A NEW ORDERED COMPACTIFICATION

D.C. KENT

Department of Pure and Applied Mathematics Washington State University Pullman, WA 99164 and

T.A. RICHMOND

Department of Mathematics Western Kentucky University Bowling Green, KY 42101

(Received September 10, 1991 and in revised form April 11, 1992)

ABSTRACT. A new Wallman-type ordered compactification $\gamma_o X$ is constructed using maximal CZfilters (which have filter bases obtained from increasing and decreasing zero sets) as the underlying set. A necessary and sufficient condition is given for $\gamma_o X$ to coincide with the Nachbin compactification $\beta_o X$; in particular $\gamma_o X = \beta_o X$ whenever X has the discrete order. The Wallman ordered compactification $\omega_o X$ equals $\gamma_o X$ whenever X is a subspace of \mathbb{R}^n . It is shown that $\gamma_o X$ is always T_1 , but can fail to be T_1 -ordered or T_2 .

KEY WORDS AND PHRASES. CZ-set, maximal CZ-filter, T_1 -ordered space, T_2 -ordered space, Nachbin compactification, Wallman ordered compactification.

1991 AMS SUBJECT CLASSIFICATION CODES. 54F05, 54D35, 54D10

0. INTRODUCTION.

L. Nachbin [10] initiated the study of ordered compactifications when he characterized the topological ordered spaces that allow T_2 -ordered compactifications (we call these $T_{3.5}$ -ordered spaces), and constructed the largest such T_2 -ordered compactification $\beta_o X$ by embedding X in an ordered cube. The Nachbin (or Stone-Čech ordered) compactification $\beta_o X$ has been studied and applied by various authors (see, for instance, our odd numbered references). A second ordered (but not necessarily T_2 -ordered) compactification $\omega_o X$, called the Wallman ordered compactification, was introduced by Choe and Park [2]. A necessary and sufficient condition for $\omega_o X = \beta_o X$ was given in [6], and in [8] the separation properties of $\omega_o X$ were investigated.

It is well known (e.g., see [4]) that the Stone-Čech compactification βX of a $T_{3.5}$ topological space can be described as a Wallman-type compactification using maximal filters of zero sets as the underlying set for the compactification. We have extended this construction to $T_{3.5}$ -ordered spaces, and the result is a new ordered compactification which we call $\gamma_o X$. This new compactification, like $\beta_o X$ and $\omega_o X$, has the universal extension property for increasing, continuous maps into compact, T_2 -ordered spaces. With the help of this universal property, we obtain necessary and sufficient conditions for $\gamma_o X = \beta_o X$; in particular this equality holds when the order of X is discrete. As an alternative approach to constructing $\beta_o X$, $\gamma_o X$ is more satisfactory than $\omega_o X$, in the sense that $\gamma_o X$ and $\beta_o X$ coincide on a larger class of spaces than do $\omega_o X$ and $\beta_o X$. Although we have not yet characterized the class of spaces for which $\gamma_o X = \omega_o X$, we have shown that this class includes all subspaces of \mathbb{R}^n . This result enables us to show that $\gamma_o X$ can exhibit the same "pathological" behavior relative to separation properties that was demonstrated for $\omega_o X$ in [8]. For example, $\gamma_o X$ fails to be T_1 -ordered if $X = \mathbb{R}^n$ for $n \geq 3$.

It remains an open question whether $\beta_o X$ can be described via a Wallman-type ordered compactification for all $T_{3.5}$ -ordered spaces X.

1. PRELIMINARIES.

Let (X, \leq) be a poset and let A be a non-empty subset of X. Let $d(A) = \{x \in X : x \leq a \text{ for some } a \in A\}$ and $i(A) = \{x \in X : a \leq x \text{ for some } a \in A\}$, in case $A = \{x\}$, we write d(x) and i(x) rather than $d(\{x\})$ and $i(\{x\})$. The set A is said to be decreasing (respectively, increasing) if A = d(A) (respectively, A = i(A)). A set which is either increasing or decreasing is said to be monotone; if $A = d(A) \cap i(A)$, then A is convez. If $f : (X, \leq) \to (Y, \leq)$ is a function between two posets, then f is increasing (respectively, decreasing) if $x \leq y$ in X implies $f(x) \leq f(y)$ (respectively, $f(y) \leq f(x)$) in Y.

A topological ordered space (X, \leq, r) is a triple consisting of a poset (X, \leq) and a convex topology r on X; r is convex if the open monotone sets form an open subbase. The term space will always mean topological ordered space, and (X, \leq, r) will be shortened to X when there is no ambiguity. Note that every topological space can be regarded as a topological ordered space relative to the discrete order (equality).

Let *E* be the space [0,1] with its usual order and topology. For an arbitrary space *X* we denote by $CI^*(X)$ (respectively, $CD^*(X)$) the set of all increasing (respectively, decreasing), continuous maps from *X* into *E*. An increasing zero set (respectively, decreasing zero set) is a set of the form $f^{-1}(0)$ where $f \in CD^*(X)$ (respectively, $f \in CI^*(X)$). The set of all increasing zero sets (respectively, decreasing zero sets) on *X* will be designated by IZ(X) (respectively, DZ(X)). Using standard procedures described in [4], one easily proves the next two propositions.

