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ABSTRACT. We extend the spectral analysis of differential forms on the disk (viewed as the
non-Euclidean plane) in recent work by J. Peetre L. Peng G. Zhang to the dual situation of
the Riemann sphere S2. In particular, we determine a concrete orthogonal base in the relevant
Hilbert space L,2($2), where - is the degree of the form, a section of a certain holomorphic
line bundle over the sphere S2. It turns out that the eigenvalue problem of the corresponding
invariant Laplacean is equivalent to an infinite system of one dimensional Schr6dinger operators.
They correspond to the Morse potential in the case of the disk. In the course of the discussion

mny special functions (hypergeometric functions, orthogonal polynomials etc.) come up. We
give also an application to "Ha-plitz" theory.

KEYWORDS AND PHRASES: Pdemann sphere, quantization, reproducing kernel, invariant

Cauchy-Riemann operator, invariant Laplacean, Morse operator, Hankel operator, hypergeomet-
tic function, orthogonal polynomial
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0. INTRODUCTION.
We wish to extend the considerations in a recent paper [10] valid for the unit disk D or,

equivalently, the upper halfplane U (regarded as a model of the non-Euclidean (or Lobachevskii’)
plane) to the case of the Riemann sphere S=. That is, we shall pass to the dual symmetric space.

Let us briefly recapitulate the main contents of [10]. There we studied certain weighted L2-

is Planck’sspaces over D depending on a parameter a > -1 (in the physical interpretation E-
constant) and described their orthogonal decomposition under the action of the Moebius group
SU(1,1). This decomposition was found using a certain invariant Laplacean. Special attention

was payed to the discrete spectrum. In particular, explicit orthogonal bases in terms of hyper-
geometric functions were found in each of the irreducible discrete parts in the decomposition (each
isomorphic to a space in the holomorphic discrete series). The orthogonal bases were then used to

study "Ha-plitz" type linear operators acting between these spaces (boundedness, compactness,
Schatten-von Neumann properties).

In this paper we, thus, carry over the same program to the case of the sphere. A major difference
is now that the corresponding invariant Laplacean has only discrete spectrum. Otherwise the

presentation is remarkably parallel. Again lots of interesting special functions (hypergeometric
and other) arise throughout the discussion, which in fact has been part of the motivation for
undertaking this study. We further elucidate several points in the hyperbolic case left over in [10],
for instance the rather mysterious appearance of the Morse potential in the parallel treatment in

We should also say what we intend by the word "quantization" (occurring in the title). We use
it mainly in the sense of Berezin [1] (cf. [8]). Thus we view quantization as a theory of deformation
of line bundles, and the relevant Hilbert spaces, arena for the operator theory involved, arise really
as spaces of sections of these line bundles.
Most of the results of this paper should extend rather easily to the case of P’ (complex projective

space, which is the compact counterpart of the complex unit ball1). Of course, all this is just a
tiny portion of a vast program and we expect similar results to be true for arbitrary Hermitean
symmetric spaces, both compact and non-compact ones.



226 J. PEETRE AND G. ZHANG

The plan of the paper is as follows. In Section 1 we uncover the structure of the eigenspaces
of the invariant Laplacean, in particular we find an explicit orthogonal basis in them. A novelty
is perhaps that we determine the spectrum factoring suitable functions of the Laplacean. In fact,
the same thing can be done on any Riemann surface so we have deferred the details of the proof
to an appendix (as a Section 6). In Section 2 we use the orthogonal basis from Section 1 to write
down the reproducing kernels involved. Some applications in the spirit of Vilenkin’s great book
[12] are given in Section 3. Many more such applications are possible! In Section 4 some operator
theory consequences of the previous discussion are briefly indicated. Lastly, in Section 5 we return
to the basis vectors and consider the differential equations satisfied by them. In particular, we

write down the "periodic" analogue of the Morse operator.

1. THE ORTHOGONAL BASIS.
We shall work within a fixed coordinate neighborhood with coordinate z obtained by deleting

one point cx ("the point at infinity"). In other words, S2 will be identified with the extended
complex plane : CLJ {cx} (or the complex projective line I1). Near cx we use instead of z the

1
coordinate

The essential change compared to [10] is that the factor 1 -Izl2, everywhere, has to be replaced
by 1 + izl (nd X z by 1 + zt).2 Thus, the invariant Cauchy-Riemann operator is given by

O (1 + Izl) 0
Similarly, the invariant Laplacean is

A, --(1 + Izl) 02 ,9

0zO5 + ,(1 + Izl)’b-7
The relevant group is now the compact group SU(2), consisting of all 2 x 2 complex matrices

=(ac db ) such that ad- bc l’ c -’ d ’ and the actin we have in mind is

U). f(z - f((z))(t(z))_. f(az + b
z + d)(z + d)"

In this notation we have
DU() U(+2)D.

