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ABSTRACT. A new Wallman-type ordered compactification %X is constructed using maximal CZ-

filters {which have filter bases obtained from increasing and decreasing zero sets) as the underlying set. A

necessary and sufficient condition is given for oX to coincide with the Nachbin compactification [oX; in

particular %X oX whenever X has the discrete order. The Wallman ordered compactification

equals oX whenev.er X is a subspace of R". It is shown that oX is always T, but can fail to be Tx-ordered
or T2.
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0. INTRODUCTION.

L. Nachbin [10] initiated the study of ordered compactifications when he characterized the topological

ordered spaces that allow T2-ordered compactifications (we call these Ts.s-ordered spaces), and constructed

the largest such T-ordered compactification [oX by embedding X in an ordered cube. The Nachbin

(or Stone-(ech ordered) compactifieation oX has been studied and applied by various authors (see, for

instance, our odd numbered references). A second ordered (but not necessarily T2-ordered) compactiflcation

oX, cared the Wdlman ordered eompactification, was introduced by Choe and Park [2]. A necessary and

sufficient condition for woX [oX was given in [6], and in [8] the separation properties of woX were

investigated.

It is well known (e.g., see [4]) that the Stone-(ech compactification X of a Ts.s topological space can

be described as a Wallman-type compactification using maxima] filters of zero sets as the underlying set

for the compactification. We have extended this construction to Ts.s-ordered spaces, and the result is a

new ordered compactification which we call %X. This new compactification, like [oX and woX, has the

universal extension property for increasing, continuous maps into compact, T-ordered spaces. With the

help of this universal property, we obtain necessary and sufficient conditions for %X [oX; in particular
this equality holds when the order of X is discrete. As an alternative approach to constructing oX, %X
is more satisfactory than oX, in the sense that oX and floX coincide on a larger class of spaces than do

oX and [oX. Although we have not yet characterized the class of spaces for which %X woX, we have

shown that this class includes all subspaces of Rn. This result enables us to show that %X can exhibit

the same "pathological behavior relative to separation properties that was demonstrated for oX in [8].
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For example, %X fails to be T-ordered if X R for ,t > 3.

It remains an open question whether [oX can be described via a Wallman-type ordered compactification

for all Ts.s-ordered spaces X’.

1. PRELIMINARIES.

Let (X, <) be a poser and let A be a non-empty subset of X. Let d(A) {z E X" z < a for some a E A)
and i(A) {z E X" a < z for some a E A), in case A {z}, we write d(z) and i(z) rather than d({z)) and

i({z}). The set A is said to be decregsin (respectively, increas/n) if A d(A) (respectively, A i(A)).
A set which is either increasing or decreasing is said to be monotone; if A d(A)Oi{A), then A is convez.

If f" {X, <) (Y, <) is a function between two posers, then 1’ is increas/n9 (respectively, decrea/ng) if

z < y in X implies f(z) < f(I/) (respectively, (I/) < (z) in Y.

A topological ordered space (X, <,r) is a triple consisting of a poset (X, <) and a convex topology

r on X; r is convez if the open monotone sets form an open subbase. The term space will always mean

topological ordered space, and (X, <, r) will be shortened to X when there is no ambiguity. Note that every

topological space can be regarded as a topological ordered space relative to the discrete order (equality).
Let E be the space [0,1] with its usual order and topology. For an arbitrary space X we denote

by CI*(X) (respectively, CD*(X)) the set of all increasing {respectively, decreasing), continuous maps

from X into E. An increa.sin zero set (respectively, decreasin9 zero set) is a set of the form f-l(0) where

f CD*(X) (respectively, f CI*(X)). The set of all increasing zero sets (respectively, decreasing zero

sets) on X will be designated by IZ(X) (respectively, DZ(X)). Using standard procedures described in

[4], one easily proves the next two propositions.

PROPOSITION 1.1 If X is a space, f
_
CI*{X), CD*(X), and a E E, then:

DZ(X); (b) f-([a, 1]) IZ{X); (c) g-([0,a]) IZ(X), and (d) 9-([a, 1]) DZ(X).
(ffi) /- ([o, ,,l) e

PROPOSITION 1.2 For any space X, IZ(X) and DZ(X) are closed under countable intersections

and finite unions.