PROPOSITION 1.1 If X is a space, $f \in CI^*(X)$, $g \in CD^*(X)$, and $a \in E$, then: (a) $f^{-1}([0,a]) \in DZ(X)$; (b) $f^{-1}([a,1]) \in IZ(X)$; (c) $g^{-1}([0,a]) \in IZ(X)$, and (d) $g^{-1}([a,1]) \in DZ(X)$.

PROPOSITION 1.2 For any space X, IZ(X) and DZ(X) are closed under countable intersections and finite unions.

A subset A of a space X is called a C-zero set (or CZ-set) if there is $B \in IZ(X)$ and $C \in DZ(X)$ such that $A = B \cap C$. Let CZ(X) be the set of all CZ-sets on X. One easily verifies the following.

PROPOSITION 1.3 (a) $A \in CZ(X)$ iff there is $g \in CI^*(X)$ and $h \in CD^*(X)$ such that $A = f^{-1}(0)$, where $f = \frac{1}{2}(g+h)$. (b) The set CZ(X) is closed under countable intersections.

It is generally not true that CZ(X) is closed under finite unions; for instance, [0,1] and [2,3] are CZ-sets in R whose union is not a CZ-set.

By a filter \mathcal{F} on X, we always mean a proper set filter (one that does not contain \emptyset). The filter on X generated by $\{x\}$, for $x \in X$, will be denoted by \dot{x} . If a filter \mathcal{F} has a filter base of increasing zero sets, then \mathcal{F} is called an *IZ-filter*; *DZ-filter* and *CZ-filter* are defined similarly. For an arbitrary filter \mathcal{F} on X, let $IZ(\mathcal{F})$ (respectively, $DZ(\mathcal{F})$, $CZ(\mathcal{F})$) be the filter on X generated by $\mathcal{F} \cap IZ(X)$ (respectively, $\mathcal{F} \cap DZ(X)$, $\mathcal{F} \cap CZ(X)$). Note that $IZ(\mathcal{F})$ (respectively, $DZ(\mathcal{F})$, $CZ(\mathcal{F})$) is the finest *IZ*filter (respectively, DZ-filter, CZ-filter) coarser than \mathcal{F} . The next proposition follows from Zorn's Lemma.

PROPOSITION 1.4 If \mathcal{F} is a CZ-filter (respectively, IZ-filter, $\mathbb{D}Z$ -filter), there is a maximal CZ-filter (respectively, IZ-filter, DZ-filter) finer than \mathcal{F} .

PROPOSITION 1.5 Let X, Y be spaces and $f: X \to Y$ an increasing, continuous map. (a) If $A \in IZ(Y)$ (respectively, $A \in DZ(Y)$, $A \in CZ(Y)$), then $f^{-1}(A) \in IZ(X)$ (respectively, $f^{-1}(A) \in DZ(X)$, $f^{-1}(A) \in CZ(X)$).

(b) If \mathcal{F} is a filter on X, then $IZ(f(\mathcal{F})) \leq f(IZ(\mathcal{F})), DZ(f(\mathcal{F})) \leq f(DZ(\mathcal{F})), \text{ and } CZ(f(\mathcal{F})) \leq f(CZ(\mathcal{F})).$

PROOF. (a) If $A \in IZ(Y)$, then $A = g^{-1}(0)$, for $g \in CD^*(Y)$. Then $f^{-1}(A) = (g \circ f)^{-1}(0)$, where $g \circ f \in CD^*(X)$, and so $f^{-1}(A) \in IZ(X)$. The other cases are similar. (b) follows easily from (a).

A space X is defined to be T_1 -ordered if, for each $x \in X$, i(x) and d(x) are closed sets. A space X is T_2 -ordered if, whenever $x \not\leq y$ in X, there is an increasing neighborhood U of x and a decreasing neighborhood V of y such that $U \cap V = \emptyset$; equivalently, (X, \leq, τ) is T_2 -ordered if the order \leq is a closed subset of X × X. A space X is $T_{3.5}$ -ordered if it satisfies the following conditions: (1) If $x \in X$, A is a closed subset of X, and $x \notin A$, then there is $f \in CI^*(X)$ and $g \in CD^*(X)$ such that f(x) = g(x) = 0 and $f(y) \lor g(y) = 1$ for $y \in A$; (2) If $x \nleq y$ in X, there is an $f \in CI^*(X)$ such that f(y) = 0 and f(x) = 1. The $T_{3.5}$ -ordered spaces are precisely the subspaces of compact, T_2 -ordered spaces (see [10]). A space X is defined to be T_4 -ordered if it is T_1 -ordered and, whenever A and B are disjoint closed subsets with A decreasing and B increasing, there are disjoint open sets U and V, the former decreasing, the latter increasing, such that $A \subseteq U$ and $B \subseteq V$. Note that: compact and T_2 -ordered $\Rightarrow T_4$ -ordered $\Rightarrow T_3.5$ -ordered $\Rightarrow T_1$. ordered $\Rightarrow T_1$, T_2 -ordered $\Rightarrow T_4$.