Notice that, compared to [10], we have changed r, to -r, in the last formula. Also we are going
to assume that r, is an integer > 0. This is very convenient, as we are going to work with the
Hilbert space L2’u(S2) of functions with the metric

da(z)
Ilfll If(z)12(1 + Izl)"+’

where da is the normalized area measure, da(z) dxdy.
da(z)REMARK. The measure ( + [z[2)’+ is sometimes named after various authors: Berezin, Berg-

man, Dzhrabshyan, ttarish-Chandra, Kostant etc. lom a highbrow point of view we should,strictly speaking, consider the elements of this space not as functions but as sections of an Her-mitean holomorphic line bundle over ,5’2 (differential forms of degree -). In fancy language, thePicard group of p1 is isomorphic to/’, so the holomorphic line bundles over P1 are labeled by adiscrete parameter ,. If we interpret the formula w az + b
cz + d

as a change of coordinates on P,the family {(cz + d)"} gives the transition functions.
The subspace of analytic function in L2,’($2) will be denoted by A2,’. It is finite dimensionaland consists precisely of all polynomials of degree _< ,, so that dim A2," u + 1. This givesthe eigenspace of A, corresponding to the lowest ("zeroth") eigenvalue 0. To describe the othereigenspaces we must, following the same pattern as in [10], first analyze the nullspace of the(l + 1)-st power/)t+ of/). We denote this space by Bt, B ker/)+ Cl L2,’($2). The l-th
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eigenspace A’ (I 0, 1, 2,... ), with the eigenvalue l(v + 1 + 1), is obtained as the orthogonal
complement of Bt-1 in

’ 0)A =Bt(Bt-1 (B-1

This follows from the following lemma.

LEMMA 1. Let D, L2’u+2 L2’ be the adjoint of) ), considered as an operator from L2’
into L2,’+2, that is,

D.

Then we have the factorization

D,,D,+2 ...D,,+2tDt+l A(A -(u + 2))(A 2(u + 3))... (A --l(u + 1 + I)).

Its proof relies on the following identity:

/D D+2/ (u + 2).

For details see the Appendix, where the proof is given in the context of an arbitrary Riemann
surface equipped with a metric with positive Gaussian curvature.
Now we begin to uncover the structure of the space Bt.

LEMMA 2. Every global solution of the differential equation Dt+l f 0 has the unique represen-
tation

()

where each gj 0 O, 1,..., 1) is a polynomiM of degree <_ u + 21. However, the -j highest
coecients of 9j are determined by 9,..., 9+1. In particular, the dimension of Bt is + 1)( +
+).

PROOF: That every lution of Dt+ has the representation (1) with 9 entire in z follows in

[10] relying the differential equation. In order to see which are the restrictions on 9 at we

1me the ehge of able z Then we find

(1
Zf=,()

,:o

1 z5
=,()z"+’( +z,)

,( ( + lz,)
3=0

( + I)
r=0 3mr

1
For instance, the l-th coecient in the outer sum is, up to sign, just gt()z+. It foows that gt

must be a polynomial of degr v + 21. Similarly, the (l- 1)-st coefficient is, again up to sign,

I- 1 )zU+21_9’(1+ + ’-’(7-
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It follows that gt- must be a polynomial of degree _< v+2/-1 and that llt(v+21)+.lt_(v+21-1)
0. (We use the sign to denote Taylor coefficients.) The general statement about the functions
gj follows now readily by induction. It is now likewise clear that

dimBt =v + 21+ 1 + (v + 21- 2 + 1) +..-+ (v + 2 + 1) + (v + 0 + 1)
=(1 + 1)(v + 1) + 2(1+ 1- 1 +-.-+ 1 + 0)

=(l+l)(v+l)+2.(l+l)/ =(l+l)(v+l+l). |
2

Next, we decompose the space Bt under the action of the rotation group SO(2) (the isotropy
group of the origin z 0). The elements of the nth space in this decomposition rhust be of the
form

{z[2(2) f =z"q(),
where q q(t) is a polynomial of degree _< 1. If n < 0 it must vanish to the order -n at the
origin 0: q(t) O(t-"). Similarly, if n > v it must vanish to the order n- v at the point

1
1: q(t) O((1 t)"-u). The last statement follows again by making the substitution z - Z

We then get

(3) f ’-"q(1 X / I1 )"

It follows that we must have -I < n < + v.
Let us now compute the norm of a function of the form (2):

Izl dd
: / ll){ (: / {{)+

’{(1--77) .( + )-+
r rdr

r2"lq(i + r){ (1 + r2)+

{q(t)12t,(1 t)r-,dt {{ql{2.

Here we have introduced pol coordinates, writing z rei, d put

{z{2 r2 1 1 2rdr
with 1 dt

1 + lz{2 1 + r2 I + lzl2 1 + r2’ (1 4- r2)2"

Now we orthogonalize the set of all polynomials in the metric {{ql{. We get then for each

integer n a set of orthogonal polynomials {qt,,(t)}. If we keep n fixed and vary instead we get
an orthogonal basis for the l-th eigenspace A of the operator A,, of the form {e,,t(z)}, where
-1 < n < + v. It will be convenient to set

{z[2
e,,t(z) z"qt,,(

1 4"Il)"

In particular, we see that dim A’" v + 21 + 1 in agreement with Lemma 2. Namely, this lemma
shows that

dimA’v=dimBt-dimBt_{ =(l+l)(v+l+l)-l(v+l)=v+(l+l)2-12-v+21+1.

REMARK. It is convenient to use also instead of the parameter t 2t 1
{z{2 1

Izl 2 + 1; then

1 + t 2t, 1 t{ 2(1 t), dt dr. If ranges from 0 to 1, then tl ranges from -1 to 1. So if
we write Q(tl) q(t), we get the metric (apart from a constant factor 2v+)

_’ )- ).{{QI{ {Q(t,){2(1 + t: (1 t,

Thus if 0 < n < v we have the conventional Jacobi polynomials P"’v-") (up to normalizing
factors). If we agree to use the same notation also in the general case, we can write our basis as
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lzl+ 1 }’

where as before -l < n _< + u. A possibly even better parameter than t is t2 1 t 1 2t
1 -Izl If we realize S as the standard sphere in N (using stereographic projection onto ),
1 / Izl"
it gets an immediate geometric meaning. Namely, if we let 9, ff be polar coordinates about the
north pole, we can write z tan : e’*. It follows then that, indeed, t cos/9.

