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The classical Lucas’ theorem on critical points of complex-valued polynomials has been generalized

(cf. 1]) to vector-valued polynomials defined on K-inner product spaces. In the present paper, we obtain

a generalization of Lucas’ theorem to vector-valued abstract polynomials defined on vector spaces, in

general, which includes the above result of the author [1] in K-inner product spaces. Our main theorem

also deduces a well-known result due to Marden on linear combinations of polynomial and its derivative.

At the end, we discuss some examples in support of certain claims.
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1. INTRODUCTION.
Throughout, unless mentioned otherwise, E and Vdenote vector spaces over an algebraically closed

field ofcharacteristic zero and" denotes the family ofall nonconstant polynomialsP: E V. The concept
of Lucas-sets for the family ", when E is a K-inner product space, was introduced in [1] and it was shown

that everymemberA ofthe familyD(E.)ofall generalized circular regions orE., with A, is a Lucas-set
for ". This fact naturally raises two questions: Firstly, does D(Ew) exhaust all Lucas-sets in E. when E
is a K-inner product space? Secondly, does there exist an analogous family of Lucas-sets for/," whenE is,

in general, a vector space? In this paper, we introduce the family D’(E.) of supergeneralized circular

regions orE,. which answers the first question negatively and the second question affirmatively. We employ
this family to generalize (to vector-valued abstract polynomials in vector spaces) the classical Lucas’
theorem on the zeros of the derivative of a polynomial and a theorem due to Marden on linear combinations

of a polynomial and its derivative.

2. PRELIMINARIES.
Walsh [2] has shown that the well-known Lucas’ theorem (cf. [3] or [4, Theorem (6,1)]) is equivalent

to the following result [4, Theorem (6.2)], namely: Any convex circular region which contains all the zeros

of a complex-valued nonconstant polynomial falso contains all the zeros of the derivative f off. In terms

of the terminology of Lucas-sets (cf. [1, p. 832]) this result equivalently states that convex circular regions
in the complex plane are Lucas-sets for the family of all nonconstant polynomials. Our aim in this paper
is to generalize the said Lucas’ theorem and to investigate possible Lucas-sets for the family of all
vector-valued abstract polynomials (cf. [1],[5]-[7]) defined on vector spaces E of arbitrary dimension. A
detailed analogous study of this problem, in the special case whenE is a K-inner product space, has already
been made in a paper due to the author (cf. [1, pp. 845-847] for a precise statement about Lucas-sets for
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The details in the remainder of this section can all be found in [1, pp. 833-835, 839-843], apart from

other alternate sources cited for completeness. E and Vdenote vector spaces of arbitrary dimension over

an algebraically closed field K of characteristic zero. We write E,= E t3{o} and K,. K t3{oo}, where w
(resp. oo) is an element having the properties of vector (resp. scalar) infinity (cf. also [8, pp. 352, 372] or

[9, p. 116]); Ko denotes a maximal ordered subfield ofK with K0o as the set of all non-negative elements

ofKo, so that (cf. [10, pp. 38-40], [11, p. 56], or [12, pp. 248-255])K Ko(i) {a +ib ]a,b E Ko}, where
-i2 1. Consequently, ifK0 R (the field of reals) thenK C (the field of complex numbers). Forz E K,
the definitions of ’, Re z, Im z and z are defined as in C. Similarly, the concept of K-inner product

spaces (briefly written K-i.p.s.) (E, (.,.)) and the notions of Ko-convexity and Ko-normed vector spaces

(E, [[) are defined likewise in C (cf. [13, pp. 120-121]). If (E,(.,.)) is a K-i.p.s. then the Ko-norm on

E, given by x (x,x)in forx EE, defines for each b E the mapping

pb(x)=(x-b)/[[x-b[[ f xE (2.1)

(with the tacit assumption that x /II xll equals co or 0 according as x is 0 or o) which, in turn, defines the

family D(E,) of all generalized circular regions (briefly g.c.r.) of E,o [1, pp. 834-835]. The empty set ,
E, E,, and the singletons {x} (and E,o-{x}) for xE are trivial members ofD(E,), whereas the family

