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ABSTRACT. Existence of a weak solution is established for the initial-boundary value problem for

the system ff-iut-div(O(u)7u)+r(u)a(u)TuTv=a(u)]Tvl2,div(a(u)Vv)=O. The question of

uniqueness is also considered in some special cases.
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1. INTRODUCTION.
Let f be a bounded domain in RN with smooth boundary 9 and T a positive number. In this

paper we shall be concerned with the following problem:

u div(O(u) V u) + a(u)a(u) V u V v a(u) V v 12 in QT i2 x (0, T),

div(a(u) V v) 0 in

u 0 on ST cgflx(O,T),

v B(z,t) on ST,

n(z,0) Uo(z in fix {0}.

(1.1a)

(1.1b)

(1.1c)

(1.1d)

(1.1e)

Here, O(u),a(u), and a(u) are known functions of their argument and B,U0 are given data.

Problem (1.1) may be proposed as a model for the electrical heating of a conductor resulted

from Thomson’s effect and Joule’s heating; see [1]. In this situation, u is the temperature of the

conductor and v the effective potential. Equation (1.1b) represents the conservation of charge,
while (1.1a) says that there are two types of heat source involved in the heat conduction; the

convective term in (1.1a) corresponds to Thomson’s effect and the quadratic term in (1.1a) reflects

Joule’s heating.
If N 2,a 0, and a cl(ll) is such that

0 < m < .(s) _<,s e R

for some M _> m the existence of a weak solution is established for (1.1) in [2]. A result due to Shi,
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Shillor, and Xu [3] asserts that the assumption that N 2 and a cl(tt) in [2] can be eliminated.

The associated stationary problem of (1.1) was first considered in [1] where tr and O are assumed to

obey the Wiedemann-Franz law, i.e.,

(u) c for some c > 0,O(u) n

and a is assumed to be linear.

reformulated as

Under these assumptions the stationary problem can be

div(A(u,v) V u) =0O}div(A(u,v) V v) in f,

u u0,v v0 on 0ft.

Thus a uniform bound for the temperature can be obtained, thereby establishing an existence

assertion. See [1] for details.

Our main objective is to prove an existence theorem for (1.1) under rather general assumptions

on the data. Indeed, if the temperature is known to be bounded, our assumptions are much weaker

than those in [1]. Of course, our approach is also different and is based upon an approximation

scheme. We also consider the question of uniqueness, but we are only able to show that the

uniqueness holds when N 2 and O(s) s.

The mathematical interest of our problem is due to the presence of quadratic gradient growth
in the nonlinearity. In general, nonlinearities of this nature render the classical regularity and

compactness results useless; see [4] for a detailed description in this regard. Our method makes full

use of the explicit nonlinear structure of our problem, which enables us to extract enough extra

information to obtain an existence assertion. We refer the reader to [4] for more related works in

this direction.

Finally, let us make some comments on notation. The letter c will be used to denote the

genetic constant. When distinction among different constants is needed, we add a subscript

{0,1,2 to c. Other notation conventions follow those employed in [5] and [6]. For example,

Ilfllp,: Ilfllp=(If f Pd.)lip
for y LP(9).
2. EXISTENCE

In this section we first establish an existence assertion for the associated stationary problem.
Then a weak solution to (1.1) is obtained via the implicit discretization in time.

Let ft be a bounded domain in RN with smooth boundary Oft. Consider the system

-div(l(u,v)Vu)+K(u+v)=J(u+v)l Vvl 2

-div(J(u + v) 7 v) O
+ H(x) } in ft (2.1a)

coupled with boundary conditions

u u0 on 0f, v v0 on Ofl.

With respect to the data involved, we assume the following.

(2.1b)
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(H1) l(s,r),J(s),K(s) are all continuous;

(H2) There exist two positive numbers m < M such that

m < t(s,r) < M,m < J(s) < M

for all s, r It;

(H3) K is nondecreasing and satisfies

IK(s)l <_clsl for some c>0;

(H4) u0 wl’2(fl),v0 wl,2(fl) fl L(f), and H e L2(fl).
A weak solution to (2.1) is defined as a pair (u,v) such that

u, v 6. Wl’2(fl),

+

for all e w’2(ft) n L(fl),

J(u+v) v ,dr= W’2(fl),0 for all

u u0, v v0 on Off.

