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ABSTRACT. Johnson [1] evaluated the sum d[n [C(d;r)[, where C(n;r) denotes Ramanujan’s

trigonometric sum. This evaluation has been generalized to a wide class of arithmetical functions of

two variables. In this paper, we generalize this evaluation to a wide class of arithmetical functions

f several variables and deduce as special cases the previous evaluations.
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INTRODUCTION.
In [1], Johnson evaluated the sum

C(d;r) I,

where C(n;r) denotes Ramanujan’s trigonometric sum. This evaluation has been generalized by
Chidambaraswamy and Krishnaiah [2], Johnson [3], and Redmond [4]. The generalization given by
Chidambaraswamy and Krishnaiah is the most extensive one and contains the other evaluations as

special cases. They evaluated the sum

where k is a positive integer and

s(k)(n;r) S(nlr)= a(a)(r/a)h(/a),
a (n,)

g and h being given arithmetical functions, being the well-known M6bius function and

standing for the greatest common kth power divisor of x and y.

In this paper, we shall evaluate the more extensive sum



356

where
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s(k)(nl nu;r) Z g(d)p(r/d)h(r/d).

dkl((ni),rk)k

Here (hi)= (n nu) the greatest common divisor of n nu.

2. RESULTS.
For a positive integer k let rk denote the arithmetical function such that rk(n is the number of

positive/=th power divisors of n.

For a given (u + 1)-tuple n nu, r of positive integers let " denote the largest divisor of ,- such

that (F, ni)= for al| u. Also for each u let i denote the largest divisor of n such

that (i,") 1. We write for r/F and fii for ni/i. The symbol ,-. denotes the quotient of ,- by its

largest squarefree divisor.
aiLet hi= I-Ipl (a ai(p)),r= I-Ippb(b=b(p)) be the canonical decompositions of hi(i= u) and

r. When rk, lni, let ci(ei ci(P,k) be determined so that pkCilni/rk, and pk(ci+ l)+ni/rk,; that is,

e [ai/k -b + if > 1, and c [ai/k if O.

THEOREM. If g is a completely multiplicative function, h a multiplicative function and

_< j _< u, then

Z Z 4- +1
dklln dlnj

rk(l). "rk(j) lg(r,)l

x H {{(el +l)’’’(ej+l)-cl’’’cj}lh(p)[ +Cl..-cjlg(p)-h(p)[}
b<a

x H (el + 1)- -(cj+ a) ln(p)l

b>a

(2.1)

or 0 according as r,kl(n nj,n+ nku) or not, where a rnin{aj + au}" (If j u, we put

1 OO.)
PROOF. Let rl(n nj,n+ nu). Suppose dilni for each i= j. Write

S(/0,.k a/ nu;r) Y]g()t(,’16)h(,’l)tl,’",-j,n + 1,’",

d d., n. +

Here r. I(dl dj, nj + nu) and so U(r/6)= 0 for all in the sum. Thus the left-hand side of (2.1)
is equal to 0.

Let r.l(nl nj, n+l nu). Suppose dln for each i= j. Let ’i and i be aen=a in a

similar way to i and fii" Then the multiplicativity of s(k)(nl nu;r in the variables n nu,;
implies

s(k)(dk d,n+1 nuk;r)
s(k)(lk "dkl dj dj, nj + nj +
s(k)(ll 1 ’]’ fi +1 fiku; ’)s(k)( ", nj + 1,’"’

=S(k)(alk a, fijk-+l fiku; ’)s(k)(x;?)s(k)(’d 3k., n+ ku; 1)

" au; )u()h(v).s()01,...,, , +
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Thus, denoting by L the left-band side of (I.I), we obtain
357

The sum over e ej is equal to ,-t(l). ,t(j).
By the multiplicativity of the function S(k)(nl nu;r and the properties of the M6bius

function , we have

H {{(Cl + 1). .(cj+ 1)-Cl...cj} I#(pb- 1)h(p) +Cl...cjl#(pb- 1)II#(p)-AO,) }
b<a

x l’I (*l + )" "(’:j+ )1(/’- )(t’)l

Thus

t "k(l)" ’k(j)I (r,)II h(’)

x H (1 +l)’’’(j+I)lh(p)t"

If 1, IF, then b and c cj a 0. We thus arrive at our result.

EXAMPLES. If j t in the Theorem, we obtain the result given in [2]; that is,

s()(a;,) ,() (r,) I’[ (I a(v) + c l(v)- a(v) (2.2)

or 0 according as r,tln or not. For special cues of (2.2) we refer to [2]. If g(.)= nku and h(n)=
for all n N, then the function $(t)(n ,nu;r reduces to the generalized Ramanujan’s sum given in

[5]. If in addition, t 1, then we obtain the generalized Ramanujan’s sum given in [6]. Thus the

Theorem could be specialized to those functions, too.
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