Bs(E.) of all generalized balls is rich in nontrivial members ofD(E.).
The concept of abstract homogeneous polynomials is well known (see [4]-[7],[9],[11],[14]-[17]). In

what follows we briefly describe abstract polynomials and their pseudo-derivatives. AmappingP E V
is called an abstractpolynomial (briefly, a.p.) of degree n if for every x,y E,

P(x+py) .oA’(x"y )p’ V p EK (2.2)

whereinA(x,y)

_
V are independent of p andA,(x,y) q O. The class of all nth degree a.p.’s is denoted

by ’ (or ,, ff V K) and, for P E’ given by (2.2), we write

F(P) {h .E h , 0 ,A,(O,h , 0}. (2.3)

It is known that F(P) , . Given P E /’ (via (2.2)) and h .F(P), we define for each k 1,2 n, the

kthpseudo-derivative P) ofP by

P)(x) k[A(x,h) YI x E

with first few being written as P, P’, etc. It is known (cf. [1, Proposition 2.3 and Remark 2.4 (I)]) that

P)E-t and h F(Pt for all k, and that

Pk(k "1)(X) (P(kkk (X) f X EE, 1 ffi k ffi n 1. (2.4)

REMARK 2.1 [1, Remark 2.4 (TH)]. Iffis an (ordinary) polynomial of degree n from K to K, then

fis an a.p. of degree n from K to K, F(f) K {0}, and

t)Cx)-htff)fx V x E, h K-{0}, C2.5)

where fit) denotes the kthformal derivative off(see [18, p. 528], [17, p. 553], or [1, p. 842]). In particular,

for h 1, we see that f)-fit) and the two notions coincide. Furthermore, if K- C, then fl becomes

precisely the kth derivative fit) offas defined via calculus. For k 1, we have f -f’.
3. SUPERGENERALIZED CIRCULAR REGIONS

The study in [1] has revealed that the g.c.r.’s orE. and the pseudo-derivatives of a.p.’s from E to V,

respectively, are natural analogues of (classical) circular regions and derivatives of (ordinary) polynomials
in the complex plane, needed to formulate Lucas’ theorem in a K-i.p.s. In order to achieve such a break-
through for vector spaces E, in general, one needs to develop an analogous concept of circular regions in
a vector space E. To this end we introduce in this section the concept of supergeneralized circular regions
and establish some general properties and examples for later use. First, we recall the definition of the



GENERALIZATION OF LUCAS’ THEOREM TO VECTOR SPACES 269

family D(K**) of all generalized circular regions ofK,, as originally introduced by Zervos [8, p. 353]. We
say that a subsetA ofK belongs to D(K**) if and only if eitherA is one of the sets , K, K** orA satisfies

the following two conditions: (i) 0(A) is K0-convex for all g GK-A, where 0z)- (z- g)- for every
z GKd (ii) GA irA is not/(,0-convex. Fuller details aboutD(K**) can be found in [18, p. 527-528].

REMARK 3.1. IfE K is taken as a 1-dimensional natural K-i.p.s. (cf. [1, Remarks 1.1 and 1.6]),
then the family D(E) in Section 2 (cf. [1, Definition 1.2]) here coincides with the above family D(K**) as

introduced by Zervos [8, p. 353]. Thus co and can be used interchangeably whenE K. That is, D(K,.)
and D(/:) are equivalent notations.

DEFINITION 3.2. Given S _C E,, we write

Gs(x,y)-{pl[x+pyGS} Vx,yGE. (3.1)

We say that S GD’(E,) if Gs(x,y) GD(I:,) for every x,y GE. Members of D’(E) are called super-

generalized circular regions (briefly, sg.c.r.) of E,,. Clearly, , E, E,,, are in D’(E,,) and are called trivial

sg.c.r.’s ofE,. Properties of co and oo (cf. [1, p. 834]) imply that (since Gs(x, O) K or 9 according asx GS
orx S)

oqGs(x,O)GD(K**) V x GS (3.2)

and that

Therefore

GGs(x,y) V x GE y GE-{O} iff toGS. (3.3)

