
Internat. J. Math. & Math. Sci.
VOL. 16 NO. 2 (1993) 373-384

373

ARITHMETIC FUNCTIONS ASSOCIATED WITH
THE INFINITARY DIVISORS OF AN INTEGER

GRAEME L. COHEN and PETER HAGIS, JR.

School of Mathematical Sciences Department of Mathematics
University of Technology, Sydney Temple University
Broadway, NSW 2007, Australia Philadelphia, PA 19122

(Received November 21, 1991)

ABSTRACT. The infinitary divisors of a natural number n are the products of its divisors of

the form pu2, where pV is a prime-power component of n and ya2 (where ya 0 or 1)
is the binary representation of y. In this paper, we investigate the infinitary analogues of such

familiar number theoretic functions as the divisor sum function, Euler’s phi function and the

Mbbius function.
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i. SOME PRELIMINARIES

Let I {p2 p is a prime and a is a nonnegative integer}. If n is a natural number

greater than 1 then it follows easily from the fundamental theorem of arithmetic and the fact

that the binary representation of a natural number is unique that n can be written in exactly
one way (except for the order of the factors) as a product of distinct elements from I. We
shall call each dement of I in this product an/-component of n, and we shall say that d is

an/-divisor of n if every/-component of d is also an/-component of n. From the discussion

in the first four sections of Cohen [1], it follows that the set of/-divisors of n is equal to the

set of infmitary divisors of n. (See Section 2 in Hag’is and Cohen [2] for a concise definition of

iniinitary divisors.) If d is an infmitary divisor (or/-divisor) of n, we write d [o n. For every

natural number n, 1 [oo n.
Now suppose that n P1P2... Pt, where P1 < P2 < < Pt are the/-components of n.

We shall denote by J(n), so that J(n) is the number of/-components of n (with J(1) 0).

DEFINITION 1. The infinitary Mbbius function, #oo, is given by

ttoo(n) (-1)J() (I.I)

and the infinitary phi function, oo, is given by

oo (1) 1, oo (n) H (5 1) =, 1 if n > 1. (1.2)

According to Theorem 13 in [1], if too(n) and aoo(n) denote the number and sum,
respectively, of the infinitary divisors of n, then:

too(n)-- 2 J(’0, (1.3)
J(-)

aoo(n) H (PJ + 1). (1.4)
j=l
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REMARK 1. We have ao(n)o (n) o(n2).
DEFINITION 2. If d is the greatest common infinitary divisor of the natural numbers m

and n, we shall write (m, n)o d. If (m, n)o 1, we shall say that m and n are/-prime.

REMARK 2. For every natural number m, (m, 1)o 1.

REMARK 3. If (m, n) 1, then (m, n)oo 1.

REMARK 4. If d Ioo n, then d and n/d are/-prime.

DEFINITION 3. The arithmetic function ] (where ] is not identically zero) is said to be

I-multiplicative if (m,n)oo 1 implies that f(mn)= f(m)f(n).
REMARK 5. If jr is I-multiplicative, then ] is also multiplicative.

The following result is obvious.

TtlEOttEM 1. Suppose that f and g are I-multiplicative functions. Then f(1) 1, and fg
and I/I are I-raultiplicative functions. If g(n) # 0 for every n, then f/g is I-multiplicative.

From (I.I), (1.2), (1.3), (1.4), we have:

THEOREM 2. Each of the functions poo, oo, ’oo, aoo is I-raultiplicative.

TItEOREM 3. Suppose that f is an I-multiplicative function. If F(n) Ealoon f(d) (where
d runs over all of the infinitary divisors of n), then F is also an 1-multiplicative function.

Proof. Suppose that m and n are /-prime. Ifm 1or n I then (since f(1) 1)
F(m) 1 or F(n) 1, and it follows that F(mn) F(m)F(n). Otherwise, since the infinitary
divisors of a natural number are 1 and the set of all products of its/-components taken one at
a time, two at a time, etc., we see that d is an infinitary divisor of mn if and only if d d d=
where d Ioo m and d2 Ioo n. Of course, d and d2 are/-prime. Therefore,

F(mn) y y(d)= ](dld)
dloo mn d loo d lo

f(dl)f(d2)= f(dl) f(d2)= F(m)F(n).
dl,rndl.n dl**rn dl.n

T.oas 4. We have ’1o (d) n.

Proof. Let F(n) EaI oo (d). It is immediate that F(1) 1. Also, if n P 5 I then

r() oo (a) oo () + oo (e) + (e -.) n.

al.n
Since oo is an I-muliplicaive function, i follows from Theorem 3 that F is I-multiplicive.
Therefore, if n PP2...Pt, then F(n) I-[= F(Pj) 1-I)= PJ n.