In the remainder of this section we examine some properties of $T_{3.5}$ -ordered spaces, with special emphasis on the role played by CZ-sets.

PROPOSITION 1.6 Let X be a $T_{3.5}$ -ordered space. Let $x \in X$, and let $\mathcal{V}(x)$ be the filter of neighborhoods of x.

- (a) $\mathcal{V}(x) = CZ(\mathcal{V}(x))$
- (b) $\mathcal{V}(x)$ has an open base of sets of the form $(X-A) \cap (X-B)$, where $A \in CZ(X)$ and $B \in DZ(X)$.
- (c) CZ(X) is a closed subbase for X.
- (d) If \mathcal{F} is a filter on X such that $\mathcal{F} \to x$, then $CZ(\mathcal{F}) \to x$.

PROOF. (a) Let V be an open neighborhood of x. Then there are $f \in CI^*(X)$ and $g \in CD^*(X)$ such that f(x) = g(x) = 0 and $f(y) \lor g(y) = 1$ if $y \in X - V$. Then $f^{-1}([0, \frac{1}{2}]) \cap g^{-1}([0, \frac{1}{2}])$ is a CZ-set neighborhood of x which is a subset of V.

(b) Let f,g, and V be as in the proof of (a). If $B = f^{-1}(1)$ and $A = g^{-1}(1)$, then $A \in DZ(X)$, $B \in IZ(X)$, and $x \in (X - A) \cap (X - B) \subseteq V$.

(c) and (d) follow immediately from (b) and (a), respectively.

PROPOSITION 1.7 In a $T_{3.5}$ -ordered space X, the following statements are equivalent: (a) $x \le y$; (b) $IZ(\dot{x}) \le \dot{y}$; (c) $DZ(\dot{y}) \le \dot{x}$.

PROOF. It is obvious that $(a) \Rightarrow (b)$. To show $(b) \Rightarrow (a)$, suppose y is in each member of IZ(X) containing x, but $x \not\leq y$. Then there is $f \in CI^*(X)$ such that f(y) = 0 and f(x) = 1. Thus $y \notin f^{-1}(1)$, but $f^{-1}(1)$ is a member of IZ(X) containing x. This establishes that $(a) \Leftrightarrow (b)$, and $(c) \Leftrightarrow (a)$ follows by a dual argument.

In the next section we shall construct a compactification based on maximal CZ-filters. The next two propositions will be useful in this endeavor.

PROPOSITION 1.8 If X is a $T_{3,5}$ -ordered space and $x \in X$, the $CZ(\dot{x})$ is the unique maximal CZ-filter on X coarser than \dot{x} .

PROOF. We already know that $CZ(\dot{x})$ is the finest CZ-filter coarser than \dot{x} . Suppose \mathcal{G} is a CZ-filter and $CZ(\dot{x}) < \mathcal{G}$. Then there is a CZ-set $G \in \mathcal{G}$ such that $x \in X - G$. By Proposition 1.6(a), there is a CZ-neighborhood H of x such that $H \subseteq X - G$. Since $H \in CZ(\dot{x})$, the assumption that $CZ(\dot{x}) < \mathcal{G}$ is contradicted, and it follows that $CZ(\dot{x})$ is a maximal CZ-filter. It is obviously the only maximal CZ-filter coarser than \dot{x} .

PROPOSITION 1.9 Let $f: X \to Y$ be a continuous, increasing map, where X is $T_{3.5}$ -ordered and Y is compact and T_2 -ordered. If M is a maximal CZ-filter on X, there is a unique point $y_M \in Y$ such that $f(M) \to y_M$ in Y.

PROOF. Let \mathcal{F} be an ultrafilter on X such that $M \leq \mathcal{F}$. Since Y is compact and T_2 , there is a unique point y_M in Y such that $f(\mathcal{F}) \to y_M$. Because M is a maximal CZ-filter, $CZ(\mathcal{F}) \leq M$, and $f(M) \geq f(CZ(\mathcal{F})) \geq CZ(f(\mathcal{F}))$ follows by Proposition 1.5. But $f(\mathcal{F}) \to y_M$ implies $CZ(f(\mathcal{F})) \to y_M$ by Proposition 1.6(d), and therefore $f(M) \to y_M$.

2. THE COMPACTIFICATION $\gamma_o X$

Throughout this section, we assume that X is a $T_{3.5}$ -ordered space. An ordered compactification (Y, σ) of X is a pair consisting of a compact space Y and a map $\sigma : X \to Y$ such that σ is both a topological and an order embedding of X into Y such that $\sigma(X)$ is dense in Y. In this section, we shall construct an ordered compactification $(\gamma_{\sigma}X, \psi)$ of X and establish some of its basic properties.