S GD*(Eo, iff Gs(x,y GD(K) V x,y GE(y , 0). (3.4)

DEFINITION 3.3 [19, p. 48]. Given an element (a,:k) of E (K-{0}), we define the mapping

ho,x E,,’-* E,, by

h,.x(z) a +z V z G E,, (3.5)

and call it a homothetic transformation of E,,. Clearly, ho.x is one-one and onto, and its inverse, ho-. is

also a homothetie transformation oleo, given by

h()- --a- + .-’z.
PROPOSITION 3.4. Every homothetie transformation of E, permutes the family D’(E,,).

PROOF. Let S GD’(Eo,) and h,,,x be given by (3.5), so that ho,,(S).,a + kS -S’ (say). For any

(x,y GE, we notice that

x+pyGS’ iff x0+PY0GS,

whereXo- (x-a)/ and yo-y/%. Therefore, sineeS GD’(E,,),

Gs,(x, y) gs(xo, yo) GD(I) V (x,y) GE2

This implies that $’ ho.(s) GD*(E, ). That is,

ho,(D’(E. )) CD’(E (3.6)

Conversely, to show the reverse containment in (3.6), we take S’ GD’(E,) and put S h,(S’). Since

h-.,x is also a homothetic transformation ofE,, (3.6) implies that $ GO*(E,). But, then R,(S)- $’ (since
h.,, is one-one and onto) and so

D’(E.) C_ h,.x(D’(E.)) (3.7)

Now (3.6) and (3.7) complete the proof.

Thus, homothetic transformations play the same role in respect to D’(E,,) as do homographic trans-
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formations of K(=K) (cf. [8, p. 353]) in respect to DCK) =D(K). Our next two results say that the

family D’(E,) is a natural and coherent extension (to vector spaces) of the family D(E, in K-i.p.s.’s.
PROPOSITION 3.5. Let E be a K-i.p.s. Then

(a) D(Eo,CD’(E.),

(b) D(E,)-D’(Eo,) if dimE 1,

(c) D(I)-D’(I), ire-K is taken as a 1-dimensional natural K-i.p.s., where D(Do,)-D(I)
as in Remark 3.1. HenceD’(C,) coincides with the family D(C,) of all g.c.r.’s of Co,.

PROOF. Given S 6/D(E,), consider G -Gs(x,y) for any (x,y)6/E:’(y 0) in view of (3.4)) as

defined in (3.1). To show that S 6/D’(Eo,), we show that G 6/D(K,). To this end, we first show that

0(G) is K0-convex V 6/K-G. (3.8)

Choose any 6/K G (ifthis is not possible thenG 6/D(K.) by definition ofD(K)). Then b x + d’ S

andPs(S) is K0-convex by definition ofD(E,) (see (2.1) and 1, p. 834]) such that co ,(S) (since b S).
Let pi6/G and t;6//(.o/ with tl+t.z+...+t,-1 for i-l,2,...,n, so that oo0(pz)6/0(G) and

z; x + ply 6/S. Since z b (Pi l)y 0 for all i, we get (cf. (2.1))

(z,)- o(p,) (y) (s),

whe’e p(y)- y/ll yll . 0 (since y. 0, co). Since Pb(S)is K0-convex, it implies that

i-1

where

o tO(p) (3.9)
-1 0 iff co6/S.

That is, op(y) V(z0) for somez0 6/S. Since V,(z) co if and only ifz xp(co) + b (cf. 1, Relation (1.6)]),

the properties of xp in [1, p. 834] give

Zo-p())+b, where o-0 iff co6/S,

(1/o)y +b -x +(+ 1/o)y 6/S,

so that

1/o P0 (say)

Note that we can take Zo co 6/S in case o 0 and in that case P0 o 6/G due to (3.3). Therefore, in all

cases, we have

t,O(pi) 1/(p ) 6/O(G).
i-1

This establishes our claim in (3.8).
Next, we prove that

oo 6/G if G is not K0-convex. (3.10)

For, if oo G then coS (cf. (3.3)) and S is Ko-convex as in [1, Definition (1.2)]. Consequently, G must

be Ko-convex by (3.1) and (3.10). Now (3.8) and (3.10) establish that G 6/D(K) for allx, y 6/E0’ , 0).
Now the proof of Part (a) is complete in view of (3.4).