It should be clear that our result generalizes the classical Laplace series (expansion in spherical
harmonics). This is the case u 0, when the elements are genuine functions, not sections of a line
bundle. For instance, it is well-known that the Ith eigenvalue of the Laplace-Beltrami operator
equals l(l + 1), which agrees with our formula.

Let us study the polynomials

LEMMA 3. It" properly normalized the polynomials qtn, >_ max(--n,n- v), are given by a

Rodrigues’s formula:

(4) qt,(t) t-"(1 t)"- (- t(1

and
l!(n + l)!(v n + 1)!IIq’"ll= Iqt"(t)l=t"(1 t)-ndt (2/+ v + 1)( + l)!

Before passing to its proof, let us introduce some notation. We define the "ascending" factorial

(or Pochhammer symbol)
(a)n a(a + 1)...(a + n 1)

and also the "descending" factorial

(a)= a(a I)... (a n + I) (--1)n(--a)n.
d

Clearly (-)"t (a):t"-". Recall further the useful formula

(a)n (a),(-l)n-’(n 1
which will repeatedly be used in what follows.
Now we proceed with the proof of Lemma 3.

PROOF" By Leibnitz’s formula

q,,(t) t-"(1- t) ()(n + l)-_h(v + l-n)-x
h=0

X t"+t-+h(--1)n(1 t)-"+t-

(5) =(_l)()(n+l)_(v+l_n)t(l_t)t_h
h=0

so it is clear that qtn is a polynomial of degree _< I.
To see that it is exactly of degree we look at the top coefficient. Expand the expression in (3)in a power series in t. Then we see that for large the main contribution to the derivation comesfrom the term

d ’[t.+’(_ --+,t--]t--n(--1)n--tn--(-d 1)
d it21+=(-1)tt- (- (-1)’t-(2/+ v)" t+-t (-1)’(/+ v + 1),tt.

Thus the top coefficient is # 0 and equals (-1)t(/+ v + 1)t. If n < 0, we have
0

(n + l)’[_ (n + l)(n + l- 1)... ( + l- (l + n)...(n + l- (l- h) 1) 0,
provided l- h- 1 > + n or h < -n 1. That is qt,(t) O(t-n). If n > v, we find in the same
way qtn(t) O((1 t)n-’).

Let us consider the integral
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--n( [tn.+l( )--n]
d

(qtn,t 1 t)n-v(-)t 1 dr.

If j < we can integrate by parts j + 1 times and each time the term integrated out clearly
vanishes. So the integral is 0. We conclude that

(qtn,qn) =0 for/

To find the norm, we consider the integral

d t)v_,+t]t(q,n,tt) ()t[tn+t(1 dr.

This time we can integrate by parts times oy to produce the inteal

(-)/ +( )-+

r(+++_++ (++
It follows that

=(/+ v + 1)t/!(n + l)!(v- n + l)! l!(n + l)!(v n + l)!
(v+2l+l)! (y+21+l)(+l)!"

|

LEMMA 4. If n > 0 it is possible to express qtn in terms of the hypergeometric function:

qt,(t) (n + 1), F(l + + 1,-l;n + 1;t).

We recall that

F(a,b;c;z) 2Fl(a,b;c;z)
(a),(b),

.=0
n!(c),

z.

PROOF: We rewrite the coefficient in (4) as

( In)(n + l)’[_(u + n)

_.(_l)n (-l)n (n 4-1)..._.t. (_X)t,(n 4- 1),,,
h! (n + 1

(-/),(n +=(n+l)t h!(n+l)h

It follows that

qt.(t) (n + 1)t(1 t)’ F(n v l,-l;n + 1; _-).
On the other hand, we know, quite generally, that ([6], bottom of page 8)

F(a,b;c;z) (1 z)-bF(b, c a; c;
Z

So that taking a n- u- l, b -1, c n + 1, z we find

qt,(t)=(n+l)tF(l+v+l,-l;n+l;t). |

REMARK. If v _> n we get instead

q,,,(t) (-1)’(v n + 1)tF(/+ v + 1,-l;u- n + 1; 1 -t).

This is in full agreement with [6], top line of page 9.3

2. THE REPRODUCING KERNEL.
We can now determine the reproducing kernel gt(z, w) of the space A’. As {e,,(z)}, -1 <

n _< v + l, is an orthogonal basis, we have by general facts
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(6) I(,(z, w) E "’(z)"’()ll"’ll -="

On the other hand, from the SU(2)-invariance it follows that we must have

tt’t(z, w) (1 4- ztb)t’((i_ + {l)( x + iwl)),.
where X is a function of one variable.

To determine X it suffices to take w 0. Then (5) gives

K,(, 0) 0()11011-/!,

l!, n=0
(7) e,,t(0)=

0, n#0

Izlz(If n > 0 (6) is obvious; if n < 0 it follows from the fact that e,,t(z) z"qu,(i"+ iz,l
and

qt,,(t) O(t-"), so that e,,t(z) O(Izl-).) From Lemm 9. and Lemm 3 (with n 0) we get

Izl l!(t, + l)! -,
h’,(z,O) =l!F(l + v + 1,-/; 1; ..)((2/+ v.+ ’) + v)!

=(2/+ t, 4- 1)-F(l + r, 4- 1,-l; 1;
1 4- Izl)

Thus we draw the following conclusion.