Let \tilde{X} be the set of all maximal CZ-filters on X. By Proposition 1.8, these include all filters of the form $CZ(\dot{x})$, where $x \in X$. A relation \lesssim on \tilde{X} is defined as follows: If $\mathcal{M}, \mathcal{N} \in \tilde{X}$, then $\mathcal{M} \lesssim \mathcal{N}$ iff $IZ(\mathcal{M}) \leq \mathcal{N}$ and $DZ(\mathcal{N}) \leq \mathcal{M}$.

PROPOSITION 2.1 (\tilde{X}, \lesssim) is a poset.

PROOF. It is clear that \leq is reflexive and transitive. If $M \leq N$ and $N \leq M$, then $IZ(N) \leq M$ and $DZ(N) \leq M$. Since N is a CZ-filter, $IZ(N) \vee DZ(N) = N$, and so $N \leq M$. It is also true that $IZ(M) \leq N$ and $IZ(N) \leq M$; therefore $M \leq N$, and we conclude that M = N.

PROPOSITION 2.2 $x \le y$ in X iff $CZ(\dot{x}) \lesssim CZ(\dot{y})$ in \tilde{X} .

PROOF. If $x \leq y$, then by Proposition 1.7, $IZ(\dot{x}) = IZ(CZ(\dot{x})) \leq \dot{y}$, which implies $IZ(CZ(\dot{x})) \leq CZ(\dot{y})$. Likewise, $DZ(\dot{y}) \leq \dot{x}$, which implies $DZ(CZ(\dot{y})) \leq CZ(\dot{x})$. Thus $CZ(\dot{x}) \leq CZ(\dot{y})$. This reasoning is reversible.

For an arbitrary, non-empty subset A of X, we define $\tilde{A} = \{M \in \tilde{X} : A \in M\}$.

PROPOSITION 2.3 Let $A, B \in CZ(X)$.

- (a) $\tilde{A} \cap \tilde{B} = A \cap B$.
- (b) $\tilde{A} \cup \tilde{B} = A \widetilde{\cup} B$.
- (c) $\tilde{X} \tilde{A} = X A$.
- (d) If $A \in IZ(X)$, then \tilde{A} is an increasing set in \tilde{X} .
- (e) If $A \in DZ(X)$, then \tilde{A} is a decreasing set in \tilde{X} .

PROOF. All of the assertions of this proposition are routine, and we shall verify only (d). If $\mathcal{M} \in \tilde{A}$ and $\mathcal{M} \lesssim \mathcal{N}$, then $IZ(\mathcal{M}) \leq \mathcal{N}$. Since $A \in \mathcal{M}$ and $A \in IZ(\mathcal{X})$, $A \in IZ(\mathcal{M})$, and so $A \in \mathcal{N}$. Thus $\mathcal{N} \in \tilde{A}$, and \tilde{A} is an increasing set.

We next define $\psi : X \to \tilde{X}$ by $\psi(x) = CZ(\dot{x})$, for all $x \in X$. By Proposition 2.2, ψ is an order embedding of X in \tilde{X} . We omit the routine proof of the next proposition.

PROPOSITION 2.4 (a) For any $A \subseteq X$, $\psi^{-1}(\tilde{A}) \subseteq A$. (b) If $A \in CZ(X)$, then $\psi^{-1}(\tilde{A}) = A$ and $\psi^{-1}(\tilde{X} - A) = X - A$. Let $\tilde{\tau}$ be the topology on \tilde{X} with closed subbase $\{\tilde{A} : A \in CZ(X)\}$. From the two preceding propositions, it follows that $\tilde{\tau}$ has an open subbase of monotone open sets; thus $(\tilde{X}, \leq, \tilde{\tau})$ is a topological ordered space. Let $\gamma_o X = (\tilde{X}, \leq, \tilde{\tau})$.

THEOREM 2.5 For any T_{35} -ordered space X, $(\gamma_o X, \psi)$ is an ordered compactification for X whose topology is T_1 .

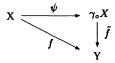
PROOF. First note that $\psi: X \to \gamma_o X$ is a topological embedding by Propositions 1.6(c) and 2.4(b); ψ is also an order embedding, as we observed previously.

To show that $\gamma_o X$ is compact, it is sufficient to show that any collection $C = \{\tilde{A}_i : A_i \in CZ(X), i \in I\}$ of subbasic closed sets in $\gamma_o X$ with the finite intersection property has a non-empty intersection. If $A = \{A_i : i \in I\}$, then A has the finite intersection property by Proposition 2.3(a). Let M be any maximal CZ-filter containing A; then $M \in \bigcap C$.

To show that γX_o is T_1 , let \mathcal{M}, \mathcal{N} be two distinct maximal CZ-filters on X. Then there are disjoint CZ-sets $M \in \mathcal{M}$ and $N \in \mathcal{N}$. It follows that $\widetilde{X - N}$ is a neighborhood of \mathcal{M} not containing \mathcal{N} , and $\widetilde{X - M}$ is a neighborhood of \mathcal{N} not containing \mathcal{M} .