A subset A of a space X is called a C-zero set (or C2"-set) if there is B I2"(X) and C DZ(X) such

that A B c C. Let CZ(X) be the set of all CZ-sets on X. One easily verifies the following.

PROPOSITION 1.3 (a) A CZ(X) iff there is g CI*(X) and h OD*(X) such that A ]-(0),
where 1/2(g -t- h). (b) The set C2"(X) is closed under countable intersections.

It is generally not true that C2"(X) is closed under finite unions; for instance, [0,1] and [2,3] are

CZ-sets in R whose union is not a C2"-set.

By a falter :?" on X, we always mean a proper set filter (one that does not contain ). The filter

on X generated by (z), for z X, will be denoted by 9. If a filter 1" has a filter base of increasing

zero sets, then }" is called an 12"-filter; D2"-fdter and C2"-filter are defined similarly. For an arbitrary

filter }" on X, let I2"(}’) (respectively, D2"(}’), C2’(}’)) be the filter on X generated by }" I2"(X)
(respectively, }" c DZ(X), Y nC2"(X)). Note that IZ(t) (respectively, DZ(I), C2"(1")) is the finest 12’-

filter (respectively, D2"-filter, CZ-filter) coarser than }’. The next proposition follows from Zorn’s Lemma.

PROPOSITION 1.4 If )" is a C2"-filter (respectively, 12"-filter, 2"-filter), there is s maximal C2"-filter

(respectively, I2"-filter, D2"-filter) finer than }’.

PROPOSITION 1.5 Let X, Y be spaces and [ X Y an increasing, continuous map.

(a) If A IZ(Y) (respectively, A DZ(Y), A CZ(Y)), then I-(A) I2"(X) (respectively, I-(A)
DZ(X), .f-(A) . CZ(X)).
(b) If }" is a filter on X, then IZ(I(}’)) < 1(I2"(}’)), D2"(f(}’)) _< I(DZ(Yf)), and CZ(I(}’)) < I(CZ(I)).
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PROOF. (a) If A 6 IZ(Y), then A g-’(0), for g CD*(Y). Then J’-’(A) (9 I)-’(0), where

g CD*(X), d /-(A) IZ(X). The oher cs e similar. (b) follows eily from ().
A spe X is defined o be T-odeed if, for eh X, i(z) d d(z) re cled se. A spe

X T-odeed if, whenever z F in X, there n increing neighborhood of z nd dreing

neighborhood V of F such th V ; equivalently, (X, ,) T-ordered if the order is cloud

sub of X x X. A spe X is T.-odeed if i sfies the following conditions: (1) If x X, A is a

cloud subt of X, and z A, then there is / CI*(X) d CD*(X) such that/(z) g(z) 0 d

/(F) v g(F) for A; (2) If F in X, there is / CI*(X) such that/(F) 0 and/(z) 1.

The Ts.s-ordered spies e prisely the subspes of compt, T-ordered sp (see [10]). A spe X
is defined to be T-ordered if it is T-ordered d, whenever A d B e disjoint cld subts with

A dreing d B increing, there e disjoint open ts and V, the forr dreing, t latter

increing, such that A Hd B V. Note that: comptd T-ordered T-ordered Ts.s-ordered
T-ordered T-order. obrve that T-order T, T-ordered T,d Ts.s-order Ts.s

(i.e., completely regular d T); it is not true, however, that T-ordered T.
h the reminder of thk section we exane some properties of Ts.s-ordered spies, th spi

emphis on the role played by CZ-sets.

PROPOSITION 1.6 Let X be a T.s-ordered spe. t z X, d let (z) be the filter of

nighborhoods of z.

() () CZ(())

() () o o omo (X ) (X B), CZ(X) a DZ(X).

() CZ(X) a,u,o X.

(d) ff is a filr on X such that z, then CZ() .
PROOF. (a) t V be an open neighborhood of z. Then there are CI*(X) d g CD*(X)

such that () g(z) 0 d I(F) v g(F) if F X V. Then -([0, ]) g-[(0, }]) is CZ-set

neighborhood of which subset of V.