THEOREM 2.1. Let (H1)- (H4) be satisfied. Then there exists a weak solution to (2.1).
PROOF. For each k define

k if Izl2>_k,
Pk(z)=

I12 if I12

(2.2)

(2.3)

k if K(s) > k,

Kk(s K(s) if IK(s) _< re,
-k if K(s) < -k.

Denote by V the product space wl’2(fl) xwl’2(fl) and v* its topological dual. Set
E {(Ul,Vl) V:UllO u0 and Vllo%q v0}. Clearly, E is a closed, convex subset of v. For each
define an operator Ak:E--,V* by

(Ak(Wl)’W2) I I(Ul’Vl) V u 7 u2dz + I {Kk(Ul + vl) J(ul + Vl)Pk( V Vl)

-H(z)}u2dz

+ I J(ul + vl V v V v2dx,

(u1, v1) e E, w2 (u2, v2) e V,
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where (.,.) denotes the duality pairing between V* and V. By the definition of P/,A/ is well-

defined. It is not difficult to verify that for each/, A/ satisfies the following conditions:

(i) A/ is bounded.

(ii) A/ is pseudomonotone.

(iii) (A,(),w-wo)/lltollv.-, as Ilwllv-" for we E, where w0 (u0,v0).
Now we are in a position to invoke an existence result in [7, p. 169] to conclude that for each k

there exists at least one vector-valued function wk (uk, vk)e E such that

(Ak(Wk),W-Wk)>O for all we E.

This is easily seen to be equivalent to the following statements:

" o "o," a o, (2.6)

I j(. +)v va 0, (2.8)

for all e W’2(t2). Equation (2.8) allows us to use the weak maximum principle to get

sup Iv(x) <c(=*,2 ). (2.9)

Set v:- v0 in (2.8) to deduce

(2.10)

(2.11)

We estimate, with the aid of (H3) and (2.9), that

> g(% + %)II 2 % + u0 2

For each positive integer j define

j ifs>_ j,

s if Isl <j,

-j if s_> -j.

(2.12)
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We calculate, using (2.8), that

Send j to infinity to get

I J(u/c -I- Ok)P/c Ok)(Uk uo)dz -I-

Use this and (2.12) in (2.11) to obtain

m I VVkl2d<-c111Vukll2+c211ull2+c3(/c= 1,2 ).

According to Poincar6’s inequality,

(2.13)

Consequently,

,- "o 2 -< ’ v (,- ’o)II 2 < =( v, 2 + v ’o 2)-

,= 2 -< ,,/= ’=o 2 + ’o 2 -< q v = 2 + (2.14)

Combining (2.13) and (2.14) yields

,= II 2 / v,q= 2 -< ,(a ,2 ).

In view of (2.9), (2.10), and (2.15), we may assume that there exists a subsequence of {/c), still

denoted by {/c}, such that

v/c-,v weakly in wl’2(fl) and strongly in/;2(f),

uk-u weakly in wl’2(f) and strongly in L2(K).
(2.16)

(2.17)

Then it immediately follows from (H1), (H2), and (H3) that

and

(=, )-z(=, ),K(u + )--K(u + )

j(u/c + vk)-j(u + v) strongly in L2(f).

(2.18)

(2.19)
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Set " vt v in (2.8) to deduce

lLmsu m I 7 (vt-v)12a < tiT.pI(% + v)l v (v-v)12az

This implies that

Pt( V vt)- V v 2 strongly in Ll(f).
Then the theorem follows from taking k-c in (2.7) and (2.8).