Finally, if $\mathcal{M} \in \tilde{X}$, then $\psi(\mathcal{M})$ converges to \mathcal{M} in $\gamma_o X$, and therefore $\psi(X)$ is dense in $\gamma_o X$. The next theorem shows that $\gamma_o X$ has the same universal extension property as $\omega_o X$ and $\beta_o X$.

THEOREM 2.6 Let X be a $T_{3.5}$ -ordered space, Y a compact, T_2 -ordered space, and $f: X \to Y$ be a continuous, increasing map. Then there is a unique continuous, increasing map $\tilde{f}: \gamma_o X \to Y$ such that the diagram below commutes.



PROOF. Let $\tilde{f}: \gamma_o X \to Y$ be defined by $\tilde{f}(\mathcal{M}) = y_{\mathcal{M}}$, where $y_{\mathcal{M}}$ is defined in Proposition 1.9. We first show that \tilde{f} is increasing. Let $\mathcal{M} \lesssim \mathcal{N}$ in \tilde{X} ; then $DZ(\mathcal{N}) \leq \mathcal{M}$.

Suppose $y_{\mathcal{M}} \not\leq y_{\mathcal{N}}$ in Y. Then there is $g \in CI^{*}(Y)$ such that $g(y_{\mathcal{N}}) = 1$ and $g(y_{\mathcal{N}}) = 0$. Thus $y_{\mathcal{N}} \in g^{-1}([0, \frac{1}{3}]) \in DZ(f(\mathcal{N}))$, since $f(\mathcal{N}) \to y_{\mathcal{N}}$ in Y. But $g^{-1}([\frac{2}{3}, 1]) \in f(\mathcal{M})$, since $f(\mathcal{M}) \to y_{\mathcal{M}}$, and therefore $f(\mathcal{M}) \not\geq DZ(f(\mathcal{N}))$. However, $DZ(\mathcal{N}) \leq \mathcal{M}$ implies $DZ(f(\mathcal{N})) \leq f(DZ(\mathcal{N})) \leq f(\mathcal{M})$ follows by Proposition 1.5. This contradiction establishes that $y_{\mathcal{M}} \leq y_{\mathcal{N}}$, and so \tilde{f} is increasing.

We next show that \tilde{f} is continuous. Let $M \in \gamma_o X$ and let A be a CZ-neighborhood of y_M in Y. From the fact that $f(M) \to y_M$, we deduce that $M \in f^{-1}(A)$, and it is easy to see that $\tilde{f}(f^{-1}(A)) \subseteq A$. It remains to show that $f^{-1}(A)$ is a neighborhood of M in $\gamma_o X$. For this purpose, we employ Proposition 1.6(b) to obtain $C \in DZ(Y)$ and $D \in IZ(Y)$ such that $y_M \in (Y - C) \cap (Y - D) \subseteq A$. Since $(Y - C) \cap (Y - D) \in f(M)$, it follows that $M \in (\tilde{X} - f^{-1}(C)) \cap (\tilde{X} - f^{-1}(D))$. The latter set is open in $\gamma_o X$ and a subset of $f^{-1}(A)$. This establishes that $f^{-1}(A)$ is a neighborhood of M which maps into A, and the proof is complete.

THEOREM 2.7 Let X be $T_{3.5}$ -ordered. Then $\gamma_o X = \beta_o X$ iff the following conditions hold:

- (1) If $M \in IZ(X)$, $N \in CZ(X)$, and $M \cap N = \emptyset$, then there is $h \in CI^*(X)$ such that h(N) = 0 and h(M) = 1.
- (2) If $M \in DZ(X)$, $N \in CZ(X)$, and $M \cap N = \emptyset$, then there is $h \in CD^*(X)$ such that h(M) = 0 and h(N) = 1.

PROOF. Since $\beta_o X$ is the largest T_2 -ordered compactification of X. Theorem 2.6 implies that $\gamma_o X = \beta_o X$ iff $\gamma_o X$ is T_2 -ordered. Thus the proof will be achieved by showing that the specified conditions are necessary and sufficient in order for $\gamma_o X$ to be T_2 -ordered.

Assume that $\gamma_o X$ is T_2 -ordered and let M and N be as indicated in (1). By Proposition 2.3(a), $\tilde{M} \cap \tilde{N} = \emptyset$, and \tilde{M} and \tilde{N} are both closed subsets of $\gamma_o X$. Furthermore, \tilde{M} is increasing in $\gamma_o X$ by Proposition 2.3(d). Let $d(\tilde{N})$ denote the decreasing hull of \tilde{N} in $\gamma_o X$. Then $d(\tilde{N})$ is closed by Proposition 4, page 44, [10], and $d(\tilde{N}) \cap \tilde{M} = \emptyset$. By Theorem 1, page 30, [10], there is g in $CI^*(\gamma_o X)$ such that g(M) = 0if $M \in d(\tilde{N})$ and g(M) = 1 if $M \in \tilde{M}$. Setting $h = g \circ \psi$, we obtain (1). A similar argument establishes (2).