TItEOREM 1. The reproducing kernel in A’ is

(8) Iz- wlKt(z, w) (r, + 21 + 1)(1 4- zff)’F(l + u + 1,-l; 1;
(I + Izl)(1 + Iwl)

In particular (1 0), the reproducing kernel in A2’ is

K0(z, w) (u + 1)(1 + zt)" 1. |

REM,RK. Note also that if u 0 then (writing as before z tan ei)

Kt(z,O) (2/+ 1)(1 + zff)F(l + 1,-/; 1;sin2 })= (2/+ 1)Pt(cos 0)

is the spherical function on S SU(2)/SO(2), where Pt are the Legendre polynomials.

Write
/ Izl

can write this as

3. APPLICATIONS TO SPECIAL FUNCTIONS.
Now we can play some games in the style of Vilenkin’s book [12]. Chap. II, dealing with SU(2),

is especially relevant for us.

Let us use the above formula (8) in conjunction with relation (6). The result is the formula

Izl )qtn( Iwl,,=_tz"a’"q’(1 / Izl 1 / Iwl
I- 1 )o=(v + 21 + 1)(1 + zff)F(l + u + 1,-l; 1;

(1 + Izl)(X + I=,1)

Izl Iwl 2 s and let 3’ be the angle between the vectors z and w. Then we
1 / Iwl
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.=_(( )(1 )) q"()q"()/ll"ll=

-(++ +((_(_;) "
x ( + + ,-; ;-( + ( (

We may view the above the ourier expansion of the fetion to the fight. Th we conclude
that

( + 2 + ) ( + ( )( )
x f(l + + 1,-l; 1;-(t + s 2ts 2(1 t)s(1 s)cos;))e-’"d7

1 t)(1 s)
q’"(t)a’"()/llq’"ll for n .

0 else

This is a mtiplication threm.
Next we invoke the trsvectt (s [4], [15]). It is question of the following bi]ine differenti

expression"

If we let fl transform with weight vl and f2 transform with weight ix2, then the transvectant
7i(fl, f2) transforms with weight ix1 + ix + 2s.

2,, A2,+2/We can now exhibit an isomorphism between the spaces A and which respects the
SV(2)-action (an "intertwining" map). Namely, we take in (8)

ix -ix- 21, v2 1, :f g E A’’+2t .[ K_(z,z) (1 + Izl2)-
This gives an element f E A’u defined by

To see that the map g f indeed is an isomorphism we take g z"+t, -1 _< n _< v + I. This
gives us, apart from a factor, back the basis vector e,t (use Lemma 4):

e,t(z). I

Let {tnm()} be the matrix of action , on the space in terms of the basis {z"+t},
-l < n < n- l, i. e.

n+l
n+! n+lz IIIz t..,()z"+llllz’+ll

The functions tnrn() are expressible in terms of Legendre functions (cf. [12]). Using the isomor-
2,phism constructed above we see that the action of v) on A has the same matrix:
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n+lu"+,,,111.,11 ,
m=--l

If we spell out this in detail, we obtain a relation involving hypergeometric polynomials.

4. HARMONIC ANALYSIS OF OPERATORS.
However, the principal goal of all this business is operator theory. Now we say a few words

what operator consequences can be drawn from our results.
We are interested in linear operators acting between eigenspaces A for different values of

and v (or complex conjugates of such spaces). In the former case we are dealing with "generalized
Toeplitz operators", in the latter case with "generalized Hankel forms" (we identify an operator

’’"’ ). Sofrom a2,’ say, into A’ with the corresponding bilinear form on the product t, A’
it might be justified to use with Nikol’skii’ the ackronym "Ha-plitz" as a unifying concept.
As the spaces involved all are finite dimensional, everything blows down to linear algebra

(matrix theory) or- on a more sophisticated level- representation theory for compact groups.
So, at least in principle, the problem is in a way trivial. We remark however that non-trivial
analysis problems perhaps arise if we allow the parameters and/or v tend to infinity. If we recall
the isomorphism A’ A2,+21 (Section 3), we see also that we have essentially the classical
problem connected with the determination of Clebsch-Gordan coefficients in disguise (see e. g.
[12], S of Chap. 3).
We begin with the observation that it is, in principle, superfluous to consider conjugate spaces.

Indeed, there is a canonical isomorphism from A2’ onto A2,, which is given by

f(z)-+ g(z)= 5’f()
and which intertwines with the group action.

Let us check the intertwining property: If f is replaced by f(az + b
cz + d)(cz + d)", then g(z) gets

replaced by

1

"f-,+ d
(7 + d)"

Z

cz + d)"fk.a/ (cz + d)" g )(cz + d)". |

So in a way the distinction between Hankel and Toeplitz fades away

Let us now look at linear operators from A2’’’ into A2’. Assume, to.fix the ideas, that v[__J_<v
Then the simplest SU(2)-invariant operator from Az’’ into Az, is the Toeplitz type operator TB
with kernel

(0) T(z, ,) f(z)( +

where the "symbol" B is a polynomial of degree < which transforms according to the repre-
(Ifv v’sentation U(t) that is, like a form of degree -3" we get a Toeplitz operator exactly

(multiplication by the symbol).) It will be convenient to refer to the number -t as the weight.
We shall assume that < v + ’. (This will be explained in a more general context below, see

(17).)
In order for the kernel in (10) to have the right transformation properties, that is, to be an

element of the tensor product A’ (R) A,’ we must have

(11) v + v’.