Let f, H(z), u0,v0 be given as before. Consider the following problem:

(2.20)

u-div(O(u) V u) + a(u)/’(u) V u V v tr(u) V v [2
div(a(u) V v) 0

+ H(z) } in f, (2.21a)

u Ofl u0’ v Of v0. (2.21b)

We impose the following conditions on O,a,/:

(H5) O,,# are continuous and satisfy

m < O(s) < M,m < a(s) < M,m < B(s) < M for some M _> m > 0

for all s E R.

(H6) /" is continuous and bounded.

A weak solution to (2.21) can be defined in the same manner as that to (2.1).
THEOREM 2.2. Under the above assumptions there is a weak solution to (2.21).
PROOF. Let

e(,-)
F(s)= a(r)B(r)dr.

0

Then by (HS) there exists two positive constants Cl,C2 such that

0 < c < F’(s) _< c2 for all s E R.

Denote by K the inverse of F. From (2.22), we have

(2.22)

c4 < if(s) < c3 for all s e R

for some c3 _> c4 > 0. Thus K satisfies (H3). Now set

I(s, r) a(K(s + r)(K(s + r)), (2.23)

J(s)=a(K(s)). (2.24)

Clearly, I,J,K satisfy (H1)-(H3). By Theorem 2.1, there is a weak solution to the following
problem:

div(I(a,b) X7 a) + K(a + b) J(a + b) V b 2 + H(r) in t (2.25)
-div(J(a + b) V b) 0 j (2.26)
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a I0 F(u0)- v0, b l0 v0"

Let u= K(a+b),=. We wish to show that (u,v) thus defined is a weak solution to (2.21). Clearly,

,v wl’2(), and (2.21b) is satisfied. Note that

F(,)- F(,)- ,.

We derive from (2.23), (2.24), and (2.25) that

-div(a(u)3(u)F’(u) V u- o’(u)3(u) V v)+ u

aiv(O(u) V u) + aiv(,r(u)O(u) V v) + u ,r(u) V v 2

We conclude from (2.24) na (2.26) that

+ H(z)in n. (2.27)

-div(a(u) V v) 0 in i2.

We calculate from (2.28) that for any E w’2(ft) f3 Lc(ft),

(2.28)

Thus

div(o’(u)3(u) V v) a(u)’(u) V u V v (2.29)

in the sense of distributions. Use this in (2.7) to obtain the theorem.

REMARK. In fact, we only need to assume that is bounded. Then we can always select a

number c large enough so that

O < m <c +l < M.

Also, if we know that u is bounded a priori, then there is no need to assume that O,a, are bounded

above. In this sense, our hypotheses are much weaker than those in [1]. However, in the generality
considered here it does not seem likely that u can be bounded.

Now we are ready to prove an existence assertion for the following problem:

div(a(u)O--U-div(O(u)Vu)+’(u)13"(u)VuVv=’(u)lot V v) 0
Vvl2 } C fx(O, T), (2.30a)

u O,v B on ST=OI2x(O,T),

u=UOonfx{O}.

(2.30b)

(2.30c)

THEOREM 2.3. Let ft, O,a,/3 be given as before. Assume that B_ L2(O,T;WI’2(12))f’ILCX:)(QT),
and V0 wl’2(ft). Then there exists a weak solution to (2.30), i.e., there is a pair (u,v) such that

u, v fi L2(O,T;WI’2(f)), (2.31)

u,v- B e L2(O,T;W’2(ft)), (2.32)
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I utdmdt + I O(u) T u 7 dzdt + I tr(u)ff(u) u T vdzdt
QT QT QT

(2.33)

I ’(u) V vl2{dzdt + IUo(z){(z,O)dz
for all e HI(o,T;W’2(fI))nL(QT)such that (z,T) 0,

tr(u) V v V rldzdt 0 for all ,; E L2(O,T;W’2(I)). (2.34)
QT

PROOF. We shall follow the approach presented in [3] using a discretization technique. Let
k6

n E {1,2 }. Set 6 T/n. For/: 1,2, n, denote by B(nk) the integral j. B(z,r)dr. Subsequently,(_ )6
we may generate a set of n pairs (u(nl),(n1)) (u(n),v(nn)) via the following iteration formula:

o.(u(nk))l v v(nk)12 in ,
di(u(nk)) V V(nk ) O in f,

u(n) 0 on 0t,

(2.36)

where

Define two function un, vn by

We infer from (2.36) that

k 1,2,...n,

fUo if _< O,

if ( )s < _< s( .),

1) if g 6,
vn(=’t) Iv(.t) if (k- 1)6 < < t6(t 2 .).

sup vn(z, t) _< c,
(x,t) EQT

W vnil 2,QT <_ c(n 1,2 ).