(b) The proof of Part (b) follows from that of Part (a) ifwe lets 6/D*(E,o) and show thatS

Since dime 1, there exists an element Xo 6/E- {0} such thatE {,..r.o k 6/K} and

G (say) Gs(O,xo) p 6/K(R)lpx 6/S}

Therefore, x pXo 6/S if and only if p 6/G. If b S (so that G) then 0(G) is Ko-convex and
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,() {(p /II (p 11 p a}

(p ) Ilxoll"
pG

{o(p) ,(o) p },

-O(G). VCx0). (3.11)

Hence <onvexity of Vb(S) follows om eonvexity of 0(G) by ing uation (3.11). Next, if

Vb(S) is not onvex, en again by (3.11)0;(G) is not onvex and 0(G) due me fact at
D() is invafiant under homographic ansfoations (of. [18, Proposition 1.1] or [8, p. 353]). i
together with (3.11) and the fact that V() , implies at Vb(S). is would then mean at b S,
which is a contradiction. is goes to establish atS D(E,). Pan ) is now established.

(c) E K is token as a 1-dimensional natural K-i.p.s., enD(E,) coincides withD() D()

by Remark 3.1. erefore,D() D’() by Pa ), and e proof of Pan (c) is complete.

PROPOSON 3.6. KE is a K-i.p.s. with dE 2, en

PROOF. tL( 0) be a linear nctional om E to K. en
S-{xEIL(x)-O}CE.

We show that S D’(E,)-D(E) as follows:

(i) We claim atS D’(E.). For x, y E,

[{-L(x)/L)} if L)0,

s@,)’ if LO)-0-L(x),

Hence, as(X,y)D(K) for allx, y fie ands D’(E).

(ii) We shw thaws ffD(E). first note atS is -eonvex and mfrS. oose any elemem

b E-S ossible) so that L(b) 0. Since S is a maximal subspace of dimension at least one, we can

choose distinct elements x,x S, so that L(x)-()- 0 and() and() are distinct elements of

Vb(S). Next, choose

wher

z:, I1., 11" + -,11 - o, (R),

so that , EKo with +- 1. Therefore,

Vb(Xl) + ZXPb(X2) (X +x- 2b)/D z (say).

We claim that z Pb(S). For, otherwise, V,(x) z , 0, o for somex ES and hence x z /II zll + n, s.
But

Z Xl +X- 2b D
[[-+b o IIx+x_ll +’’

(X +X2 2

I1. +-11[zl+z’’

becauseD ,, 0, o and xx +x2 2b ,, 0, o. Therefore,
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O-L(x)-L( +z /zfl)-L()+L(z)/llz
D

-L(b)+
II +x- ll {L<xl)+L<x)- 2L<b)}.

Since L (xl) L (x2) 0 L (b), we have

+ 2(11 + ) + + 11
ypa,oama.ti, x 11 0, which impliesat isntdi original choic

ofx andS. enc.z (x)+W() W(S) andW(S) is notnvex forb E -$. erefore

D(E). (i) and (ii) complt th proof.

3.. Abov proposition shows that e family D’(E,) is a natul genralintion to

vctor spaces of$ ncpt of g.c.r.’s (. [1. Rmnr[ 1.]) in $ complex plane nnd Sat it offe a chr

cla when n I-i.p..

oposition .al stablishs Sat nil maxhal subspnes nnd hnc (el. oposition .4)
translations are mmb ofD’() in n vospn but ar not mmb ofD(,) when n K-i.p.s.