Conversely, assume the two conditions, and let \mathcal{M}, \mathcal{N} be elements of $\gamma_0 X$ such that $\mathcal{M} \nleq \mathcal{N}$. Then either $IZ(\mathcal{M}) \nleq \mathcal{N}$ or $DZ(\mathcal{N}) \nleq \mathcal{M}$. If $IZ(\mathcal{M}) \nleq \mathcal{N}$, then (because \mathcal{N} is a maximal CZ-filter) there is $\mathcal{M} \in IZ(\mathcal{M})$ and a CZ-set $\mathcal{N} \in \mathcal{N}$ such that $\mathcal{M} \cap \mathcal{N} = \emptyset$. If h is as stated in (1), then $h^{-1}(\widetilde{([0, \frac{1}{2}))})$ and $h^{-1}(\widetilde{((\frac{1}{2}, 1])})$ are disjoint open neighborhoods of \mathcal{N} and \mathcal{M} respectively, the former decreasing and the latter increasing. If $DZ(\mathcal{N}) \nleq \mathcal{M}$, we can apply (2) to achieve the same result.

If X has the discrete order, conditions (1) and (2) of Theorem 2.7 reduce to the statement that disjoint zero sets in X are "completely separated" in the sense of [4]. Since this is true for any $T_{3.5}$ space, we conclude that $\gamma_o X = \beta_o X = \beta X$ whenever X is a $T_{3.5}$ -ordered space with the discrete order.

As we shall see in the next section, there are simple examples of $T_{3.5}$ -ordered spaces for which $\gamma_o X$ is not T_2 -ordered. In this case, we may be interested to know when $\gamma_o X$ satisfies the weaker separation properties " T_2 " or " T_1 -ordered". This section concludes with two theorems pertaining to this problem. Examples showing that $\gamma_o X$ need not satisfy these latter separation axioms are also provided in the next section.

THEOREM 2.8 Let X be a $T_{3.5}$ -ordered space. Then $\gamma_o X$ is T_2 iff, for each ultrafilter \mathcal{F} on X, there is a unique maximal CZ-filter \mathcal{M} on X such that $CZ(\mathcal{F}) \leq \mathcal{M}$.

PROOF. Assume $\gamma_o X$ is T_2 and let \mathcal{F} be an ultrafilter on X. Then $\psi(\mathcal{F})$ converges to some $\mathcal{M} \in \gamma_o X$, where \mathcal{M} is a maximal CZ-filter on X. It must be true that $CZ(\mathcal{F}) \leq \mathcal{M}$; otherwise \mathcal{M} and $CZ(\mathcal{F})$ would contain disjoint CZ-sets \mathcal{M} and \mathcal{A} , and $\widetilde{X-A}$ would be a neighborhood of \mathcal{M} in $\gamma_o X$ not belonging to $\psi(\mathcal{F})$. If there were another maximal CZ-filter \mathcal{N} finer than $CZ(\mathcal{F})$, then $\psi(\mathcal{F})$ would also converge to \mathcal{N} in $\gamma_o X$, contradicting the assumption that $\gamma_o X$ is T_2 . Thus \mathcal{M} is the unique maximal CZ-filter such that $CZ(\mathcal{F}) \leq \mathcal{M}$.

Conversely, assume that $\gamma_o X$ is not T_2 ; then there is a filter \mathcal{A} on $\gamma_o X$ converging to distinct elements \mathcal{M} and \mathcal{N} in $\gamma_o X$. Let \mathcal{F} be an ultrafilter on X containing the filter base $\{A \subseteq X : \tilde{A} \in \mathcal{A}\}$. One easily verifies that $\psi(\mathcal{F})$ converges to both \mathcal{M} and \mathcal{N} in $\gamma_o X$. This implies, as in the preceding paragraph, that \mathcal{M} and \mathcal{N} are both maximal CZ-filters finer than $CZ(\mathcal{F})$, which contradicts the uniqueness condition.

THEOREM 2.9 Let X be a $T_{3.5}$ -ordered space such that, for each $A \in CZ(X)$, $i(A) \in IZ(X)$ and $d(A) \in DZ(X)$. Then $\gamma_o X$ is T_1 -ordered.

PROOF. For $S \subseteq \gamma_o X$, let $i_{\gamma}(S)$ denote the increasing hull of S and $cl_{\gamma}S$ the closure of S in $\gamma_o X$. We will show that for arbitrary $\mathcal{M} \in \gamma_o X$, that $cl_{\gamma}(i_{\gamma}(\mathcal{M})) = i_{\gamma}(\mathcal{M})$, and hence $i_{\gamma}(\mathcal{M})$ is closed in $\gamma_o X$. The dual argument establishes that $d_{\gamma} \mathcal{M}$ is also closed.

First, observe that if $\mathcal{N} \in cl_{\gamma}(i_{\gamma}(\mathcal{M}))$, then for each $A \in CZ(X)$ such that $\mathcal{N} \in X - A$, there is $\mathcal{N} \in i_{\gamma}(\mathcal{M})$ such that $\mathcal{N} \in X - A$. In other words, if $\mathcal{N} \in cl_{\gamma}(i_{\gamma}(\mathcal{M}))$, then for each $A \in CZ(X)$ such that $A \notin \mathcal{N}$, there is $\mathcal{N} \in \gamma_{o}X$ such that $\mathcal{M} \lesssim \mathcal{N}$ and $A \notin \mathcal{N}$.

