COINCIDENCE POINTS IN UNIFORM SPACES

T. KUBIAK

Institute of Mathematics A. Mickiewiez University Matejki 48/49 60-769 Poznan, POLAND

and

Y.J. CHO

Department of Mathematics Gyeongsang National University Jinju 660-701, KOREA

(Received April 13, 1992 and in revised form May 30, 1992)

ABSTRACT. In this note, we give a coincidence point theorem in sequentially complete Hausdorff uniform spaces. Our result reduces to a result of Acharya [1].

KEY WORDS AND PHRASES. Uniformity, sequentially Hausdorff uniform spaces, fixed points, and coincidence points.

1991 AMS SUBJECT CLASSIFICATION CODE. 54H25.

1. INTRODUCTION.

Let (X, \mathfrak{U}) be a uniform space and let N denote the set of all natural numbers. If p is a pseudometric on X, we let

$$V_{(p,r)} = \{(x,y) \in X \times X : p(x,y) < r\}(r > 0).$$

For a family P of pseudo-metrics on X generating the uniformity \mathfrak{U} ,

$$\boldsymbol{\mathfrak{G}} = \{ \bigcap_{i=1}^{n} \boldsymbol{V}_{\left(\boldsymbol{p}_{i}, \boldsymbol{r}_{i}\right)} : \boldsymbol{p}_{i} \in \boldsymbol{P}, \boldsymbol{r}_{i} > \boldsymbol{0}, \boldsymbol{n} \in \boldsymbol{N} \}$$

is a base of U.

If $V = \bigcap_{i=1}^{n} V_{(p_i, r_i)}$ and k > 0, define $kV = \bigcap_{i=1}^{n} V_{(p_i, kr_i)}$. If $Y \subset X$, then $\mathfrak{U} | Y = \{U^Y : U \in \mathfrak{U}\}$ is a uniformity on Y, where $U^Y = U \cap (Y \times Y)$. Moreover, $\mathfrak{g} | Y = \{V^Y : V \in \mathfrak{g}\}$ is a base for $\mathfrak{U} | Y$. For more details, see [1] and [2]. We need the following lemma and a theorem of Acharya ([1]) for our main theorem:

LEMMA 1.1. Let $Y \subset X, V \in \mathfrak{g}$ and $\alpha, \beta > 0$. Then we have the following :

(1)
$$\alpha(\beta V) = (\alpha \beta) V.$$

(2)
$$\alpha V \circ \beta V \subset (\alpha + \beta) V$$
.

(3)
$$\alpha V \subset \beta V$$
 if $\alpha < \beta$

(4) $(x,y) \in \alpha V_{(p,r_1)} \circ \beta V(p,r_2)$ implies $p(x,y) < \alpha r_1 + \beta r_2$.

(5)
$$\alpha V^Y = (\alpha V)^Y$$
.

Recall also that for each $V \in \mathcal{G}$ there exists a pseudo-metric p (called the Minkowski pseudo-metric of V such that $V = V_{(p,1)}$.

THEOREM 1.1. Let (X, \mathfrak{A}) be a sequentially complete Hausdorff uniform space and let $f: X \to X$ be a mapping. Let $0 < \alpha < 1$. If for every $V \in \mathfrak{G}$ and $x, y \in X$,

$$(fx, fy) \in \alpha V \text{ if } (x, y) \in V,$$
 (1.1)

then f has a unique fixed point in X.

2. MAIN RESULTS.

Now, by using Lemma 1.1 and Theorem 1.1 we give our main theorem:

THEOREM 2.1. Let (X, \mathfrak{A}) be a uniform space. Let A be a set in $X, S, T: A \to X$ be mappings and $S(A) \subset T(A) = Y$. If $(Y, \mathfrak{A} | Y)$ is a sequentially complete Hausdorff uniform space, $0 < \alpha < 1$, and

$$(Sx, Sy) \in \alpha V$$
 if $(Tx, Ty) \in V$ (2.1)

for every $V \in \mathfrak{g}$ and $x, y \in A$, then there exists a point $u \in A$ such that Tu = Su.

PROOF. As in [3], define $fa = S(T^{-1}\{a\})$ for $a \in Y$. Then f is a well-defined self-mapping of Y. For if $b_1, b_2 \in fa$, there exist $x_1, x_2 \in T^{-1}\{a\}$ such that $b_1 = Sx_1$ and $b_2 = Sx_2$. By (2.1), for any $V \in \mathfrak{g}$ we have $(b_1, b_2) = (Sx_1, Sx_2) \in \alpha V$ if $(Tx_1, Tx_2) \in V$, and since $(Tx_1, Tx_2) = (a, a) \in V$, it follows that $(b_1, b_2) \in \alpha V \subset V$. Since S(A) = Y, we have $(b_1, b_2) \in V^Y$ for each $V \in \mathfrak{g}$. Thus, since $(Y, \mathfrak{A} \mid Y)$ is Hausdorff, it follows that $b_1 = b_2$.

Now, let $a, b \in Y$, $x \in T^{-1}\{a\}$ and $y \in T^{-1}\{b\}$. By (2.1), $(a,b) = (Tx, Ty) \in V$ implies $(fa, fb) = (Sx, Sy) \in \alpha V$ for every $V \in \mathfrak{g}$. Hence, by Lemma 1.1(5), for each $a, b \in Y$ and $V \in \mathfrak{g}, (a,b) \in V^Y$ implies $(fa, fb) \in (\alpha V)^Y = \alpha V^Y$. Thus the mapping $f: Y \to V$ satisfies all the conditions of Theorem 2.1. Consequently, there exists a unique point $a \in Y$ with fa = a. Therefore, for each $u \in T^{-1}\{a\}$, we have $Su = S(T^{-1}\{a\}) = fa = a = Tu$, that is, u is a coincidence point of S and T. This completes the proof.

REMARK. If we put A = X and $T = id_x$ (: the identity mapping on X), then Theorem 2.1 reduces to Theorem 1.1.

REFERENCES

- ACHARYA, S.P. Some results on fixed points in uniform spaces, <u>Yokohama Math. J.</u> 22 (1974), 105-116.
- 2. CSASZAR, A. General Topology, Akademiai Kiado, Budapest, 1978.
- 3. GOEBEL, K. A coincidence theorem, Bull. Acad. Pol. Math. 16 (1968), 733-735.

404