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ABSTRACT. For a function f, holaworphic in the open unit ball B, in C*, with f(O) = 0 we prove
(I) If0<s<2ands <p<oa Then

1
Ifiz<c IO [&If(Pt) [>*|RE(e C) |*Uogl/ P} >t p-'do(L)dp

(I) If 2<8<p<oa Then

1
Io L&INPC) [>* [RE(P L) |*(logl/ P)** p*d0(L)de < CIfI2

where Rf is the radial derivative of f, generalizing the known caeses p =s([L)and p =& n =1
(@.

KEY WRIS AND PHRASES. Radial derivative, slice function.
1991 AS SUBJECT CIASSIFICATION OOUES. 32A10.

1. INTRODUCTION

Let C* denote the n-dimensional vector space over C let B. denote the open unit ball in C* with
boundary 2B and let O denote the rotation-invariant positive measure on 2B, for which (B, =1,

Throughout this paper, we assuve that f is holavorphic in B. with f(0 =0,and RfF(® =
}:,] o |aaz™ is the radial derivative of f(@ = Z)c.z

For 0 <p<ooand 0 <8 <oq we set

¥, 0 - f [fet) |7da(e)
B
|f|p=°§"$ua0r f) and
1
Gy, oIf] = Io L;Jf(pu |>*|Rf(pE) |*(logl/ P)** p*dO(L)dP

In [1, Theorem 4 and Theorem 7} J. H Shi generalizes the inequalities of Littlewood and Paley
of one cawplex variable ([2]) to the unit ball B, That is
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TEORM A () Let 0 < p < 2. Then
1£12 < CGs »1f] w
2 Llet 2 < p <oo, Then
G plfl <CifIP @

In this notes, we generalize these results, namely, we prove the following
TERM (I) Let 0<s < 2ands < p<oca Then

|£12< CG, .[f] k]
(I) Let 2 <5 < p<oo, Then
Go oIfl <CIfi2 W

Throughout this paper C denotes a positive constant depending only on p and s The magnitude of
C may vary fram occurrence to occurrence even in the proof of the same theorem.
2 PROOF OF THE THEOREM.

For the proof of the Theorem we need the following

IIMA For 0 < p < oo, Then

1£12 = 9° G alf] ®

PROCF. For & €3B. the slice functions are defined by f ¢ (A) = f(AE), A € B, Then Rf(A &)
= AP ¢ (A),
By the Hardy Stein identity for cne cawplex variable ([3]) we have

9N

T
Ba fo) = @%2m) J’O Io [fe(pe'®) |2 |F < (pe'®) |®log(t/ p) Pdpd@

ro(2n
®*/2m) Io Io [f(pte'®) |™*|RE(pLe'®) |*P loglr/ P)dBdP

Integrating with respect to d ¢ (%), using the Fubini theorem and the formular

an
I g(8)d9(8) = 0/2m) I da(t) f ge'°6)de, g€ L (o).
R 2B 0

(see [4. P.16]), we have

r

e 0 =p* J’o

IaB.. 1£(p8) |”2|RE(PL) |20 logl/ P)dO(L)dp

®
By letting r =1 in (6), we obtain ().
Ve also need the following fact whose easy proof (by Holder’ s inequality) we amit.
For a fixed p, logG,, «If] is a convex function of s( 0 < 5 < oJ,That i, if 0 <5, < 8 < 863
<oq then
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Gp olf] <Gpolf]*Guolfl'~* m

Where t = (53 - 8 / (62 - 5)).
We now turn to the proof of the Theorem
(I)Case 1. 8<p<2 Sett=@-p/Q-9

1fi2 < CG, ,Ifl (by 1))
< CG, . lf]* Gy oIf} (by M)
< CG, .1t ne-® (by @)
50 that
I£12<CG, If]

Case 2 s <2<p Sett=0-2/0p-58

1£i2=CG, alf] (by ® )
< CGy, olfl* Gy 01" (by @)
< CG, It ifze-Y {by @)
so that
12 < CG,.[f]

This gives (.
(I) Set t=Q-68/0-2

G olf] < Gpalf)* G ol (by @)
< Cifl% Gaplfl™* (by © )
<CifIFIfize® (by @)
=Clflp

This gives ).
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