{b) Let l,g, and V be h the proof of(a). IfB 1-’{1) d A g-’{1), then A DZ{X),
B IZ(X), and z {X- A) {X- B) V.

(c) d {d) follow iediately from {b) d {a), respectively.

PROPOSITION 1.7 In a Ts.s-ordered spe X, the follong stamen are equivalent: (a) z y;

(b) Z() ; (=) OZ() .
PROOF. It obvious that {a) (b). To show {b) (a), suppose y is in eh member of IZ(X)

contning z, but z y. Then there is f CI*(X) su that f(y) 0 d f{z) 1. Thus y f-{1),
but f-l(1) is a member of IZ{X) contning z. Th establishes that {a) {b), d {c) {a) follows by
a du arment.

In the next section we shl construct a comptcation bd on maxal CZ-filters. The next two

propositions will be useful in this endeavor.

PROPOSITION 1.8 If X is a Ts.5-ordered space and z X, the CZ() is the unique maximal CZ-

filter on X coarser than .
PROOF. We already know that CZ(%) is the finest CZ-filter coarser than . Suppose is a CZ-filter

and CZ() < . Then there is a CZ-set G such that z X G. By Proposition 1.6(a), there is a

CZ-neighborhood H of z such that H X- G. Since H CZ(), the assumption that CZ() < , is
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contradicted, and it follows that CZ(%) is a maximal CZ-filter. It is obviously the only maxims] CZ-filter

coarser than k.

PROPOSITION 1.9 Let f X Y be a continuous, increasing map, where X is Ts.s-ordered and Y

is compact and T2-ordered. If is a maximal Cg-filter on X, there is a unique point I/.u E Y such that

f() IJ in Y.

PROOF. Let Y" be an ultrs]ilter on X such that ,q _< Y’. Since Y is compact and T2, there is

a unique point I/J in Y such that f(Y’) I/s. Because is a maximal Cg-filter, Cg(Y’) <_ t, and

f(),l) >_ f(CZ(Y’)) >_ CZ(f(Y’)) follows by Proposition 1.5. But f(Y’) I/ implies CZ(f()) ltt by

Proposition l.e(d), and therefore

2. THE COMPACTIFICATION

Throughout this section, we assume that X is

of X is a pair consisting of a compact space Y and a map X Y such that is both a topological

and an order embedding of X into Y such that tr(X) is dense in Y. In this section, we shall construct an

ordered compactification (IoX, b) of X and establish some of its basic properties.

Let be the set of S]I maxims] Cg-filters on X. By Proposition 1.8, these include s]I filters of the form

CZ(), where z E X. A relation

and DZ() < J.

PROPOSITION 2.1 (, < is a poser.
PROOF. It is clear that

and DZ(N) _< . Since is a CZ-filter, IZ(.t/) v DZ(N) .q, and so / <_ J. It is alto true that

IZ(.q) <_ .t/ and IZ(N) _<

PROPOSITION 2.2 z _< I in X if CZ(%) < CZ(I) in }.
PROOF. If z _< , then by Proposition 1.7, IZ(%) IZ(CZ(%)) <_ , which implies IZ(CZ(%)) <_

CZ(I). Likewise, DZ() <_ , which implies DZ(CZ()) <_ CZ(%). Thus CZ(%) < CZ(I). This reasoning

is reversible.

For an arbitrary, non-empty subset A of X, we define {J }" A J}.

PROPOSITION 2.S Let A,B . CZ(X).

() .n tn’-.

(b) u= ,u".

()

(d) .. Z(x), ,.n i n i.,..i. , in ,.

PROOF. All of the rtions of this propition ar routine, and we

and , then ZZ() <_
and is an increasing set.

w. nx d,- ,/, b ,/,(.) CZ(*), for , X. Sy Propiion .Z, ,/, i. . order

.embedding of X in X. We omit the routine proof of the next proposition.

POPOSTO Z. () For =y c_ X, ,/,-() c ,.
(b) If , CZ(X), h.n ,/,-() , -d ,/,-(X-) X ..
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Let be the topology on ) with closed subbase {t A CZ(X)}. From the two preceding propositions,

it follows that has an open subbase of monotone open sets; thus (), < 7) is a topological ordered space.

