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ABSTRACT. We prove that the quotient of abelian integrals associated to an elliptic surface

is bounded and strictly increasing by first determining the Picard-Fuchs equation satisfied by the

a,belian integrals and the Riccati equation satisfied by the quotient of the abelian integrals.
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1. INTRODUCTION

Complex elliptic surfaces, which are families of elliptic curves parametrized by a Riemann sur-

face, play an important role in algebraic geometry and number theory (see e.g. [8]). Certain aspects

of the theory of elliptic surfaces have recently been investigated in connection with the bifurcation

theory. In [5] II’yashenko proved that the quotient of certain abelian integrals associated to a family

of real elliptic curves has a bounded range and strictly increasing on a. finite interval in order to

investigate the limit cycles arising from perturbations of phase curves of certain Hamiltonian sys-

tems (see also [6]). In [3] Cushman and Sanders corrected some mistakes made in [5] and proved

the monotonicity of the quotient of abelian integrals associated to a real elliptic surface by using

the Picard-Fuchs equation and the Riccati equation. They applied this result to consider a global

Hopf bifurcation problem treated by Keener [7]. In [2] Cushman and Sanders considered a similar

problem for another family of real elliptic curves and proved the uniqueness of the limit cycle for

certain two-parameter family of planar vector fields.

It is well known that an elliptic curve can be expressed by an equation of the form

u== z(- 1)(- )

called the Legendre normal form, which can be regarded as a family of elliptic curves parametrized

by E C. Given such a family the abelian integrals of the differentials (1/l)dz and (z/t)dz satisfy
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the hypergeometric equation

df dft(t 1)- + (2t- 1)- + -f 0

called the Picard-Fuchs equation of the elliptic surface associated to the given differentials (see
e.g. [1]). Picard-Fuchs equations of elliptic surfaces are essentially their Gauss-Martin connections

which play an important role in the theory of variation of Hodge structures on complex algebraic
manifolds (see e.g. [4]). In this paper we consider the family of real elliptic curves given by the

Legendre normal form 9 x(x- 1)(z s) for 0 < s < 1. For each s the corresponding real elliptic

curve has two connected components, one of which is compact and the other is noncompact. We
consider the abelian integrals of the differentials ydx and xydx over the compact component of the

elliptic curve F corresponding to s. We use the method of Cushman and Sanders [3] to prove that
the quotient of these abelian integrals is bounded and strictly increasing on the interval 0 < s <
by first determining the Picard-Fuchs equation satisfied by the abelian integrals and the Riccati

equation satisfied by the quotient of the abelian integrals.

. ABELIAN INTEGRALS

Let s be a real number with 0 < s < 1, and let Fo be the real elliptic curve in the zy-plane given

y z3- (s + 1)z + sz z(z- s)(z- 1). (1)

If s # 1, F, has two connected components, one compact with x-intercepts at z 0,s and the other

noncompact with x-intercept at z 1. We denote by 7, the compact component of F,. As s 0,

% approaches 70 which coincides with the origin (0, 0) in the zv-plane. If s 1, the elliptic curve

F, has one connected component which has a singularity at (1, 0). We define the differentials a, B,
aand bby

a vdz, zvd:r,

and

a dz, b dx.

Let ,4, B, A and B be the integrals of these differentials over the closed curve 7, of c, , a and b

respectively, that is, these are the abelian integrals given by

and

In this section we express 4 and B as linear combinations of A and B with coefficients depending
on the parameter s.

Taking the derivative of the equation (1) with respect to z and s, we obtain

2vd-- 3z 2(s + 1)z + s (2)
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and
dy x22 =x- (3)

First, we shall determine the relations among the differentials. Since we are interested in the

integrals of the differentials over the closed curve %, it is sufficient to find the relations among the

differentials up to exact differentials. Using (2), we have

dy
c y dz Z -x dZ

x
(3x2 2(s 4, 1)x 4- ) dx

---(3(y + (s + 1)x sx)- 2(s + 1)x + sx)dz
2y

3
-(- (s + 1)b+ sa.

Hence we obtain

Similarly, we have

2
sa- ( 4, 1)b. (4)

Using (4), we have

Thus we obtain

2dy

4y
---(3x 2(s + 1)x3 4, sx2) dx

4y
---(3x(y + (s + 1)x sx)

( + 1)(y + (s + 1)x sx) + sx2)dx

4y
---(3xy 4, (s 4, 1)y 4, (s 4, 1)2x2- s(3 4- 1)x- 2sx)dx

3 1(2s -(s + 1)2)b + 1/4s(s + 1)a.-Z- ( + )- + 7

7 2
i/ -(s+l)(gsa-g(s+l)b)

+ 41-(2s- (s 4- 1)2)b 4, 1/4s(s 4- i)a

3-s(s + 1)a + 1(-2(s + 1) + 5s)b.

