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ABSTRACT. Known sufficient conditions for quadratic dynamical system x’= Ax + f(x) to be

point dissipative given in terms of A and f for dimensions 2 and 3 are extended to allow for

more general forms for the nonlinear term f(x). Furthermore, the conditions extend to n

dimensions when f is quadratic with zero set an (n 1)-dimensional hyperplane.

0. INTRODUCTION
We are concerned with a class of vector equations of the form x’= Ax + f(x) where the

nonlinear term f(x) is quadratic of the form

/Tc x

r(x)

xTCn x

The n )< n matrices Ci} are assumed symmetric with the orthogonality property xTf(x) O for all

x. If xTf(x) 0 for all x we say that f is a conservative function. Note that if x’ f(x) with f

conservative then Ilxll2 is constant. The problem is to determine conditions on A and f sufficient

to have the system point dissipative, i.e., which guarantee the existence of a bounded region R
with the property that every trajectory of the system eventually enters and remains within R [2].

Consider the Lyapunov function V(x) (x (x)T(x (x) for the system. For large Ilxll the

d(V(x(t)))
Therefore our quest is to find conditions onquadratic terms xTAx- aTf(x)dominate dt
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A and f for which there is an admissible tz which makes these terms a negative definite function.

If there exists an admissible o then a classic result 4 implies the system is point dissipative.

A necessary condition for the existence of an admissible t is that xTAx < 0 for each

nontrivial x in the zeros of f. We have shown for n 2 and 3 that this condition is also

sufficient. Settling the obvious conjecture for all n bogs down in a proliferation of cases.

However, we have shown in this paper that the necessary condition is sufficient for the simplest
n-dimensional case, namely, when the zeros of f form an (n 1)-dimensional hyperplane.

Finally, we extend the notion of an admissible tt to provide sufficient conditions for systems

x’= Ax + fix) + g(x) to be point dissipative when f is quadratic but not conservative and g is not

quadratic. If there is a positive definite matrix S such that Sf is conservative then a vector t is

admissible for the dynamical system x’ Ax + fix) if xTSAx tTHf(x) is a negative definite

function where HTH S. If z is an admissible vector for the system x’= Ax + f(x) then the

system x’= Ax + fix) + g(x) is point dissipative if there is an ordered triple (e, C, M) such that

-czTHg(x) < C Ilxll2- e for all x with Ilxll >_ M.
Our interest in systems of the form x’= Ax + fix) was stimulated by all of the work in the

literature based on systems of the same form originally studied by Lorenz 5 ]. We hope to

understand the richness of the class of chaotic systems, especially of dimension n > 3, by
classifying a sufficiently rich class of point dissipative systems in terms of their compact

attractors. This paper represents a step forward in that program by enlarging the class of

systems that can be first classified as point dissipative in terms of their coefficients.

1. PRELIMINARIES

The proof of the prinicipal result Theorem 3 uses some properties of skew symmetric
matrices. These are matrices such that AT -A. Here are properties that are needed.

1.1. We note that kT is in the kernel of a skew symmetric B relative to left multiplication
if and only if k is in the kernel of B relative to right multiplication. This follows since

T
T(k B) =-Bkwhen B is skew symmetric.

1.2. The rank of a skew symmetric matrix is even 3, page 217].

1.3. Again let B be an n-dimensional (n > 2) skew symmetric matrix and C be the (n 1)-

dimensional principal submatrix obtained from B by removing the first row and the first column.
If the ker(B) is nondegerate and is contained in {xlx 0 then C is singular. This follows

since k in the ker(B) implies k 0 that is k (0, k2 kn)T. Now if we project k by P
defined by Px x2 Xn)T then P is a projection from n to n dimensional vector spaces.

We note that k in the kernel of B implies that Pk is in ker(C). Since kT (0, k2 k we

have
kT B (kTB1 kTB2 kTBn

(0, pkTCI pkTCn_I (0, 0 0)

where Bj and Cj refer to the jth column of B and C, respectively.
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1.4. If the ker(B) is contained in {xlx 0 then the dim(ker(B)) < dim(ker(C)). To see

this let n be the dimension of B. We see from the proof of 3) that the dim(ker(C)) >_ dim(ker(B))

and dim(ker(C)) > 1. Suppose that dim(ker(C)) dim(ker(B)). Then rank(C) + dim(ker(C))
n and rank(B) + dim(ker(B)) n. and so rank(C) rank(B) 1. But this impossible since

the ranks of both the skew symmetric matrices B and C must be even.
Without loss of generality we can assume that the hyperplane of zeros of f is {xlx 0}.