Indeed, the kernel (1 + z@)" behaves as an element of A2’" (R) A2,’ (of "biweight" (-v’,-v’)).
So it is clear that Ts(z, w) has the right behavior in the variable w, this even irrespective of how

f transforms. But, by the same reason, in the variable z the product in (10) transforms then with
weight + v’, establishing (11). |
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As a generalization of (10), we may, following the procedure in [15], consider for an integer s

the operators T(’) with kernel

(12) T(t)(z, w)= (1 + zt)" z
where we agn sume that the symbol B trfforms with weight -t. If a 0, (12) reduces

to (10). In other words: TB T-’). The connection betwn a, s d in generM will be

uncovered now.
As there is no derengagion in the w vable it is agn tfiviM ha we have the correc w

behavior. We require that the product with brackets in (12) be of weight 1 . This gives the

relation

(13) s-t-t/’=l-o or o+s=t+v’+l.

If we apply "Bol’s lemma" (see [4]) it follows that, after the differentation carried out, we have

an expression whose weigth is 1 + o. For the result to have the required weight -t/we then get
an equation which we may write as

(14) s--t/=l+a or a-s=-v-1.

Thus, eliminating s between (13) and (14), we get

(15) t=v-v’+20 or a=
t-(-,/)

which is analogous to the corresponding relation in [15].4 Clearly, (15) implies that

(16) > v- v’

(a must be a positive number), which generalizes (11), and further that =_ v t/’ mod 2. From
(16) we can likewise determine s:

s=l+v+a=l+v+
t-(v-v’) 1 + v+v’ +t

2 2

so both s and a are now expressed in terms of t.s If a 0, (15) reduces to (11) and then s 1 +t/.

Besides (16) there is one more inequality imposed on t. Namely:

(17) < v+v’.

To see this, we observe that if we differentiate the factor (1 + ztO)’-" he exponent goes down

to v’ s a. From this we obtain v’ a > 0, which is in view of (15) the same as (17). |

Thus altogether we have ((16) + (17))

(18) t/- -<’-< +

This agrees with the classical fact that

A2,,, @ A u’ AZ,t
where we sum over precisely the indices occuring in (1) with the same parity as the difference
v- t/’ (see [12], page 177). Thus we have made this decomposition rather explicit. Note that the
range of a is the interval [0, v’].

Let us indicate one application of the preceding connected with Clebsch-Gordan coefficients.
We take the symbol to be a monomial, B(z) z (k 0,1,..., t), and apply the corresponding
operator to a monomial. We observe first that the kernel satisfies

(12’) (e z, eibw)" ei(k-a),,(
.zk (Z, W).
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It follows that the operator intertwines with the SO(2)-action:

t, ),/, ,7,(

where U#f(z)= f(e’z). This again implies that monomials are mapped onto monomials. More
precisely, we have

n’,.z =Ct(n,n’)z" with n=n +k-a,

where the numbers Ct(n,n’) are our version of the Clebsch-Gordan coefficients. (We do not
indicate in the notation the dependence on v and v’.)

For a general symbol this gives

t)(n,n’) Ct(n,n’)(n n’ + a),

where we presently use the hat to denote Fourier coefficients. Now a general operator can, by
the above, be decomposed into a sum of Toeplitz type operators:

It follows that we have the following expression for the Hilbert-Schmidt (S2-)norm:

n=0 n’=0

In particular, we obtain the following orthogonality relation (cf. [9] for a similar result in the
hyperbolic case):

=const
C,(n,n’)C,,(n,n’)llz"ll2llz"’ll2,- o if # t’.

The numbers Ct(n, n’) can also be expressed in terms of the generalizel hypergeometric func-
tion 3F2"

PROPOSITION 1. Ct(n,n’) const. 3F2(-a,v’ s,-n’;-v’, 1 + k a;-1).

PROOF: We have (see (12))

Tz, (1 q- z@ zz zk(1 + w" (q + iw12),+2

., a(w)

0.= (1;-(’ 1;-+x

., da(w)
x (1 4- zff)’’-ffJw (-1 4-Iwl2)’’+2
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The integral gives a contribution only if j + h n’. In this case it reduces to

(z / lwl)-’+ r(1 - r2)"’+2 (1 + p2)"+:

B(.’ + ..’- ’ + ) r(.’ + )r(.’ ’ + z)
r(’ + 2)

n’!(v’- n’)!
(v’ + 1)!

Therefore we obtain

n’!(u’-(u,+1)!n’)! (- 1)3(-a)3j! (-1)-3(-k)’-3(- 1)3 (u’ s)3 (n’-(u’j)!(u’-j)!- n’)!
C,(, ’)

(_I)n’ (-a)3(.--l)’(-k)-(’- *)3 u’!(n’)’f
(.’+ )! ( +

_
),

3=0

(-:)’(-). (_:), (-b(.’- *),(--’),

(-:)(-)
u +1

F(-, s,-n;-u’,l + k-a;-1)

and we e done. ]
FinMly, duplicating what is done in [10] d [14] in the hyperbolic ce, we say a few words

about SU(2)-invadt Ha-plitz operators from A," into A’" (it is thus the speciM ce t’ 0,
u of the generM situation). Such operator can be defined by the bilinear foa

C

da(z)(H(’)f,g> f(z)B(z)D’g(z)(: +
(Thus, B(z) is the symbol of the operator H(’s).) If V is the isomorphism from A2’"+2 onto
2,A displayed in Section 3, then it is easy to verify (for details of this computation see [14]) that

(H’S))*V, which is thus an operator from A2,+2t to itself, is one of the Toeplitz like operators
T(t) considered earlier in this Section.

5. DIFFERENTIAL EQUATIONS SATISFIED BY THE BASIS VECTORS.

In Section 1 we constructed the basis {e,a()} *"q"(i I1)
where -l _< n _< + v, in

the space L,’(S). Now we write down various ordinary differential equations connected with
these functions.