Let Lj(s) be given as before. Note that

] tr(u(nk))ff(U(nk)) V U(nk) V v(nk)Lj(u(nk))dz

(2.38)
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and that

Multiply (2.35) by Lflu)) and use (2.39) and (2.40) in the resulting equation to obtain

Observe that

Send j to infinity in (2.41) and use (2.42) in the resulting equation to obtain

(2.39)

(2.40)

(2.41)

(2.42)

Pick up an e from {1 n} and sum for t t to deduce

6

ft oft

6

<_ c I I V Vn 2dzdt
O

+ IU( )dz <_ C

Consequently,

T

O<_t<_T ft 0 ft

In view of (2.39) and (2.40), we may rewrite (2.35) to read

(2.43)

(2.44)
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di.[’u(t)v(t)V,.,, u(nt)) in f.

For each n define -(x, t) by

if (k- 1)6 < <_ k6,k 1,2 n.

We deduce from (2.45) that

0

’ n-div(O(Un) V Un) + div(a(Un)O(Un) V Vn)

div(a(Un)Vn V Vn) (2.46)

in L2(O,T;W 1’2(n)).
In view of (2.44), (2.37) and (2.38), we obtain that {n} is bounded in L2(O,T;W 1,2,(f)). This

allows us to invoke Lions-Aubin’s theorem to conclude that

{’-n} is precompact in L2(QT).
Use U(nt)- U(nk 1) as a test function in (2.45) to get

lI(u(nk)6 u(nk- 1))2dz

!( (U(nk)) U(nk) + o"u(k)’/3’u(k)’ 7 V(nk)

Note that

Similarly,

Vun[2dzdt

(2.47)

(2.48)

(2.49)

(2.50)

Use (2.49) and (2.50) in (2.48) and then sum for k , to derive

On the other hand,

T

I I (Un(Z,t)-Un(Z,t-o"))2dz <_ c1/2.
O

T

I (Un nn)2dzdt I I (Un(Z, t) Un(Z, 6))2dzdt
QT
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< cI/2--.0 as n-.oo.

Thus {un) is also precompaz:t in L2(QT).
There exists a subsequence of {n}, still denoted by {n}, such that

strongly in L2(QT) and weakly in L2(O,T;W1,2(f)), and

vn--.v weakly in L2(O,T;WI’2(f)).

To pass to the limit in (2.46), we still need to show that

We infer from (2.36) that

strongly in L2(OT

I (un) V Vn V dzdt 0 for all L2(O,T;W,2()).
QT

Let Bn(Z,t B(nk)(z) if (t- 1)6 < _< t6,t 1,2 n. It is easy to see that

Bn-,B strongly in L2(O,T;WI’2(f)).

Set vn Bn + B in (2.52) to deduce

135

(2.51)

(2.52)

(2.53)

I (un) (Vn- l (Un) vn (Bn B)dzdtV V

T T

| e(un) V e V (% v)dzdt

OT

Consequently, we have

vn--,v strongly in 2(O,T;WI’2(fl)).
Thus (2.51) follows. Now we can take n--,oo in (2.46) to get

u div(O(u)) + div(a(u)[$(u) V ) div(cr(u)v V )

L2(O,T;W 1, 2(t)). (2.54)

Send, to infinity in (2.52) to get (2.34). Then it is easy to verify from (2.34) that

di,,(,,(,,)O(,,) V ,,) ,(,,)’(,,) V ,, V ,,,
di((u) V ) o’(u) V 12

in the sense of distributions. Use (2.55) and (2.56) in (2.54) to obtain (2.33). The proof is

complete.
3. UNIQUENESS.