For consider the dynamical system x’ Ax + f(x) where the zeros of f are an (n 1)-
dimensional hyperplane, call it H. Let R be a rotation so that H goes onto the hyperplane Y1
{y y 0 under R-. Let x Ry. Then the orginal dynamical system is represented by

y’= R-1 ARy + R-1 f(Ry). Note that the zeros of R-1 f(Ry) are precisely the zeros of

under the rotation R-. This is true for any rotation 1. We note that Z(R. -1 fiR.y))
R.(Z(f(x))). This applies to both R and R-.

Let x : 0 be in H. The hypothesis of our theorem requires that xoTAx < 0. Then Yo
Rx and yoT (R-1AR) Yo xoTAxo < 0 Since R has an inverse the hypotheses for the

dynamical system holds whether represented in terms of x or y.

Now assuming that Z(f) {x x 0} we notice that f has a convenient representation.
Each coordinate function of f, fk, k 1,2 n, must have {x x 0} contained in its zero set.

If we represent fk, k 1,2 n by

n n

fO,) b x.x.
j=l

ij tj

then

n n

fk(0’x2 Xn)=E E b
k

x.x.=0
i=j j=l

ij tj
for all x2, x3 xn

Therefore, bk 0 if neither nor is 1. Or

n n

fk(x)=E b Xl =Xl jlb x.
j=l

kl xj klj

and

f (x)

Xl _1 bllj x

j:l b2Xl-= lj xj

x bn
j! lj xj

=x

blll bl12-.- blln
b211 b212 b21n

bnll bnl2 bnln

X

)n n
Since xTf(x) x xTBx 0 for all xLet B denote the man’ix (b

k 1"
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n

xTf(x) "1"= bjlj xl x2j
n n

+ E E (bkl + bjlk) x xj xk 0 which is the zero polynomial having
k= j=

zero coefficients. B is skew symmetric and we drop the second subscript which is always one

and we have the representation

f(x) x

0 b12 b13 bin
-b12 0 b23 b2n

-bln -b2n -b3n 0

x
2

We use the Lyapunov function V(x)= (x )T (x a) then
d(V(x)(T)))

dt
xTAx Tf(x) +

d(V(x(t))
linear terms. For large llxll the quadratic terms xTAx otTf(x) dominate

dt
quest is find an x which turns the quadratic into a negative definite function.

therefore our

2. EXTENSION OF PREVIOUS RESULTS
A sufficient condition for a quadratic dynamical system to be point dissipative has been

given when the dimension is two or three. This condition uses a relation between the

quadratic and linear parts of the system when f is conservative. The following lemma allows

us to extend the condition to the case where there exists a positive definite matrix S such that

Sf is conservative.

Lemma 1. Let

x’ Ax + f(x) (2.
be a quadratic dynamical system for which there exists a positive definite matrix S such that Sf

is conservative. Then there exists matrix H for which the change of variables y Hx transforms

the dynamical system (2.1) into y’ By + g(y) which has a conservative quadratic term.

Furthermore, xTSAx yTBy.

Proof. We can factor S by S HTH [31. Let y I-Ix or x H-ly. The system transforms

into y’ (HAH-1)y + H f(H-y) or

y’ By + g(y) (2.2)

The system (2.2) has a conservative quadratic term since yTg(y) xTHT H f(x) xTSf(x) 0.

Note that xTSAx yT(H-I)THTHA H-ly yTHA H-ly yTBy.
When Sf is conservative then we say that a vector ct is admissible for the dynamical

system x’ Ax + fix) if- xTSAx + aT H fix) is a positive definite function where S HTH.
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When f is conservative then the condition for an admissible ct reduces to xTAx + cgTf(x)

is positive definite. The proofs of the theorems when the quadratic part of the system is

conservative entail demonstrating the existence of an admissible o for the system.

These results can be restated as follows:

Theorem 1. A quadratic dynamical system x’ Ax + f(x) is point dissipative when there exists a

positive definite matrix S such that Sf is conservative and there exists an admissible 0t. If the

system has dimension 2 or 3, Sf is conservative and zTSAz < 0 for any z which is a nontrival

zero of f then the system is point dissipative.

