I(L) iff the lattice of sets V(L) in I(L) is disjunctive.

Assume that IR(L)=I(L) . Let pel(L) and suppose LeL peg V(L) .Since IR(L) =I(L) there exists L€l st
L'DL1 p(L1)=1 and peV(L1) and V(L)NV(L1)=@,thus V(L) is disjunctive.

Conversely let V(L) be disjunctive, let uel(L, let Lel ,and let u(L")=1 ( and hence pe V(L')) .Since
V(L) is disjunctive there exists a V(L1)eV(L) st peV(L1) and V(L1)NV(L)=@.But this implies that L'2L]
u(L1)=1,and peIR(L).Therfore IR(L)=I(L).

Finally,now we claim I(L)=IR(L) iff L is an algebra,i.e. L=L".

Let L be an algebra and pel(L) then since L=L' y is trivially regular and IR(L)=I(L).Conversely
let I(L)=IR(L) and assume that LsL',i.e. that L is not an algebra.Thus there exists a L~eL st L~'¢L and
look at H={ L | LoL~ or LoL™~'}.Then H has the fip and thus there exists a pel(L) st p(L)=1,LeH.For
w(L1)=1LjeL implies that L] does not contain L~ or L~".Thus there exists pieIR(L) st py(L™)=1 pspy
(L) and also a pp€eIR(L") st pp(L~")=1 and p<py (L').But since I(L)=IR(L) and this implies from above
that IR(L")=IR(L),n1(L™)=p1(L~")=1 or p1(L~NL~")=1=p1(P)=0,a contradiction.L=L"and L is an
algebra.

Note: It is well known even for abstract distributive lattices that I(L)=IR(L) iff L=L'.(See Bourbaki
[2], Huerta [6] ).

Because of the importance of the last result we present an alternative approach which is of importance
because of its relevance to lattice separation properties.

Theorem 3.2: Suppose L1,L2 are lattices of subsets of X st LpoL1.If L7 is disjunctive and L1 is
normal and if y:IR(L2)—>IR(L1) where y is the restriction map,i.e. y(v)=y the restriction of v to
A(Lj),then L] semi-separates L.

Proof. Suppose Liel] and LpelL2 and LinLy=@. Then Wo(L1)NW2(L2)=@ and
Y(W2(L2))NW 1(L1)=0 for if p=y(v) where veWo(L), then v(Lp)=1. Therefore p(L1)=v(L1)=0 and
thus pe W1(L1) .

Y(W2(L2))=nW1(L1;) iel an arbitrary index set Iand L1;2L7 .This holds since W2(L3) is closed
and thus compact (W2(X)2W2(Lp) and W7 (X) is compact).Also y is continuous since Yy~
1(W1(L1))=W2(L1).L1 is normal which is equivalent to W(L]) being Ty by a known result (see
Bourbaki [ 2] ). Therefore since Wo(L5) is compact and y is continuous then y(W+7(L3)) is compact and
since W (L1) is Ty ,y(W2(L2)) is closed and thus W(W2(L2))=nW(L1;) i€l an arbitary index set.Also
since L2 is disjunctive then since y: IR(L2)—>IR(L1) is well defined L1 is also disjunctive.But this
implies that L1;0L».Thus y(W2(L2))=nW1(L1;) iel L1;2L).

Now look at y(Wo(La)NW 1 (L1)=("W1(L1)))NW 1(L1)=9,iel.Then by compactness
("W (L 1o)NW(L1)=0 a=1,2...N.Since L1 is disjunctive,this implies that "L1g2L2
o=1,.N,L;7=nL1l¢g a=1,..N,L1~eL1 and L{nL{~=@.Thus L semi-separates L.

Corollary 3.1; If L is a lattice of subsets of X st I(L)=IR(L) then L is an algebra.

Proof:Set L1=L and L2=A(L) .Since I(L)=IR(L), L is normal. Then the hypotheses of the
theorem hold,thus L ss A(L). Let L'"L=@ LeL then since L'eA(L) and L ss A(L),this implies that L'eL
L=L',i.e. L is an algebra.