Let $\mathcal{N} \in cl_{\gamma}(i_{\gamma}(\mathcal{M}))$. If $\mathcal{N} \notin i_{\gamma}(\mathcal{M})$, then $\mathcal{M} \not\lesssim \mathcal{N}$, and so either $IZ(\mathcal{M}) \not\leq \mathcal{N}$ or $DZ(\mathcal{N}) \not\leq \mathcal{M}$. Assume the former; then there is $\mathcal{M} \in \mathcal{M} \cap IZ(\mathcal{X})$ such that $\mathcal{M} \notin \mathcal{N}$. But $\mathcal{N} \in cl_{\gamma}(i_{\gamma}(\mathcal{M}))$ implies there is $\mathcal{N} \in i_{\gamma}(\mathcal{M})$ such that $\mathcal{M} \notin \mathcal{N}$. However $\mathcal{M} \lesssim \mathcal{N}$ implies $IZ(\mathcal{M}) \leq \mathcal{N}$, a contradiction. On the other hand, suppose $DZ(\mathcal{N}) \not\leq \mathcal{M}$. Since \mathcal{M} is a maximal CZ-filter, there is a CZ-set $\mathcal{M} \in \mathcal{M}$ and $\mathcal{N} \in \mathcal{N} \cap DZ(\mathcal{X})$ such that $\mathcal{M} \cap \mathcal{N} = \emptyset$, and hence $\mathcal{N} \cap i(\mathcal{M}) = \emptyset$. But by assumption, $i(\mathcal{M}) \in IZ(\mathcal{X})$, and so $i(\mathcal{M}) \in IZ(\mathcal{M})$. Again, $\mathcal{N} \in cl_{\gamma}(i_{\gamma}(\mathcal{M}))$ implies there is $\mathcal{N} \gtrsim \mathcal{M}$ such that $i(\mathcal{M}) \notin \mathcal{N}$. However $i(\mathcal{M}) \in IZ(\mathcal{M}) \leq \mathcal{N}$ is again a contradiction. We therefore conclude that $i_{\gamma}(\mathcal{M})$ is closed in $\gamma_{\rho} \mathcal{X}$.

3. $\gamma_o X$ AND $\omega_o X$

The Wallman ordered compactification $(\omega_o X, \varphi)$ of a T_1 -ordered space X was introduced by Choe and Park [2] in 1979. In this section we find conditions under which $\gamma_o X = \omega_o X$; this leads to examples showing that $\gamma_o X$ can fail, in various ways, to preserve the separation properties T_2 , T_2 -ordered, and T_1 -ordered.

The construction of $\omega_o X$ and a discussion of its properties can be found in [8]. Here, we review only a few relevant facts. Although $\gamma_o X$ can be defined for any T_1 -ordered space X, we shall assume, as in the preceding section, that X is $T_{3.5}$ -ordered, since it is only for such spaces that $\gamma_o X$ and $\omega_o X$ can be compared.

If A is any non-empty subset of X, let I(A) denote the smallest closed, increasing set containing A and D(A) the smallest closed, decreasing overset of A. A is said to be a *c-set* if $A = I(A) \cap D(A)$. A space X is called a *c-space* if, for every *c*-set $A \subseteq X$, i(A) = I(A) and d(A) = D(A). A filter on X with a base of *c*-sets is called a *c*-filter. The underlying set for $\omega_o X$ is the set of all maximal *c*-filters on X. Indeed, the constructions of $\omega_o X$ and $\gamma_o X$ are very similar, with the *c*-sets playing the same role in the former that the *CZ*-sets play in the latter. In particular, if every *c*-set in X is a *CZ*-set, then $\omega_o X = \gamma_o X$. Thus the following proposition is obvious.

PROPOSITION 3.1 If every increasing closed set in X is in IZ(X) and every decreasing closed set in X is in DZ(X), then $\omega_0 X = \gamma_0 X$.

Another useful fact, proved in [6], is the following.

PROPOSITION 3.2 A space X has the property that $\omega_o X = \beta_o X$ iff X is a T₄-ordered c-space.

THEOREM 3.3 If X is a T₄-ordered space such that, for any sets F, G in CZ(X), $I(F) \cap G = \emptyset$ implies $I(F) \cap D(G) = \emptyset$ and dually, then $\gamma_o X = \beta_o X$.

PROOF. We show that, under the given assumptions, X satisfies conditions (1) and (2) of Theorem 2.7. To verify (1), let $M \in IZ(X)$ and $N \in CZ(X)$ be disjoint. Since I(M) = M, it follows by our assumption that $M \cap D(G) = \emptyset$. Thus we can apply Nachbin's generalization of Urysohn's Lemma (see Theorem 1, page 30, [10]) to obtain $f \in CI^*(X)$ such that f(M) = 1 and f(D(G)) = 0. This establishes condition (1); the proof of (2) is similar.