In this section, a uniqueness assertion is established for (1.1) in some special cases.
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THEOREM 3.1. Let the assumptions of Theorem 2.3 hold. Assume that O(s) s and that is

Lipschitz continuous. Then there exists at most one solution to (1.1) in the space

L2(0, T; W’ 2(ft)) L(0, T;

PROOF. Suppose that there exist two solutions (Ul,Vl) and (u2,v2) to (1.1). First note that

(2.54) is equivalent to (2.33) when (2.34) holds true. Set

We derive from (2.54) that
=ul-u2, =v1-v2.

t A div(a(Ul)V1V v -a(u2)v2 V v2)-div(a(Ul)B(Ul) V v -a(u2)fl(u2) V v2)

in L2(O,T;W 1,2(ft)).
Thus,

ffll(,t) 2,ft+ V 12ddr (a(Ul)V1VVl-a(u2)v2XTv2)Vdzdr
O Oft

+ I I (a(Ul)fl(Ul) V v a(u2)fl(u2) V v2) V" dxdr

Off

I1+I2. (3.1)

Recall from our assumptions that V Vl, V v2 E [L(QT)]N. I and 12 can be estimated as follows:

II11_< I I (#(ul)-a(u2))vl V v V dxdr

Oft
I Ia(u2)(Vl -V2) V Vl V dd’r

Oft

+ a(u2)v2( V v V v2)V dzdr

Oft

+ V v V v212ddt V 12d.dr
Oft Oft

Oft Oft

OFt Oft

Here we used the fact that a is Lipschitz continuous. Similarly,

Oft
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Clearly,

f f (ui) Vvi V fdx =O for aH 6 L2(O,t;W’2(f))
O

for all 0 < < T and for 1,2.

Thus we obtain

Consequently,

By Poincar6’s inequality,

This immediately implies

By (3.3),

0fl 0f

off

Of Of

<_ClII2dzdr.

_=0.

=0.

(3.2)

(3.3)

Thus u u2, v v2. This completes the proof.
The above theorem is not very satisfactory because it requires that xz v be bounded, which

cannot be guaranteed by the existence theorem. Thus it is interesting to investigate when V v

becomes bounded. We summarize our results in the following theorem.

THEOREM 3.2. Let the hypothesis of Theorem 2.3 be satisfied. ’Assume
(i) V0 C0"( for some 0 < A < 1;

(ii) o-g-B6. L(O,T;cO’A( )) for each i;

(iii) N 2;

(iv) is Lipschitz continuous.

Then there is a ,X (0,1) such that L(O,T;cO’At( )) forOz
PROOF. Set

=v-B.

Then for a.e. G [0,T], we have

V (z)dz |tr(u(z, t)) W B(x,t) 7 (z)dx(z, t) (3.4)

for all e W’2(ft). That is to say, we view (2.34) as a family of elliptic equations. Then for a.e.

in (0,T) we appeal to a result due to Meyers [8, p. 36] to conclude that there is a positive number

depending only on m,M in (H5) and on fl such that
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z W(x, t)II p,f --< c z B(x, t)II p, _< Cl

for some p > 2. Thus v. Lc:(O,T;WI’P()). Since u satisfies (2.54) and p > N 2, we may invoke the

classical regularity theory for linear parabolic equations [5, pp. 181-204] to get

u //’’ "/2(TT for some A > 0.

It immediately follows that u. LC(O,T;cO’A()). Recall that is Lipschitz continuous. Hence

r(u(,t))cO"(fi) for all t[0,T]. We are in a position to apply a result in [6, p. 210] to (3.4),
thereby establishing

1(. ,t) 1,A < Cl + c21 r(u(" ,t) V B(. ,t) 0, A

< c for some > A > 0 and for all [0, T].

The proof is complete.
Combining Theorems 3.1 and 3.2 yields the following:
THEOREM 3.3. Let the assumptions of Theorem 3.2 hold. Assume that O(s) s. Then there

exists a unique solution to (1.1).
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