S D’(,) SenE may not blon toD’(). his is bo out by $ following xnmpl:

tk C nnd lt

s { Im > 0}{ I- }.

n [1. mart 1.] D(C) D’() by oposition .. butED(C) D’(C).

re are in D’(E) whomplmn in E, are nl $D’(). For xampl, maximal

subspas and Se anslations. For. if M n maximal subspa, $n $re xis a nontdvial linea

funtiona :zx such at -{lCx)-0}. w aim at S-Z=-’Ce=).
x. yE 0) b aitrarily hosen. n x + py S if and only L(x) +) 0 provided p .
Hence

Ax,y {-ZCx)/ } ()

is plies by (3.4) Sat $ D"(). is shows Satomplmn ofmaxhnl subspns in D’(E, ).

rest established by oposition .4.

Rm d abov y Sat nil hylans d$mplmn $, are

membe ofD’(E,).

4. LUCAS’ THEOREM IN VECTOR SPACES.

In this section we prove the following main theorem on the location of the null-sets of pseudo-

derivatives of abstract polynomials P E K, which generalizes to vector spaces the classical Lucas’

theorem in the complex plane as well as a result due to the author [1, Theorem 3.1]. As an appliation of

the main theorem we also generalize to vector spaces Marden’s theorem [4, Corollary (18,1)] on linear

combinations of a polynomial and its derivatives. IfP ’,, we shall write

ZCP)-{xEIPCx)-O}.
THEOREIVI 4.1. IfP /’, audS D’(E,,) such that oS andZ(P)C_S, then

z(P’)c_s v h F(P).

PROOF. Let h _F(P) andx .Z(P’). IfP’(x)-O-P(x) thenx ES and we are done. In case

P’(x)-OP(x)we still claim thatx (ES. On the contrary letx S. Suppose P (E /’, is given by (2.2).
Since h .F(P) and K is algebraically closed, we can write
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P(x +ph)- Ak(x,h)p V pK,
k-o

-A,(x,h). lI[p-p(x,h)] V pEK,
./..1

where A,(x,h) and p(x,h belong to K and are independent of p such that A,,(x,h) An(O,h O. In the

case under consideration, if we write p p(x,h), we see that p 0 for all j and

P(x) -Ao(x,h (-1)"A,,(x,h A(n,n),

P(x)-A(x,h)-(-1)"-lA,,(x,h) A(n 1,n),

where A(k,n) denotes the sum of all possible products of pl, p, Pn taken k at a time. Therefore

P’(x)._ 1/p-0.P(x) .
SinceP(x + ph)-0 for allj, wesee thatx +ph .Z(P)C_S and so p .Gs(x,h)-G (say) for allj. Since

S _D’(E,)andh O, we observe thatG D(K,,)such that0, oo G (because to, x S)andsop 0, oo.

Now consider the mapping 0; (el. beginning of Section 2) with - 0. Then 0;(G) is Ko-convex such that

O, o O;(G). Since O;(p) 1/p O;(G), we see that

(1/n) 1/p tE O;(G).
,/,,,

This implies that

(4.1)

1/p/s0,

which contradicts (4.1). This completes the proof.
In view of Proposition 3.6, the above theorem deduces a more general version of our earlier result [1,

Theorem 3.1] when E is a K-i.p.s. with dime 2.

COROLY4.2 (os [8, eorem 4, p. ]). tf: K K be an nth deee lynomial and

f’ the formal derivative off(el. Remar 2.1 and .1). A D() such at A andZA,
Z’)A.

PROOF. By Remark 2.1 f (withE K),F K {0} andZ’) Z’) for all h K {0}.

Now eorem 4.1, along with Remark 3.1 and Proposition 3.5, immediately mish e corollary.

For K- C, rolla 4.2 is eentially an proeed vemion of e (classical) Lucas’ eorem (see
Section 2), improvement being in Se sense at we ee family D(C.) f all g.c.r.’s of C, instead of

the classical c.r.’s ased in Lucas’ theorem. Usingeteinolo ofLucas-m [1, Remark 3.3], eorem
4.1 ys at eve sg.c.r. A ofE(A) is a Lucas-set for a.p.’s vector spaces. paaicular when E

is a K-i.p.s., the family D*(E) D(E) does not exhaust all Lucas-sets. is answers the o questions

posed in the introduction.