Let "7oX (, < ).

THEOREM 2.5 For any T3 s-ordered space X, (7oX, ) is an ordered compactification for X whose

topology is Tx.
PROOF. First note that " X %X is a topological embedding by Propositions 1.6(c) and 2.4(b);

is also an order embedding, as we observed previously.

To show that oX is compact, it is sufficient to show that any collection C {i A CZ(X),i I}
of subbasic closed sets in %X with the finite intersection property has a non-empty intersection. If. {A I}, then .4 has the finite intersection property by Proposition 2.3(a). Let 31 be any maximal

CZ-filter containing q; then 31

To show that 7Xo is Tx, let )4, 91/be two distinct maximal CZ-filters on X. Then there are disjoint

CZ-sets M 31 and N )/. It follows that X N is a neighborhood of 31 not containing I/, and X M
is a neighborhood of )/not containing 31.

Finally, if 31 ), then (31) converges to 31 in %X, and therefore (X) is dense in oX.
The next theorem shows that %X has the same universal extension property as woX and BoX.

THEOREM 2.6 Let X be a Ta.5-ordered space, Y a compact, T:-ordered space, and f X Y be

a continuous, increasing map. Then there is a unique continuous, increasing map ]" "loX Y such that

the diagram below commutes.

X

PROOF. Let ]’loX Y be defined by ](3t) , where is defined in Proposition 1.9. We
first show that ] is increasing. Let 31 < ) in 2; then DZ(.Y) <_ 31.

Suppose y) y in Y. Then there is g CI*(Y) such that g(y.) and g(y) 0. Thus

y; g-([0, ]) DZ(I(M)), since f()/) y in Y. But g-([i,1]) I(31), since I(31) Y, and

therefore )’(31) DZ(I()I)). However, DZ()I) <_ 31 implies DZ(f())) <_ f(DZ()I)) _< )’(31) follows by

Proposition 1.5. This contradiction establishes that y _< y;, and so ] is increasing.

We next show that ] is continuous. Let 31 "oX and let A be a CZ-neighbgrhood of y.u in Y. From the

fact that )’(31) y., we deduce that 31 )’-x("A), and it is easy to see that ](f-(A)) C_ A. It remains to

show that )’- (A) is a neighborhood of 31 in "loX. For this purpose, we employ Proposition 1.6(b) to obtain

C DZ(Y) and D IZ(Y) such that y (Y C) n (Y D)

_
A. Since (Y C) n (Y D)

it follows that 31 () f-x(’C)) () f-X(D)). The latter set is open in "7oX and a subset of

This establishes that f-x(’-’A) is a neighborhood of 31 which maps into A, and the proof is complete.

THEOREM 2.7 Let X be Ta.5-ordered. Then oX BoX iff the following conditions hold:

(1) If M IZ(X), N CZ(X), and M N 0, then there is h CI*(X) such that h(N) 0 and

h(M) 1.

(2) If M DZ(X), N CZ(X), and M N , then there is h CD*(X) such that h(M) 0 and

h(N) 1.

PROOF. Since foX is the largest T2-ordered compactification of X, Theorem 2.6 implies that

’7oX ,6oX iff %X is T-ordered. Thus the proof will be achieved by showing that the specified conditions

are necessary and sufficient in order for %X to be T2-ordered.
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Assume that "loX is Tz-ordered and let M and N be as indicated in (1). By Proposition 2.3(a),
f , and and are both closed subsets of 7oX. Furthermore, .r is increasing in "fox by

Proposition 2.3(d). Let d() denote the decreasing hull of in 7oX. Then d() is closed by Proposition 4,

page 44, [10], and d(r) n 2lr I/t. By Theorem 1, page 30, [10], there is g in CI*{"IoX) such that g(l) 0

if 4 E d() and g() if t E/f. Setting h gok we obtain (1). A similar argument establishes (2).
Conversely, assume the two conditidns, and let t, be elements of "loX such that t . M. Then

either IZ() / or DZ(/) . If IZ() /, then (because / is a maximal CZ-filter) there is

M IZ() and a CZ-set N / such that M n N . If h is as stated in (1), then h-l([0, )) and

h-l((1/2, 1]) are disjoint open neighborhoods of /and respectively, the former decreasing and the latter

increasing. If DZ(/) , we can apply (2) to achieve the same result. 1
If X has the discrete order, conditions (1) and (2) of Theorem 2.7 reduce to the statement that disjoint

zero sets in X are "completely separated" in the sense of [4]. Since this is true for any Ts.s space, we

conclude that %X [oX fix whenever X is a Ts.s-ordered space with the discrete order.