3 2

5s(s + 1)a + 3-(5s 2(s + 1))b. (5)

From (4) and (5) we obtain the following linear relations among the abelian integrals 4, B, A and

B:

l(s + 1)S, (6).4= sA--
13 s(s + l)a- 5(2(s + 1)2- 5s)B (7)
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3. THE PICARD-FUCHS EQUATION

In this section we determine a system of differential equations for the abelian integrals .A and B
with respect to the parameter s called Picard-Fuchs equation. First, we express d.A/ds and dB/ds
in terms of A and B. Using (3), we obtain

d.A dy x-x
dx

ds
dx -

and

-sB1 -l(sA gl(s+ 1)B)+sA

Thus we have

3SAlo + 1-(1 -4s)B.

s B 3s/10 (1-4s)/10 B (8)

Now from (6) and (7)we obtain

A) -1
B 5s(s- (10(-2(s+1)2# 5s) 35(s+1)) (4)1)2 -15s(s+l) 70s B (9)

Hence from (8) and (9) we obtain the Picard-Fuchs equation

where

ds 13 5s(s 1)2 M2i
M12

MI1 5(--2(8 -}- 1) + 5S) + 3(S + 1),

35(S + 1) 35s,

3
M21 3s(-2(s + 1) + 5s) -s(s + 1)(1 4s),

M 2l. s(s + l) + 7s(1- 4s).

(10)

(11)
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4. THE RICCATI EQUATION

In this section we determine the Riccati equation satisfied by the quotient (s) =/3/,4 of the

abelian integrals .A,/3 and use this equation to prove that (s) is strictly increasing on the interval

0 < s < 1. Using the Picard-Fuchs equation (10), we have

-Ss(s-1)2d -Ss(s-1)2( ld/3 /3 ldA)d-- ds .,4.,4 ds

(M21 .A + M22)- -(M,,A + M,/3)

where M, M, M and M2 are as in (11). Thus we obtain the Riccati equation

d2s(1 S)ss 3s 2(3s + 2) + 72. (12)

Now we shall determine the values (0) and (1). First, for s 1, we have

and

.4(1) y dx 2 x 1)vCdx
15’

B(1) sydx 2 x(x- 1)/-dx
35

Thus we obtain

/3(1) 3
(1) 4(1) "

For 0 < s < we denote by D, the region in the xy-plane enclosed by %.. In order to compute (0)
we first prove the following lemma:

Lemma 1. For each 6 > 0, there exists so > 0 such that D, C :D(6) whenever 0 < s < so,

where

l)(6) {(x,y) x + y < 62}.

Proof. We consider the intersection points of 7, and y Ax. Solving the equation

A2x x3- (s + 1)x + sx,

we obtain

o, ( + + /+/- /( + +
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"l’hus the interseclion points of X.," and 3, ar (0,0) and (.r.,, !1,), when’

and

X

2

s+l +A+(s+I+A)--ts

2

s+ +(s+ 1) 4s

Thus (x,, y,) E (3) if s is sufficiently small. Hence the lemma follows.

Now we consider the function f(x,y) x. Since f is continuous at (0, 0), for each > 0 there

exists 3 > 0 such that If(Z(6))l < . By Lemma there is so > 0 such that D, C/)(3) whenever

0<s<so. Thus, if0<s<so, wehave

hence we have
fD, x dx dy
lB. dx dy

as s --, 0. Using the Stokes’ theorem, we have

and

x dx dy f xy dx

dx dy , y dx.

Hence it follows that

(0) lim f" xy dx
,-o+ f.. y dx

lim fo, x dxdy
,.-.o/ fo, dxdy

=0.

5. THE MONOTONICITY

In this section we show that (s) is monotonic increasing on the interval 0 _< s < by using the

Riccati equation (12).
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Lemma 2. (s) satisfies the inequality

3
O_<(s)_< for O<_s_<l.

Proof. From (12) it follows that d/ds 0 if the point (s,) lies on the curves in the s-plane

determined by the equation

7 (3 + 2) + 3 0,

which is equivalent to

l (3s + 2 + /(3s + 2)2 21s).
The derivative of the function on the right hand side of (13) with respect to s is

3(14. 6s-3 )7 2v/9s2-9s+4

(13)

which is positive because

6s 3 ) 36s 36s + 9

2VZ9s 9s + 4 36s 36s + 16
<1.

If we set

1(3s + 2 + /(3s + 2)2- 21s).()

and

u(s) l (3s + 2- V/(3s + 2)2 21s),
then d/ds 0 along the curves =/(s) and t,(s), and these curves are strictly increasing on

the interval 0 < s < with

and

Hence for 0 < s < we have

and

4
t(0) if, /(1)

3
v(O) O, v(1) .
d 3 4

d-=0 if <f<
d-->0 if <0.ds

Thus it follows that 0 < (s) < 3/7 for 0 < s < 1. []

Now we prove our main theorem.

Theorem 3. (s) is strictly monotonic increasing on the interval 0 < s < 1.

Proof. Suppose that (s) has an extremum at So with 0 < so < 1. Differentiating the both

sides of the equation (12) with respect to s, we obtain

d d d d2(2s- l)s + 2S(S- )s =3-6-6Sss+14ss. (14)
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Evaluating the equation (14) at s so, we get

2so(so 1)-s2(so) 3 6{(so). (15)

Since 0 _< (So) _< 3/7’, from (15) we obtain

dZ{
ds--(So) > O.

Thus it follows that every relative extremum is a relative minimum; hence (so) is a relative mini-

mum. Since (0) 0 <_ (so), there exists with 0 < < so such that (t) is a relative maximum,

which is impossible. Hence the theorem follows. E!
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