Repeated applications ofeorem 4.1, together with the obseations immediately preceding Remark

2.1, give e following theorem on successive pseudo-derivatives.

TEOM 4.3. P, andS D’(E) such atS andZ(P)S, en

Z(P))S V hF(P), lkn-1.

In order to extend the above eorem to e class , we briefly deribe e following notions and

concepts, whose details can be found in [1, pp. 5-847]. A subsetMof Vis called supportable if, for each

V-M, there exists a lienar form L( 0) on Vsuch atL() 0 but L(v) 0 for all v M. ffP
is given by (2.2) and ifM is a supportable subset of V, we write

(e).e(e,)- {x e le(x)),
F’(P).F*(P,M)- {h E IA,(O,h)M} (4.2)
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Since 0 M, we observe that

F’(P) C. F(P) V P ",, (4.3)

Now we give the following more general vector-valued formulation of Theorem 4.3.

THEOREM 4.4. IfP :, S D’(E,o with o S, and ifM is a supportable subset of V such that

F(P) s Op and E(P) _C S, then

E(PC_S h F’(P), 1 sk,n-1.

PROOF. The proof is exactly the same as that of Theorem 3.9 in 1] except that the role ofTheorem

3.4 in [1 is replaced by that of Theorem 4.3 of this paper.

Let us note that the hypothesis "F’(P) s " in the above theorem is not vacuous (cf. [1, Remark 3.8]).

For V K andM K {0} the above theorem deduces Theorem 4.3 (cf. [1, Remark 3.6]) and, hence,

Theorem 4.4 is a more general formulation of Lucas’ theorem to vector spaces. However, Theorem 4.1 is

actually the basic result employed in Theorems 4.3 and 4.4. In terms of our previous terminology [1,
Remark 3.3], we see that sg.c.r.’s of E,o are indeed the Lucas-sets for vector-valued a.p.’s from E to V.

Finally, we also note that Theorems 4.1, 3.4 and 3.9 in [1] are, respectively, special cases of the present

Theorems 4.1, 4.3 and 4.4 when E is a K-i.p.s. (cf. Proposition 3.5 (a)). Since the above-referred theorems

in [1] cannot be generalized to vector spaces over nonalgebraically closed fields of characteristic zero (cf.
1’, Example 4.1]), the same is true for our present theorems.

In the remainder of this section we discuss some interesting examples to suport the validity of

hypotheses of our theorems here. In case E is a K-i.p.s. and S D(E,o)C_D’(Eo,), this claim is supported

by a number of examples discussed in [1, Section 4]. We therefore discuss examples for sg.c.r.’s in vector

spaces only.
EXAMPLE 4.5. Let E be an arbitrary vector space of finite or infinite dimension, with dimE 2,

and consider any hyperplaneS a +M0, where a EE andM0 is a maximal subspace orE. ThenS ED’(E,)
by Remark 3.7 (H) and oCS. Given any fixed element v Mo (possible), every element x EE has the

unique representation (cf. [1, p. 80])
x-u+tv for some uM0, tEK. (4.4)

With this representation, let

a-uo+tov for uoEMo and 0EK. (4.5)

Observe that x ES (resp. x EM0) if and only if to (resp. 0). If we define

P,(x)-(t-to’ V x-u +tv E, n- 1,2,3 (4.6)

we see that P,(x) 0 if and only ifx ES. For h u’+ t’v E, we see that (for each n)

P,(x + ph)- (t + pt’- t0)",

-Ak(x,h)p x,hE,
k-O

where the coefficients Ak(x,h)-C(n,k)t’(t-to’ - are independent of p such that

A,(x,h A,(O,h) t’" s O. This means that P,, E /’,, such that Z(Pn) C_ S for all n and

F(Pn) h E h sO, A,(O,h (t’)

-E-M0s (sincehEM ifft’-0).

We have thus shown that for every hyperplane (a member of D’(E,o)), there exists (via (4.6)) infinitely

many a.p.’s P,, E ,,(n 1,2,3 satisfying the hypotheses of Theorems 4.1 and 4.3.