Note:Suppose L2 is disjunctive and cc then IR(o,L2)=IR(L2) and if veIR(L?2) then
u=y(v)el(o,L1),and if L] is a delta lattice and S(L1)20(L1) then pueIR(o,L1),in which case if L1 is also
normal then L1 ss L2 by theorem 3.2.
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Another application arises if L2 is L1 cb and L is cc then IR(0,L2)=IR(L2).If L7 is disjunctive and
L1 is a delta lattice,6(L1)2S(L1) and L1 is normal,then theorem 3.2 can be applied and L] ss L.
4. THE SPACES I(c*,L) AND IR(o,L)

In this section we wish to consider,analogous matters concerning the spaces 1(c*,L) and IR(o,L)
to those considered earlier for I(L) and IR(L).First we obtain conditions when I(o*,L)=IR(o,L) implies
L is an algebra.In this connection we introduce a definition.

Definition 4.1 The lattice of subsets of X is almost countably compact (acc) if peIR(L") implies
uel(ox,L).

Remark: Clearly L cc implies L acc.It is easy to show that if L is normal and countably
paracompact then L acc implies L cc: Namely let uel(L) then pel(L') and also there exists a peIR(L") st
p<pi (L) or p1<p (L).But L acc implies that py€l(c*,L) and L normal and cp implies there exists
uoelR(o,L) (see introduction) st p1<py (L) and thus u<py (L).Thus pel(o*,L) and L is cc.

Theorem 4.1; If I(o*,L)=IR(o,L) and if L is acc then L is an algebra.

Proof: Let pel(L) then there exists a L1€IR(L") st p<pq (L).But L is acc,therefore p1el(o*,L).But
I(o*,L)=IR(o,L),thus p1€IR(o,L) and since p1<p (L) pelR(o,L).Thus I(L)=IR(L),which implies that
L is complemented or that is ,L is an algebra.

Theorem 4.2: Consider the set I(c*,L),then the lattice V(o,L) in I(c*,L) is regular iff
IR(o,L)=I(c*,L).

Proof: Assume that I(c*,L)=IR(o,L) and that V(o,L) is not regular .Then there exists pel(o*,L)
and V(o,L)eV(o,L) such that pg V(o,L) and H={V(o,L~") | V(6,L~")2V(0o,L) or peV(c,L~")} has the
fip and thus there exists a p eI(V(o,L")) st p1(V(o,L™))=1 V(c,L~")eH.In addition p"el(c*,V(a,L))
and p"<pq” on V(o,L") or 1" <pu” on V(o,L).Therefore pq"€l(o*,V(c*,L)) and projecting downward
p1<p (L).But I(c*,L)=IR(0,L),therefore p=pq and p"=p1” on V(o,L) projecting upward,also
u =1 €eIR(0,V(o,L)).Since n eIR(c,V(o,L)) and p"(V(c,L))=1 there exists a V(o,L1~) st p(
V(o,L17))=1 and V(o,L')2V(o,L1~) or V(o,L1~")2V(0o,L) and by definition of
11 N (V(o,.L1™))=11A(V(0,L1™))=1 a contradiction.l(c*,L),V(o,L) is regular.

Conversely let I(o*,L),V(o,L) be regular and let pel(o*,L) pe V(o,L),then peV(o,L') and
p(L")=1.Consider the projection upward,then u"el(c*,V(c*,L)) ue V(o*,L).Then since
I(o*,L),V(o*,L) is regular there exists V(o,L1),V(o,L2)eV(o,L) st V(o,L1)2V(o,L) pev(o,L2') and
V(0,L1)NV(0,L2)=@ or V(c,L1)UV(0,L2)=I(c*,L).Then p(V(c,L1))=1 or p*(V(c,L2))=1.Since
p(V(o,L2)=1 p*(V(0,L2))=0 and p*(V(o,L1))=1 V(6,L1)2V(0,L) or V(c,L)2V(0,L1).This
implies that L'DL1 and p(L1)=1.Therefore pelR(o,L) and I(c*,L)=IR(o*,L).

Theorem 4.3: Suppose TLOEDA(L)L then if tL is L cb or more generally if E(and thus A(L)) is
L cb and a) S(L)2o(L) (in particuliar if p(L)=0(L)) and L is delta or b) If L is complement generated
(and not neccessarily delta) then IR(o,L)=I(c*,L).

Proof: Let pel(o*,L).Since A(L) is L countably bounded I(c,L)=I(c*,L).Now let L be cg and
p(L")=1,pel(o,L) LeL,then L'=UL; i=1,2,... or L=nL;' i=1,2,... .Then since pel(o,L),
O=limp(L)=limp(NL;") i=1,2..N and therefore p(NL;i')=0 where i=1,2,...N for some N.Since L'DUL;
i=1,2...N peIR(o,L) and I(c*,L)=IR(c,L).