Proof. We can transform the dynamical system by y Hx where S HTH and by Lemma

the resulting dynamical system satisfies the hypothesis of the previous theorem. Hence, the

resulting dynamical system as well as the original system are both point dissipative.

Another direction of generalizing the past results is to consider nonlinear dynamical

systems which have nonquadratic nonlinear terms as well as quadratic terms. Relative to the

nonlinear terms there again must exits a positive definite matrix S such that the nonlinear terms

premultiplied by S are conservative.

Theorem 2. When there exists a positive definite matrix S such that Sg and the quadratic

function Sf are conservative and

Condition (A) For some admissible ot for x Ax + f(x) there exists an ordered triple of

numbers (e, C, M) such that- 0t THg(x) < C Ilxll2-e for all x with Ilxll > M.
then

x’ Ax + f(x) + g(x)
is point dissipative.

Note that condition (A) can be replaced by either of the stronger conditions (B) or (C).

Condition (B) There is an admissible 0t for x Ax + f(x) and g o x 2.

Condition (C) There is an admissible ot for x Ax + f(x) and g is bounded.

3. THE PROOF OF THE THEOREM
Theorem 3. A quadratic dynamical system x Ax + f(x), A a matrix and f a quadratic

function, is point dissipative when

and

(1) there exists a positive definite matrix S such that Sf is conservative,

(2) the zeros of f are an (n 1)-dimensional hyperplane,

(3) zTSAz < 0 for any z which is a nontrivial zero of f.

Proof. From Lemma the system can be transformed into a system which has a

conservative quadratric term. Moreover, the zero properties are preservered. So we assume

that f is conservative. We can assume that Z(f) x lx 0 and f(x) xlBx where B is
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skew symmetric as shown in Section 1.3. Since Z(f) x[ x 0 }, k in the kernel of B
implies (0, k_ kn) or that k 0. Let h be a vector which is not in the kernel of B but

(h2 hn)T is in the ker(C), see Section 1.4. Here again C is the principal submatrix of B
formed by removing the first row an colunm of B. Moreover, if the rank of C 0, we can choose h

so that h 0.

Let G x Ix h, a real number and we will show G is contained in the set of

a is in G then ctTf(x) x thTB x xl (q, 0, 0 0) x q xadmissible Note that if

since Ph is in the ker(C). Also q 0 since h is not in the ker(B). Notice that q 0 whether or

not the rank(C) 0 furthermore, we can choose so that aT f(x) > 0 for all x.

We can restrict our attention to the sphere [Ixll which is compact. There is a closed
cone on a closed cone which contains the hyperplane x x] 0 such that xTAx < 0 for all x

0 in this cone. Hence, there is an 13 > 0 such that xTAx < 0 on {x Ilxll =1 and -13 < x < 13}.
Let M max( xTAx on x Ilxll }. By picking large enough in magnitude we can assure

that tq132 > M. Hence, 0tT f(x) > tq 132 > M on {x Ilxll and Ixll > 13 }. Thus for all of x

Ilxll }, xTAx 0tT f(x) < 0. And so for all nonzero x we have that xTAx 0tTf(x) < 0 which

implies that the system is point dissipative.

This result can be generalized by adding to the differential equation any conservative

function g(x) whose growth is restricted. The corollary states this condition.

Corollary Let g and the quadratic function be conservative. If Z(f) is an (n 1)-hyperplane and

x in Z(f) implies xTA x < 0 and

Condition (A) for some admissible 0t there exists an ordered triple of numbers (13, C, M)
such that ot Tg(x) < Ilxll2-e for all x with Ilxll > M.
then

x’ Ax + f(x) + g(x)
is point dissipative.

Note that condition (A) can be replaced by either of the stronger conditions (B) or (C).

Condition (B) There is an admissible 0t for x’ Ax + fix) and II g II o II x II 2.

Condition (C) There is an admissible ot for x’ Ax + f(x) and g is bounded.