EXAMPLE 4.6. Let E, Vbe vector spaces of finite or infinite dimension, with dime 2. Consider
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the set S a +M0 of Example 4.5 with the same representations as given by (4.4) and (4.5). Now let B be

the Hamel basis for V and let B be arbitrarily selected. Denote by B0 the maximal subspace of V

spanned by the nonempty set B -{} and putM V-Bo. ThenM is a supportable subset of V such that

/M (cf. [1, Proposition 3.5]). Since B0, every element V can be uniquely written as

--rl+s for some rlBo, sK, (4.7)

so that Bo if and only if s 0. We now choose an arbitrary (but fixed) element rio E Bo and, for each

n 1, 2, 3 define (el. (4.4) and (4.5))

Pn(x)-(t-tof+rlo V x-u +tvE (4.8)

where u EMo and E K. Recall that x S (resp. Bo) if and only if to (resp. s 0). Obviously,

P.(x) qM if and only if t- to. That is (cf. (4.2)and (4.4)), x E(P.)if and only ifx ES. Therefore,

E(P,) C.S V n 1,2,3 (4.9)

where S tE D’(E,,) such that to S. Further, ifh u’ + t’v for some u’ tE Mo and t’ . K, we have (el. (4.4))

P.(x +ph)-(t +pt’-to)M+rlo V pK, x,h E

i Ak(x,h )o
k-0

whereAo(x’h)’(t-to’o+rlo andAk(x,h)’C(n k)(t’)k(t-to’-ko 1 kn
Since all these coefficientsAk(x,h . V and are independent of p such thatAM(x,h .A.(O,h (t’)’o O,

it follows from the definition of a.p.’s (cf. (2.2)) that

P. P’. V n (4.10)
and that (cf. (4.2))

F’(e.)-{h Elh o, A.(O,h)-(t’)’qBo), since M-V-Bo,

={h Elh =u’+t’v, t’0} (dueto(4.7)),

E -M (due to (4.4),

*q. (4.11)

Consequently, in view of (4.4), (4.5), (4.7)-(4.11), we see that for every hyperplane (a member ofD’(E,o))
there exist vector-valued a.p.’s P, ’(n 1,2,3, ...) via (4.8) which satisfy the hypotheses of Theorem

(4.4).
Finally, we apply Theorem (4.1) in a different direction to generalize to vector spaces a result due to

Marden [4, Corollary (18,1)] on linear combinations of a polynomial and its derivative. In what follows,

S + a denotes the set (s + a Is S } where S _C E and a E.

TEOREM 4.7. GivenP C’n and . .K, defineR(x) P(x)- LP’(x) forh F(P). IfS .D’(E,o),

taS, such that Z(P C_ S, then Z(R CS O(S + n’ ).
PROOF. The proof is obvious for k 0. Therefore, we assume that 0 and R(x) 0. If x C S,

we are done. Ifx S then by Theorem 4.1P’,(x)O and P(x), 0 (since Z(P C_ S). Therefore (cf. the

first equation in (4.1)),

11% 1 0 . (4.12)
P(x) "-.

Using the notations and steps of the proof of Theorem 4.1, with 0, we see that

i 0o(Pi) --lfk, where the Pi 0, oo. (4.13)

Since 0 Gs(x,h G and Pi (7, we see that, for all j, 1/pi 0o(pi) 0o(G), where 0o(G) is Ko-convex
(since (7 D(K)). This implies that
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(1/n). 1/pi Oo(a).
That is (cf. (4.12) and (4.13)),

l/p# -n=-l/k for some

Now then x + r..ah S (by definition ofD’(E,)), where -nL In other words, x n S, and hence

x S +n. is completes the prooL
COROLY 4.8. Given an nth degree ordinary lynomial f"K K and K, define

g(z)-z)-kf’(z)
IrA D(), A, such thatZA,enZ)AU +rig).

PROOF. e proof mediately follows om eorem 4.7 does rolla 4.2 om eorem
4.1.

ForK C, the above corolla is precisely the result due to Marden [4, rolla (18,1)].
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