As we shall see in the next section, there are simple examples of Ts.s-ordered spaces for which 7oX
is not T2-ordered. In this case, we may be interested to know when %X satisfies the weaker separation

properties "T2 or "Tl-ordered’. This section concludes with two theorems pertaining to this problem.

Examples showing that %X need not satisfy these latter separation axioms are also provided in the next

section.

THEOREM 2.8 Let X be a T3.s-ordered space. Then %X is T2 iff, for each ultrafilter Y" on X, there

is a unique maximal CZ-filter on X such that CZ(Y’) <_ .
PROOF. Assume %X is T2 and let " be an ultrafilter on X. Then (Y’) converges to some %X,

where is a maximal CZ-filter on X. It must be true that CZ(Y’) _< ; otherwise { and CZ(Y) would

contain disjoint CZ-sets M and A, and X- A would be a neighborhood of in %X not belonging to

(Y’). If there were another maximal CZ-filter /finer than CZ(Y’), then (Y’) would also converge to /

in %X, contradicting the assumption that %X is T2. Thus is the unique maximal CZ-filter such that

cz() <_ ..
Conversely, assume that %X is not T; then there is a filter on %X converging to distinct elements

and / in %X. Let Y" be an ultralilter on X containing the filter base {A _C X / }. One easily

verifies that (Y’) converges to both and in %X. This implies, as in the preceding paragraph, that

and /are both maximal CZ-filters finer than CZ(Yf), which contradicts the uniqueness condition.

THEOREM 2.9 Let X be a Ts.5-ordered space such that, for each A e CZ(X), i(A) e IZ(X) and

d(A) DZ(X). Then %X is T-ordered.
PROOF. For S C_ %X, let iv(S denote the increasing hull of S and clS the closure of S in %X. We

will show that for arbitrary %X, that cl(i()) i(), and hence i() is closed in %X. The
dual argument establishes that d{ is also closed.

First, observe that if / cl(i()), then for each A CZ(X) such that / X-A, there is

i() such that X"-A. In other words, if //cl(i(t)), then for each A CZ(X) such that
A , there is /%X such that < and A .

Let cl(i()). If/ i({), then /, and so either IZ() /or DZ(.V) . Asume the

former; then there is M , f IZ(X) such that M /. But / cl(i({)) implies there is

such that M . However < implies IZ() _< , a contradiction. On the other hand, suppose

DZ(/) {. Since )d is a maximal CZ-filter, there is a CZ-set M { and N / DZ(X) such
that M f N , and hence N c i(M) . But by assumption, i(M) IZ(X), and so i(M) IZ().
Again, /E cl(i(()) implies there is > such that i(M) f[ t. However i(M) IZ({) <_ I is again
a contradiction. We therefore conclude that i() is closed in %X.



NEW ORDERED COMPACTIFICATION 123

3. %X AND cvoX
The Wallman ordered compactification (ooX, o) of a Tl-ordered space X was introduced by Choe and

Park [2] in 1979. In this section we find conditions under which %X cvoX; this leads to examples showing

that "oX can fail, in various ways, to preserve the separation properties T2, T2-ordered, and T1-ordered.
The construction of ooX and a discussion of its properties can be found in [8]. Here, we review only

a few relevant facts. Although %X can be defined for any Tl-ordered space X, we shall assume, as in

the preceding section, that X is Ta.s-ordered, since it is only for such spaces that oX and c#oX can be

compared.