4. EXAMPLES
Consider the dynamical system

X

XlX2 + XlX3 + XlX4
2 -1 -x+ XlX3 + xIx4
-1 -3 -1

X + 2
-1 -I -3 -1 -Xl XlX2 + XlX4
-1 -1 -1 -3 2

"x 1- XlX2 XlX3

In this example the conservative quadratic function can be writen as
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f(x) Xl

0

-1 0 x=xIBx
1-10

1-10

B is a nonsingular matrix and C B11 is singular. The kernel of C is generated by (1, -1, 1).
Since B is nonsingular the zero set of f(x) is Z(f) z z (0, z2, z3, z4) x x= 0 }. The
hypothesis of the theorem hold since

0

(0, z2, z3, z4) A z3 (z2, z3, z4) AI z
3 and A

z
4

z
4

-3 -1 -1]-1 -3 -1

-1 -3

is a negative definite matrix. We can use otT (0, t,-t, t) and tx"r f(x) x 0, t,-t, t).(x2 + x3 +
X4, X + X + X4, X + X2 X4, X X2 x3)T tXl2. So the quadratic term of the Lyapunov
function is

T txT xT
2 xTx Ax- f(x) Ax-tx!xT(A-Q) x=

2-t -1 -1 -1

-1 -3 -1 -1

-1 -1 -3 -1

-1 -1 -1 -3

This quadratic function is negative definite when > 2.6. By the theorem this nonlinear quadratic

dynamical system is point dissipative.
Indeed in the example q turns out to be 1. Therefore, txTf(x) can only change the a

element of A. This turns out be just what we need and want. Because the zero set of f is {(0,
z2, z3, z4)} we must have that -AI is positive definite. If can be choosen so that det(-A +

Q) is positive then that will be enough to insure that A + Q is positive definite.

Let us choose 3 and return to the derivative of the Lyapunov function. We can set it

equal to zero and have the equation of a ellipsoid which contains the attractor of the system. The

equation is

-1 -1 -1 -1 2 -1 -1 -1

xT -1 -3 -1 -1 -1
x (0,3,-3,3)

-1 -3
x=0

-1-1-3-1 -1-1-3-1
-1 -1 -1 -3 -1 -1- -1 -3

If we use the rotation

x =Ry

0.0000 0.0300 0.9370 0.3493 ]
0.8165 0.13030 -0.2017 0.54101 X
-0.4082 0.7071 -0.2017 0.5410

-0.4082 0.7071 -0.2017 0.5410J

the above equation becomes
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-2 0 0 0

0 -2 0 0

0 0 -3+ 0

0 0 0 -3 -/’

y + (0.3330, 7.9233, 10.61307, -2.1149) y 0

or

2 2 2 2
2(x 0.16651) + 2(x

2
3.9617) + 0.3542(x

3
5.3065) + 5.6458(x

4
-1.0574) 47.7333

The distance to the center is 6.7082 and the half-diameter of the ellipsiod is 11.6070 and our

bound is the sum of these two numbers is 18.3162
Consider the dynamical system

[-4 4J [6xY2-4y2lx+ + [ 2 ye’x y]-x-yx’
-4 -6x + 4xy J -2xe

where the linear part Ax and the quadratic function

[216xy 4y

fix)
.6x

2
+ 4xy

are related by zTAz < 0 when z is a nontrival zero of f. The admissible a’s are those for which

xTAx Tf(x) is a negative definite function. This is equivalent to the matrix

2 3 +20t
2 ]3Oil + 22 41

being poistive definite. For the diagonial terms to be positive definite ot < l/,, t2 < 2/3 and for

the determiniant of the matrix to be positive

2 2
-90t + 120 t2-4tx2- 16t:t +60;2-4 >0
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-2

:::::::::::::::::::::

Figure

2

The shaded region is the set of admissible 0tT relative to A and L Now if for one of these

t’s condition (A) hold the the dynamical system is point dissipative. This is the case when
we choose oT (-1/2, 1/2)

21 e
x y 1_di,,(x) =_(,1/21 _2ye_X_, j _(x+y)e-x-y <E

and the value of the determinate is 0.75 and the diagonal elements are and 1. Here is the

graph [6 of some of the trajectories.

dx_ 4x + 4y + 6xz 4xy + 2xe
-x-y

dt-

dy
d--E 4x + y 6xy + 4yz 2ye x-l

Figure 2
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The attractor above the origin is magnified in the following Figure 3. It indicates that there

is an attractor at (-0.5, 1) surrounded by a limit cycle which is an repeller. There is also an

attractor at (0, 0) and a saddle point near (1, 2).

Figure 3
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