Suppose instead that L is delta and S(L)2o(L) in particuliar p(L)=0(L).Since A(L) is countably
bounded by L I(o*,L)=I(c,L).Consider u* the outer measure induced by W and its restriction to the p*-
measurable sets.Then the p*-measurable sets include o(L)and thus A(L),and p* is delta regular on such
sets by the hypotheses S(L)o>o(L) (or more particuliarly o(L)=p(L)).Since L is delta this implies that
pelR(o,L) and I(o*,L)=IR(c,L).
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Note: If I(c*,L)=IR(o,L) then IR(c,L")=IR(0,L) and pyeIR(o,L) and pyelR(o,L").Thus L and L'
is disjunctive,thus TLOL' and tL contains L and L',which implies that L is contained in the algebra of
closed-open sets determined by the topology of L on X.

Defintion 4.2: A lattice L is said to be prime complete if for any pel(c*,L) S(u)=@.

Theorem 4.4: If L is disjunctive,and W(o,L) in IR(o,L) is prime complete,then for any
pel(o*,L),there exists a p1eIR(o,L) st pspq (L).

Proof: Since L is disjunctive there exists a one to one correspondence between measures on X,L
and IR(o,L),W(o,L).Thus let pel(c*,L) then u el(6*,W(o,L)) and since W(o,L) is prime complete
S(n")#@,then there exists a {n]}eS(n") pjelR(o,L).Further if p(L)=1 LeL then
UMW (o,L))=p(L)=1,and since p1eW(o,L) p1(L)=1 therefore u<py (L) with pjelR(o,L).

Theorem 4.5: If a) L is disjunctive and W(o,L) is prime complete or alternately b) L is normal
and countably paracompact then if I(c*,L),V(o,,L) is T then I(o*,L)=IR(c,L).

Proof: Let pel(o*,L) then by hypothesis a) or b) there exists a VeIR(o,L) st u<v (L).Then since
I(c*,L),V(o,L) is Ty there exists a L', LeL st veV(o,L") pe V(o,L") which implies that p(L)=1 v(L)=0 a
contradiction unless p=v and I(c*,L)=IR(o,L).

Theorem 4.6: If I(o*,L),V(o,L) is T} then p,p1€l(c*,L) implies that if u#u1 then neither p<p
(L) or uy<p (L) holds.Conversely if neither p<pq (L) or py<p (L) p=pq holds then I(o*,L),V(o L) is
Ty.

Proof: Let p,p1€l(o*,L) p#pq.Since V(o,L) is Tq,this implies that there exists
V(o,L1),V(o,L2)eV(o,L) st pevV(o,L1") p1¢ V(o,L1") pe V(o,L2") n1eV(o,L2") or p(L1)=0 p(L1)=1
p(L2)=1 n1(L2)=0.Thus neither p<p (L) or p1<p (L) can hold.

Conversely suppose p,p1€l(o*,L) p=p1 and neither pu<pq (L) or py<p (L) holds.This implies that
there exists L1,L2eL st p(L1)=1 p(L1)=0 p(L2)=0 p1(L2)=1 or p(L1)=0 pj(L1)=1 p(L2")=1
H1(L2)=0 or peV(o,L2") p1e V(o,L2") nieV(o.L1’) pe V(o,L1") and I(o*,L),V(o,L) is TJ.

Definition 4.3: Denote by [1(o,L) the collection of premeasures that are sigma-smooth.A pre-
measure pe[I(L) is defined on L and satisfies 1) p(@)=0;2) If p(A)=1 p(B)=1 A,BeL then p(AnB)=1;3)
If p(B)=1 and ADB where A,BeL then p(A)=1.1t is sigma-smooth if {An}{@ AneL then lim p(An)=0 as
n—oo,

Definition 4.4: L is an L-lattice iff for every pe[l(o,L) there exists a peIR(o,L) st p<p (L).

Theorem 4.7: Let L be an I-lattice which is also a delta lattice and suppose I(c*,L)=IR(o,L),then
L is complemented.

Proof: Assume L is not complemented,then for some Lel L'¢ L.Consider H={L~ | L~2L',L~eL}.
Then since L is delta ,H has the countable intersection property since L'#@. Thus there exists a pe[I(o,L)
associated with H.Since L is I-lattice there exists peIR(o,L) st p<p (L).Also I(o*,L)=IR(o,L) implies
that IR(o,L)=IR(o,L").

Now if L~2L'then L~NL=@,since L'¢ L. Thus p(L)=1 since associated with 1 is an ultrafilter. But
since peIR(oL") u(L)=0, a contradiction and hence L is complemented.
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