First of all, as the polynomials qm(), for n fixed, are orthogonal in the metric

Ilqll Iq(t)l=t"(1

it is easy to see, by general principles governing orthogonal polynomials, that they satisfy the
differential equation

,,d )_,,+adq]-t-n(1- t) - tnq-’(1-t - =l(u+l+llq

or, carrying out the differentiation,
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(19)
d q dq

-t(1- t)-- [!n + 1)(1-t)-(v-n+ 1)tfl- =l(v+l+ 1)q.

n+l --(u+2)t

This is of course just a special case of the hypergeometric equation in slight disguise.
On the other hand, we know by their very construction that the functions e,t(z) satisfy the

partial differential equation

-(1 4- Izl2)2OOf 4- v( 1 4- Izl2)0f l(v -4- 4- )f
0 0

(notation: 0 zz’ 0 ).
Of course, separating variables, this has to lead back to the same equation (1). Let us verify this!

IzlDifferentiating the relation f(z)= z"q(
1 + i1

yields

Z Zn+l

--znqt(1 + 112) q’(x + Izl)’
OOf=q" znIZl2 z"

(1 + Il) + q’ l- + 1)(1 + I1) (1 + I=lp"

Adding up and using Izl 1
1 -4-Izi2’

1- t=
1 + Izl

we find

-(1 4- Izl2)2Obf 4- u(1 + IzlZ):Of I-t(1 t)q" 4- (v 4- 2)tq’ (n + 1)q’lz".

which apparently yields (19). |

Let us return for a moment to the "hyperbolic" case (disk or halfplane). Actually even before
the paper [10] was ever conceived, the same eigenvalue problem had been studied (unknown to
us at the time!) in [3] in a different context (in connection with the Feynman integral "with
affine kinetic variables") and there it had essentially been reduced to a single one dimensional
SchrSdinger (or Sturm-Liouville) equation, namely with the Morse operator

dy2 t- D(e-2 e-) (D a constant)

in L2(A). Recall that this operator first appeared as a phenomenological model for a diatomic
molecule [7].6 Indeed, this is intimately related to the "continuous" orthogonal basis constructed
in [10]7, viz.

where Pt(t) are" certain orthogonal polynomials considered by Romanovski [11]. They are (see
[11]) orthogonal with respect to the weigth t+Ze-/, are given by a Rodrigues formula

pt(t) tt+2e/t ( d ) [t2t-’-2e-1/t

and satisfy an ordinary differential equation:

(20) t2P’’ + (1 at)P’ l(l- er 1)P.

It is very curious that essentially the same differential equation in two slightly different guises
appeared in the same year 1929s mad in two completely different fields: in statistics, respectively
in quantum theory.

Let us formally work out the connection.
In multiplicative language the Morse operator is given by (see [7])

: -[2" + 2’ + (-2 + v + )] +
2

where v 2 (= in the notation of [3]). Its eigenvalues are the numbers
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+1 +1
2 "2 =/(a+l-/) (/=0,1,...,[a+2 1]).

Write

Differentiating we find

(() P()(’e-
,, =p,,()1/4(-4e- + p,()(_.a(-a + 1/2(--2)e-+

+ P’()(-(- + (-)e-+
+ P()((y 1)(- -,- -+ )e-[p,,g {-4 p,=, ,,a + ()(-(3 )- +-=)+
+ P()(( 1)-= -’ + )]-.

Put or { . It follows that (we omit the factor { e- d write P etc. instead of

--2=" P"t= + P’(-2( )t + ) + P((3 )- 3t-’ + at ),
1--1{’ P’t + P(3 ),

--2 --1(-{’+{+a)=P(-at + t + ).
Hence

[P"t + P’(-2( 1)t + 1 2t)+

+t +- -t +-;t- +)1+ P((- 1) -t-’ -2 t-1 --2

a 2a +4a + 1.] a + 1)2PP"t2 + P’(1 at) + P.
4 + 2

[P" + (1 at)P’].
It follows that (20) is indd a consequence of the eigenvMue equation

It is now natM to k the question: What ia the analogue o[ the Morae operator ]or the
aphere?
To swer this question we must first digress a little.

DIGRESSION: DUCTION OF A SELF-ADJOINT SECOND ORDER OINARY DIFFER-
ENTIAL EQUATIONS TO NODAL FORM.

Consider a -adjoint eigenvMue equation of the form

u_w_d dq]wa +bq=q

in L2(I, wdx), where I is some intervM C d w is a positive weight. Furtheore, we sume

that the coecient a is positive and, similly, that b is reM. So the operator is foy seg-
adjoint d we expect it to be sebounded from below on a stable domMn. We wish to reduce
it to the normM

-f" +
in Le(J, dx), where J is some other intevM (the ce a w 1). We will thi of V the
potentiM

We then have

[’qll2 lqlwdx lf()’mw dx.
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If we require this to coincide with

we must have rnw dx d(x) ’dx, which gives the following condition.

CONDITION I. [m2w- I’11 o m- w1/2
(There are two cases, according to whether is a sense preserving diffeomorphism or a sense

reversing diffeomorphism.) Derivation yields

f,,q m+frn’,
d

(waq’) f"’2mwa + f’(’m)’ f’d- wa + ’m’tw + fm"wa + (wa)’(f’’m + fm’).

Thus we get a second condition.

CONDITION II. (’)a 1 or ’ 4- 4. f -’-r.