DEFINITION 4. The arithmetic function i, given by

i(n)= [] {1,0, ififn=n>l,l’
is called the identity function.

The proof of the following theorem is very similar to that of Theorem 4 and therefore is

omitted.

’J2OIE . We hve -"1’ I(d) i(n).

2. Tttp.. INFINITRY CONVOLUTION

In this section, we study the infinitary analogue of the familiar operation of Diriehlet

convolution on arithmetic functions. Since the definitions and theorems parallel those to be

found in Chapter Two of Apostol [], we omit most of the proofs.
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DEFINITION 5. If f and g are arithmetic functions, their infinitary convolution, denoted
(] * g)o, is the arithmetic function given by

WnEOaE 6. fo =ho ], , , h= (] ) (g, y) (h
) ((] *) *) (] * ( * )) (o).

TEOaE 7. Fo =ho
TEOaEM 8. if/ i an arithmetic ]uncion uch hat /(1) # 0, here i a unique arithmetic

]uncion (]-), called he infinitary in,erie o/], such that

REMaE 6. From Theorems 6, 7, 8, it follows that the set of
with ](1) # 0 forms abeli group with respect to the operation of infinity convolution,
the identity element being the function i.

DEFINITION 6. The unit function u is the ithmetic function such that u(n) 1 for every
natur number n.

om Theorem 5 d Definition 6, we have (p u) i. Therefore, om Theorem 8,

(.2) =d

TnEOaEM 9. (The Mbius in,ersion ]oula.) We ha,e F(n) ,](d) ff and only

Proo]. Suppose that F (] u). Then (F p) ((],u),p)
(],(u,)) (],i) ]. Convemely, suppose that / (r,p). Then
(] ) ((f ) ) (, (,,)) (,) F.

COROLLARY 9.1. We have (n)= ,p(d)(n/d)= n

Proo]. om Theorem 4, n d], (d). Our result fonows om Whrem 9.

TEOaEM 10. ff ] and g are each I-mul@licative, then so is (] g).

TEOaEM 11. ff g and (] g) are each I-multiplicaive functions, hen f is ao I-
mult@licative.

COROLLARY .. If g i$ I-multiplicative, o i i infinita inverse (g-).

Proof. Both g d (g,(g-)) e I-multiplicative. Therefore, (g-) is I-
multiplicative.

EMAR 7. It follows om Theorems 6, 7, 8, 10 d Corolly 11.1 that the t of I-
multipHcative fctions is a subgroup of the oup of thmetic functions f su that f(1) 0.

THEOREM 12. If f is I-multiplicative, then

Proof. We have

dln dln

TEOREM 13. If f is I-muli?licaie, ken (f-1)

Proof. Le (n) f(n)p(n). Then
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f(n) poo(d)= f(n)i(n)= i(n).

COROLLARY 13.].. If f i, 1-multiplicative, then (/-1)oo(rl) f(rl) or--/(rl), accordinff as

J(n) is even or odd.

3. SOME SUMMATORY FUNCTIONS

Throughout this section, we assume that if the natural number n exceeds 1, then n

PIP2... PJ, where P1 < P2 < < PJ are the/-components of n. Also, e will denote a real

number satisfying 0 < e < 1.

DEFINITION 7. The arithmetic function oo is defined by

J
P1 if n> 1.oo(1) 1, noo(n)

P1 + 1

It is immediate that noo is I-multiplicative, and that noo(n) _< 1 for all n.

DEFINITION 8. If x > 0 is a real number,

oo(x,n) 1.

REMARK 8. In general it is not true that oo(n,n) oo (n). See Corollary 14.1.

LEMMA 1. I,et P be any I-component of n, where n > 1. Then

Proof. We have

m<x ra<z m<z
(m,n)--oo =1 (rn,n/P)oo =1 Plom

(/P,-)oo=

THEOREM 14. For any positive real number x and any natural number n,

Coo(z, n) noo(,)x +

where the multiplieative constant implied by the big oh notation depends only on e.

Proof. The proof will include an estimation of the constant, c say, implied by the big oh

notation.
Let Q be the smallest dement of I such that

1
log(Q’ 1)

< ,, (3.)log Q
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and let

(For example, taking e 0.8, 0.5, 0.3 and 0.1, we find that, respectively, Q 3, 11, 107 and

1876451. Since 2 1 _< 1, we see that Q _> 3.)
Suppose first that x < 1. Then Coo(x, n) 0, and

so (3.1) holds in this case, provided c >_ 1.

From now on, we assume that x >_ 1.

Suppose that n 1. Then Coo(x, n)= Ix], and

I(,-)- oo(-)1 -[] < 1 < .,
so (3.1) holds in this case as well, again provided c >_ 1.