If A is any non-empty subset of X, let I(A) denote the smallest closed, increasing set containing A and

D(A) the smallest closed, decreasing overset of A. A is said to be a c-set if A I(A)n D(A). A space X

is called a c-space if, for every c-set A C_ X, i(A) I(A) and d(A) D(A). A filter on X with a base of

c-sets is called a c-filter. The underlying set for ooX is the set of all maximal c-filters on X. Indeed, the

constructions of cvoX and 7oX are very similar, with the c-sets playing the same role in the former that

the CZ-sets play in the latter. In particular, if every c-set in X is a CZ-set, then ooX %X. Thus the

following proposition is obvious.

PROPOSITION 3.1 If every increasing closed set in X is in IZ(X) and every decreasing closed set

in X is in DZ(X), then oX "/oX.

Another useful fact, proved in [6], is the following.

PROPOSITION 3.2 A space X has the property that ooX oX iff X is a T4-ordered c-space.

THEOREM 3.3 If X is a T4-ordered space such that, for any sets F, G in CZ(X), I(F) G

implies I(F) D(G) and dually, then %X floX.
PROOF. We show that, under the given assumptions, X satisfies conditions (1) and (2) of Theorem

2.7. To verify (1), let M E IZ(X) and N e C2(A) be disjoint. Since I(M) M, it follows by our

assumption that M D(G) . Thus we can apply Nachbin’s generalization of Urysohn’s Lemma (see
Theorem 1, page 30, [10]) to obtain e CI*(X) such that f(M) 1 and /(D(G)) O. This establishes

condition (1); the proof of (2) is similar. I

COROLLARY 3.4 If X is a T3.s-ordered space such that cooX =/oX, then ooX oX.
PROOF. If ooX oX, then, by Proposition 3.2, X is a T4-ordered c-spa,e. Every such space clearly

satisfies the requirements of Theorem 3.3, and so the conclusion follows. 1
A T-ordered space whose underlying partial order is a total (or linear) order is called a totally ordered

space. It is shown in [7] that ooX =/oX for any totally ordered space X.

COROLLARY 3.5 If X is a totally ordered space, then ooX %X [oX.

THEOREM 3.6 Let X be a subspace of R

PROOF. In view of Proposition 3.1, it is sufficient to show that each closed, decreasing subset of X

is in DZ(X) and each closed, increasing subset of X is in IZ(X).
We begin by defining (in the terminology of [3]) a quasi-pseudo-metric p on X defined as bllows: If

:r= (Xl,’--,Xn), y= (Yl,’’’,Yn), then p(x,y)= (Yl- xl) V0 +.-.+ (Yn- xn) V0. If A is anon-empty,

closed, decreasing subset of X, we define PA X [0, oo) as follows: pA(X) inf{p(l/,x) y A}.
Finally, let hA X E be defined by hA PA A 1. It follows that hA CI*(X) and hl(0) A. Thus

A DZ(X). The dual argument shows that any closed, increasing subset of X is in IZ(X).
It is shown in Theorem 3.4 of [8] that ooR oR iff n <_ 2; this yields the following consequence of

Theorem 3.6.
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COROLLARY 3.7 %R" oR" iff n _< 2.

We recall two examples from [8] involving subspaces of R in which ooX, and hence also %X, fail to

exhibit basic separation properties. Let S {(z,I/) -1 _< z _< 1,-1 _< y _< 1} be a subspace of R2. In
Example 3.6 of [8], the subspace Xl S { (0, 0)) of R has the property that %Xl is neither T-ordered
nor T2. In Example 3.7 of [8], the subspace X S ((0, I/) -1 _< I/-< 1 and t/ 0) has the property

that %X2 is T but not T-ordered. We do not know of a space X for which %X is T]-ordered but not T.
As a final example, recall that if X is a Ts.s-ordered space with the discrete order, then %X [$oX. If, in

ddition, X is chosen not to be T4, then ooX (which in this case is the ordinary Wallman compactification)
fails to be T2, and consequently ooX %X.

4. UNSOLVED PROBLEMS.

Find necessary and sufficient conditions on a space X for %X to be T-ordered.

(2) Find conditions on a space X which are necessary and sufficient for %X woX.

(3) Determine whether %Rs is T.

(4) Find a Ts.s-ordered space X for which ooX, oX, and %X are mutually non-equivalent.

,(5) Determine whether/$oX can be represented as a Wallman-type ordered compactification.
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