In this hypotheses (I + II), actually, the coefficient of f’ vanishes:

(qo’rn)’wa + p’m’wa + (wa)’’m 0 :

(division with ’rnwa) (o’rn)’ m’ (wa)’
4-----I--------

p’m m wa

p’rn2wa const

and the latter is a logical consequence of & II. Now we give a look at the coefficient of f. This
gives, finally,

V=-(m’wa)’ +b |
mw

EXAMPLE.The multiplicative Morse operator

-(z’) + be.

In this case a x2, w 1. (The exact form of b is not of interest to us at the moment.)
Condition II gives ’ 1, log x, while Condition gives m x’} so x-1/2 f(log x), which

is the transformation on p. 89 of [31 (see formula (3.12)). Thus we find

v -(- " (-+b=- +b=-,+b,

so we obtain the "additive" Morse operator.
After this digression we return to the case of the sphere. It is convenient to put p v- n (and

forget the v), so the equation that interests us is

d
-t-"(1 t)- t,,+( 1 t)+ dq

l(n + p + + 1)q.

Thus it is a case with a t(1 t), b 0, w t"(1 t)p. From Condition II we get

1(’) (1 t)

This time we choose the minus sign:

The integration is performed by means of the substitution cos2 3"
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0dt sin . cos 23 dO dO.
0(1 cos 1

Thus the parameter 0 is the same as in Section I. We are definitely on the right track! From
Condition we now get

m
x/’t(1 t)t"(1 t)v t+(1 t)+1/4

Logarithmic differentation now yields

1 1m’=m. -(+1/4)y+(l+)]-=-
11 + ( + i) "+- t)+’}+

( + g) t’+’+(1 t)+’ (1

Thus we find

"- t)+x- t’+- t)-m’wa -(-ff + )t (1 + ( + -) (1

(m’w)’ ( + 1( 1/4)t--l( t)+,-_
-( + 1( + 1 1/4ItS-t(1

)t-1/4(1-t)-1/4+(+.)(.+1-- "+-1/4-( + 1/4( (1 -whence finally (see boxed formula)

mw t’-(1- t)-1/4

V (m’wa)’ . 1
mw =(" + i)(" ’) + ( + i)( i)]--+

n_3 3-[( + )( ) + ( + 1/4)( )]._ 1
4 + l’--t

_3 3 3-[-7 .+.--+-.+.-11

The constant term here can be rewritten as follows:

Thus we end up with the SchrSdinger operator

d2f (n4_ :_1

1(.__1 )--+ tan2+cot2-i )(p-1/2)+1/2 f=l(n+p+l+l)/

which is the sought "periodic" analogue of the Morse potential.
We may summarize the above discussion as follows.

PROPOSITION 2. The eigenvMue problem for the invariant Laplace operator for -v-forms on
S2 is equivadent, in a sense made precise in the foregoing, to an infinite system of synchronous
Schrfd/nger (or Sturm-Liouville) eigenva/ue equations on the interva/.(0, r). |

REMARK. Why is there only one equation in the hyperbolic case? It is because in [10] we used
the halfspace realization of non-Euclidean geometry, so we have a dilation invariant situation,



HARMONIC ANALYSIS ON THE QUANTIZED RIEMANN SPHERE 241

which thus accounts for the "degeneracy". If we were to use the disk realization, we would

certianly again get infinitely many equations. (One has only to substitute, in the above formula,
the trigonometric functions by their hyperbolic ("alcoholic") counterparts tanh and coth .) We
do not know if any of this has any bearing to physics whatsoever.

6. APPENDIX. FACTORIZATIONS OF CERTAIN DIFFERENTIAL OPERATORS ON A
RIEMANN SURFACE.
We continue the computation in [10], remark in Section 3.
As there, we let X denote a Riemann surface equipped with an Hermitean metric, in terms of

a local coordinate z given by ds2 (z)ldzl. We consider t,-forms locally given in a coordinate

neighborhood (with coordinate z) by f f(z)(dz)". If we make a change of coordinate (z X(z))
then these coefficients experience the change f(z) ,--+ f(X(z))(X’(z))", 9(z) g(x(z))lx’(z)l2.
(Notice that the parameter v plays in this Section the same rrle as v/2 in (the rest of) [10], while

compared to the rest of the present paper it is the same as -v/2.) We denote by L2’"(X) the

space of square integrable v-forms, that is, f E L2’(S2) if and only if fx
0 0

Let us write 0 z’ (Wirtinger operators). The invariant Cauchy-Riemann operator

is given by
D -’.

We further set

D,, -0 + (r, 1)
Og
g

It may be viewed as the adjoint of/) =/),, regarded as an operator from L2,u into L2’-1. In
particular, it maps L2,-’ into L2,. (In [10] we interpreted D as the "metric" connection on

the sheaf of all holomorphic v-forms.) The corresponding Laplace operator is defined by

A A,, D,,/).

Written out it is
A --g-’0 + r’g-2(Og).

In [10] we had, for some reason, written the factors in a different order. We now explain this

discrepancy better.

It is convenient to set e (= 01ogg). In this notation Du -0 + (t, 1)e. Furthermore,
g

we let
g -2g-te -2g-t(-) -2g-1 t0(log g).

be the Gaussian curvature. Then we have the following lemma (in a lbcal coordinate neighbor-
hood).

LEMMA. [0,/)] --e/), [/), e] -K.
PROOF" It is clear that

[o,D] [o,-’] 0(-’) --(0) -D.