COROLLARY 3.4 If X is a $T_{3.5}$ -ordered space such that $\omega_o X = \beta_o X$, then $\omega_o X = \gamma_o X$.

PROOF. If $\omega_o X = \beta_o X$, then, by Proposition 3.2, X is a T₄-ordered c-space. Every such space clearly satisfies the requirements of Theorem 3.3, and so the conclusion follows.

A T_2 -ordered space whose underlying partial order is a total (or linear) order is called a *totally ordered* space. It is shown in [7] that $\omega_o X = \beta_o X$ for any totally ordered space X.

COROLLARY 3.5 If X is a totally ordered space, then $\omega_o X = \gamma_o X = \beta_o X$.

THEOREM 3.6 Let X be a subspace of R^n . Then $\gamma_o X = \omega_o X$.

PROOF. In view of Proposition 3.1, it is sufficient to show that each closed, decreasing subset of X is in DZ(X) and each closed, increasing subset of X is in IZ(X).

We begin by defining (in the terminology of [3]) a quasi-pseudo-metric ρ on X defined as iollows: If $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n)$, then $\rho(x, y) = (y_1 - x_1) \vee 0 + \dots + (y_n - x_n) \vee 0$. If A is a non-empty, closed, decreasing subset of X, we define $\rho_A : X \to [0, \infty)$ as follows: $\rho_A(x) = \inf\{\rho(y, x) : y \in A\}$. Finally, let $h_A : X \to E$ be defined by $h_A = \rho_A \wedge 1$. It follows that $h_A \in CI^*(X)$ and $h_A^{-1}(0) = A$. Thus $A \in DZ(X)$. The dual argument shows that any closed, increasing subset of X is in IZ(X).

It is shown in Theorem 3.4 of [8] that $\omega_o R^n = \beta_o R^n$ iff $n \leq 2$; this yields the following consequence of Theorem 3.6.

COROLLARY 3.7 $\gamma_o R^n = \beta_o R^n$ iff $n \leq 2$.

We recall two examples from [8] involving subspaces of R^2 in which $\omega_o X$, and hence also $\gamma_o X$, fail to exhibit basic separation properties. Let $S = \{(x, y) : -1 \le x \le 1, -1 \le y \le 1\}$ be a subspace of R^2 . In Example 3.6 of [8], the subspace $X_1 = S - \{(0, 0)\}$ of R^2 has the property that $\gamma_o X_1$ is neither T_1 -ordered nor T_2 . In Example 3.7 of [8], the subspace $X_2 = S - \{(0, y) : -1 \le y \le 1 \text{ and } y \ne 0\}$ has the property that $\gamma_o X_2$ is T_2 but not T_1 -ordered. We do not know of a space X for which $\gamma_o X$ is T_1 -ordered but not T_2 .

As a final example, recall that if X is a $T_{3.5}$ -ordered space with the discrete order, then $\gamma_o X = \beta_o X$. If, in addition, X is chosen not to be T_4 , then $\omega_o X$ (which in this case is the ordinary Wallman compactification) fails to be T_2 , and consequently $\omega_o X \neq \gamma_o X$.

4. UNSOLVED PROBLEMS.

- (1) Find necessary and sufficient conditions on a space X for $\gamma_o X$ to be T_1 -ordered.
- (2) Find conditions on a space X which are necessary and sufficient for $\gamma_o X = \omega_o X$.
- (3) Determine whether $\gamma_0 R^3$ is T_2 .
- (4) Find a T_{3.5}-ordered space X for which $\omega_o X$, $\beta_o X$, and $\gamma_o X$ are mutually non-equivalent.
- (5) Determine whether $\beta_o X$ can be represented as a Wallman-type ordered compactification.

REFERENCES

- [1] J. Blatter, "Order Compactification of Totally Ordered Spaces," J. Approx. Theory 13 (1975) 56-65.
- [2] T. H. Choe and S. Park, "Wallman's Type Order Compactification," Pacific J. Math. 82 (1979) 339-347.
- [3] P. Fletcher and W. Lindgren, Quasi-Uniform Spaces, Lecture Notes in Pure and Applied Mathematics, Vol. 77, Marcel Dekker, Inc., New York (1982).
- [4] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton (1960).
- [5] G. Hommel, "Increasing Radon Measures on Locally Compact Ordered Spaces," Rendiconti Mathematica 9 (1976) 85-117.
- [6] D. C. Kent, "On the Wallman Order Compactification," Pacific J. Math. 118 (1985) 159-163.
- [7] D. Kent and T. Richmond, "Ordered Compactification of Totally Ordered Spaces," Internat. J. Math. & Math. Sci. 11 (1988) 683-694.
- [8] ______, "Separation Properties of the Wallman Ordered Compactification," Internat. J. Math. & Math. Sci. 13 (1990) 209-222.
- [9] T. McCallion, "Compactifications of Ordered Topological Spaces," Proc. Camb. Phil. Soc. 71 (1972) 463-473.
- [10] L. Nachbin, Topology and Order, Van Nostrand, New York Math. Studies, 4, Princeton, N.J. (1965).