We now assume further that n > 1, and consider first those n for which Q _< P1. We will

show that, for any positive integer k and all x < P,

[oo(x,n)- oo(n)x[ < 2pn. (3.3)

.The proof is by induction on k.
When k 1, we have, since x < P, 0 < oo(n) < 1 and p > 1,

[Coo(x, n) oo(n)x[ _< Coo(x, n) + oo(n)x < [x] + x _< 2x < 2P _< 2n < 2pn,

which is the required result in this case.
p(z+l), For such x andNow suppose the result is true when k l, and consider those x <.

any j, 1 <_ j _< J, we have x/P. < P.
By repeated application of Lemma 1,

oo(,) oo , oo

=o z, -oo -oo ,n

== Z,
piP=e -oo P3’PIP= -oo -2’ --oo

)PIP P-I P-’ PIP P-

[]- + 1
pj PJ-1 Pj- P1

( )pj,’P2P2- (P2P_)p2_



378
Since

G.L. COHEN AND P. HAGIS

oo(PJPJ-1PJ-2)

Pj Pj-
Pj + 1 Pj_ + 1

,oo(.),

PJ-2
Pj 1

Pj + 1 PJ-1 + 1
PJ-1 1 Pj Pj_ P2 1

Pj+IPj_+I P2+l P+I

Pj + i Pj_I + I P+i P+i

P/I Pj-I + I P2/I

we thus have, using the induction hypothesis,

This completes the proof of (3.3).
Now, for given x we let k be the smallest integer such that z < Pt. (Note that k > 1 since

x _> 1.) Then x >_ P(k-)t >_ Q(k_), so that k 1 _< log x/e log Q. Then

’-= Q,-I -< Q,-

log z/ log Q
xlog(Ct’/(C’-l))/logC" < x,

using (3.2). It therefore follows from (3.3) that (3.1) is true, provided c, > 2p,, for all n with
smallest/-component at least Q.
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Consider next those n with P1 < Q < P2. By repeated application of Lemma 1,

= z, - +oo ,n

= , -o , +0o --..+oo :F.--.

This is a finite series, terminating after + 1 terms, where x/P+1 < 1 < x/P. Since the

smallest/-component of n/P1 is at least Q, the work above shows that

The extra multiplicative factor introduced in the error term is

1 P <
P PI-I 2E_l

The O(1) term in fact adds no more than 1, which is less than 1 .nEx, to the error term. Since

1 + 2p/(2- 1) < 3p/(2- 1) (because pE > 1 >_ 2- 1), we may take ce >_ 3p,/(2- 1).
Theorem 14 has thus been proved for those n with at most one/-component less than Q.

If Q > 3, then there exist n for which P2 < Q _< P3. For such n, n/P1 has at most one

/-component less than Q, so precisely the same approach as in the preceding paragraph, using
the result there, again shows Theorem 14 to be true, provided that we take c > 4p/(2 1)2.

By repeating this argument, we see that if Ps < Q <_ Ps+, for st)me s 1, 2, J 1,
then the theorem is true, with c >_ (s + 2)p/(2 1)s. (This statement also holds for s 0 if

we define P0 to be 1.) If F(Q) denotes the number of elements of I which are less than Q, and

Ps < Q <_ Ps+l where s + 1 _< J, then it is easy to see that s < F(Q). It follows that if x > 1

and Q <_ Pj, then the theorem is true, provided we take c > (F(Q) + 2)pE/(2 1)F(a).
We must consider finally those n with Q > Pj. From Lemma 1,

and the result of the preceding paragraph implies that

Coo(x, n)= (nQ)x + O(nQx) + tco(nQ)- + O(nEz).

It now follows easily that

(,.) oo(n) + o(),
where we need to take c >_ (F(Q) + 2)(Q + 1)p/(2E- 1)F(Q).
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The proof of Theorem 14 is complete. The constant hnplied by the big oh may be taken
equal to (F(Q) + 2)(Q’ + 1)p/(2’ 1)F(q).

COROLLARY 14.1. We have

oo(-,-)

_
(-)

oo() + o(n"),

for any with 0 < <_ 2.

Proof. Use Remark 1, Theorem 14, and the fret that nm(n) n/am(n).

COROLLARY 14.2. We have, where x > O,

tm(X, n)def,_ Z
m<z

1/2(.) + o(’+’.’).

Proof. Use a Stieltjes integration with era(x, n) as integrator (maintaining n as a constant
parameter).