Kg, we findOn the other hand, as by definition e - -K. I[,] [-’,] -’(0)

COROLLARY. /D+, D/ + K.
PROOF: We get

/)D+, b(-O + t,e) -0/) + [O,/)] + t,e/ + t,[/), e]

-o + g (-0 + ( )) K.
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From now on we assume that we have a metric with constant curvature K. We claim that one

can define recursively polynomials Or(T) (where the letter T stands for an indeterminate) such
that

D,,D,,_I D,,_D+a Ot(A).

Indeed, if 0 this is just the definition of A A, with O0(T) T.
Assume that Ot_l is already defined and multiply the corresponding relation (l- 1 instead of

l!) with A from the right. This gives:

D,,D,_I ...D,_(#_I)DD,D O-I(A)A.

Consider the operator/)tD. We find using the corollary repeatedly (the first time we apply it
with v replaced by v- 1, the second time by v- 2, and so forth)"

As, summing the arithmetic series, (u 1) + (u 2) +... + (v l) i(2,-0, it follows that

In other words, we can take

K)Ot-I(T)Or(T) (T + l(2v 1 -l)y

or, solving this recursion with initial condition O0(T) T,

O,(T) T(T + (2v- 2)-) (T + 2(2v 3)-)... (T + l(2v 1 l)-).
Altogether, we have now established the following result.

THEOREM 2. We have the following factorization

D,,D,_... D,_,/)TM A(A + (2 2)-) (A + 2(2v 3)-)... (A +./(2v I -l)). |

We conclude with several remarks.

REMARK. Introducing the graded vector space L ]e L2’u, where the summation is over some

remainder class of the indices u mod Z, we can regard the operator /) as an endomorphism
of L and, similarly, we can define an endomorphism D on L extending D, L2’" L2’"+1.
Then one can get a more elegant formulation of the above results. In particular, we can write
D,D,_...D,,_D+ more compactly just as D+/)+. This is in line with how it is done in
cohomology theory.
REMARK. To some extent the purported generality of an arbitrary Riemann surface is illusory,
as by the uniformization theorem one can reduce oneself to the situation of a simply connected
manifold, that is, either the disk, the disk or the ("parabolic") plane. One can then always assume

that the metric is given by
1

g-
(1 + K--)2"

It follows that
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bb32J the (second) relation in the lemma can be written [/, e0] 1,
Putting co(z)= 5/(1+ ,,
Thus the operators /) and (multiplication by) e0 formally span an algebra isomorphic to the

"Weyl algebra" (see [2]). We do not know what the deeper consequences of this observation are,

if any.

Footnotes. Note that numbers on the left corner of the following footnotes havebeen cited in the text.

For this case see [13].
2For a unified treatment one could put oneself in the general situation of a Riemannian manifold with constant

Gaussian curvature. Cf. Appendix.

3If one of the parameters a, b of that formula is a negative integer, then the coefficient of the second term to the

right vanishes, so get

r()r(c b) F(a,b;a + b + 1; z).F(a,b;c;z) r(- a)r(2
4There we wrote, for some reason, 2t in place of t.
Sln [15] the parameter analogous to was used to label the operator. In retrospect, see that this was perhaps
not the most natural choice.

6We are greatful to Thierry Paul for acquanting us with the contents of [3], in particular, the r61e of the Morse
operator, during a memorable "workshop" at the Mittag-Leffler Institute (fall ’90).
7In [10] there is also given a "discrete" orthogonal basis, which is the one which is closest to the basis encountered
in the present paper (Section 1). In view of what is done in [9] one may also ask what is the analogue of the Morse
operator for a strip.
SThis is also the year of the wedding of the parents of the senior of the two present authors!

REFERENCES

1. BEREZIN, F. A., General concept of quantization. Commun. Math. Phys. 40 (1975), 153-
174.

2. BJ(RK, J.-E., Rings of differential operators. North Holland, Amsterdam, 1979.
3. DAUBECHIES, I., KLAUDER, J. and PAUL, T., Wiener measures for path integrals with

a.ffine kinetic variables. J. Math. Phys. 28 (1987), 85-102.
4. GUSTAFSSON, B. and PEETRE, J., Notes on projective structures on complex manifolds.

Nagoya Math. J. 116 (1989), 63-88.
5. HELGASON, S., Groups and geometric analysis. Academic Press, ondon, 1984.
6. MAGNUS, W. and OBERHETTINGER, F., Formulas and theorems for the functions of

mathematical physics. Chelsea, New York, 1949.
7. P. MORSE, Diatomic molecules according to the wave mechanics. II. Vibrational levels.

Phys. Rev. 34 (1929), 57-64.
8. PEETRE, J., The Berezin transform and Ha-plitz operators. J. Oper. Theory 24 (1990),

165-168.
9. PEETRE, J., Orthogonal polynomials arising in connection with Hankel forms of higher

weight. Bull. Sci. Math. (2) 116 (1992),4.
10. PEETRE, J., PENG, L. and ZHANG, G., A weighted Plancherel formula I. The case of

the unit disk. Applications to Hankel operators. Technical report, Stockholm University, 1990.
11. ROMANOVSKI, M. V., Sur quelques classes nouvelles de polyn6mes orthogonaux. C. R.

Acad. Sci. Paris 188 (1929), 1023-1025.
12. VILENKIN, N. JA., Fonctions spciales et thorie de la representations des groupes.

Dunod, Paris, 1969.
13. ZHANG, G., A weighted Plancherel formula II. The case of the ball. Technical report No. 9,

Mittag-Leffier Institute, 1990/91.
14. ZHANG, G., Hankel operators between Moebius invariant subspaces. Math. Scand. (to

appear).
1. ZHANG, G., Tensor products of weighted Bergman spaces and invariant Ha-plitz operators.

Math. Scand. (to appear).