THEOREM 15. I,et g be any bounded arithmetic function and define the arithmetic function

](n n E g(-ff’)
Then, for any z > 1,

z:z
/(") 3 , + o(=TM Zo
n<z n=l

Proof. We have

using Corollary 14.2.
We now have

d
(d,d’)= =1

g(d)=g(d) d’

(=,=’)== (=’,)==z

d<

2 n +0 z+

n + logz),

Since 0 < m(n) _< 1 mad n>= 1/n2 O(x-1), the theorem is proved.

Taking, respectively, g(n) 1 and g(n) pro(n), we obtain the following results.
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COROLLARY 15.1. For any x > 1,

COROLLARY 15.2. For any z > I,

Z o(n) -" n
n<z n=l

We also have

+ O(z1+" log z).

COROLLARY 15.3. For any z > 1,

xnto(n)=’- po(n)n(n)n2
n<x n=l

+ O(xTM log x).

Proof. We need first the result

o(a). (.)
d

This can be proved directly, or by using the M6bius inversion formula (Theorem 9), as follows.

Since
n

ao(n) E d,
oo(n)

and since noo is I-multiplicative, we have

n/d
n Z poo(d)noo(n/dj

giving (3.4).

n

dlnoo() d

Now substitute g(n)= poo(n)too(n) in Theorem 15 to obtain Corollary 15.3.

Set

A Z noo(.) B E po(n)noo(.) C Zn’ n2 n2
n=l n=l

These may be appromated usg the infinity oe of Eer products:

THEOaEm 16. If f(n) is an I-multiplicative arithmetic nction such that e series

E y(n)/n" absolutet convergent, then

f(n---)= H 1+
n=l P6.I

Proof. The proof is analogous to, but easier than, that of Theorem 11.7 in [3].

Using the definitions of too and po, we thus have

( 1 )A= H I+ P(P+I)P6.I
( 1)B= H 1-p(p+l)

P6_I
(C= H 1-(p+l)2

P.I

In this way, we have calculated the following numerical values for the coefficients in Corollaries

15.1, 15.2 and 15.3, respectively:

-0.73
B C- 0.33, - 0.37.

The results of Corollaries 15.1 and 15.2 may now be compared with the following results for
ordinary and unitary divisors. The superscript refers to unitary divisors; see E. Cohen [4] for
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the corresponding definitions and results. See [3] for the results concerning ordinary divisors.

] ,,(-) (2) + 0(os ), (2) O.S2;

r2

E a*(n)= 1--x
2 + O(x log x), 12((3"--’ 0.68;

() + o( og ), - 0.30;

E *(n)= 2 + O(z log2 z), : : H 1 --" 0.35.
nz p prime P(P "" 1)

We now proceed to the evaluation of ,< r(n).

LEMMA 2. With C as above, we have, .for all x > 1,

(i) (.) c + o(’ os );

log z + C’ + O(z-1+- log x),

shere C’ i a constant to be described.

Proof. We use as an integrator the function K defined by

K(x) 0 if z < 1,

(See Corollary 15.3.)

log z)if z > 1.

(i) .<=’=(")=f’dK(")--= K() + f," ---a,,K(=)
: + 0(’ log) + + O(u-+ log) d

Cx + O(z log x).

(ii) n<_xE ’:’(n)n f= dK(U)u2 --.._K(z)z2 + 2 f" K(u) du

C
O(z-+, f(C (K(u) C))du=+ og)+2 + 2

)+ o(-+’ os) + cos + 2
g(=) C
u 2u

du

Sce K(z)/x3 C/2x O(x-2+ log x), the first inteM hem is convergent d hence is a
const=t (nely, C’ ]C), d the cond inteM is O(f u-2+ log u du) O(x-+ log x).The resdt follows.
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TttEOREM 17. We have,/or any x > 1,

Too(n) Cx log x + (2C’ C)x + O(x+).

Proof. Having developed Theorem 14 and Lemma 2, the proof follows standard lines:

n(_x n_x dl n_x dd’=n
(d,d’)=l

dd’ <_x, d<_v/’
(d,d’)oo =1 (d,d’)o=--1

d<_’ d’ <_ d d< ,cr
(d’,d)--1 (d’,d)=o--1

X

2(C log + C’ + O((-1T’) log )) + O(+’)

co + (c’ c) + o(+).

For ordinary divisors, the result corresponding to that in Theorem 17, as originally obtained
by Dirichlet, is

z-(n)= x log x + (20’- l)z + O(x1/2),

where 7 is Euler’s constant. (It is well known that the error term has subsequently been

improved. This is the classical divisor problem, discussed in [3].) For unitary divisors, we have

the following result (obtained by Gioia and Vaidya [5]):

x( )r*(n)= f- log x + 27- 1- 2(’(2.__.._)
,<x (2)

+O(x]).
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